Supporting Information:

OH-Radical Specific Addition to Glutathione S-Atom at the Air-Water Interface – Relevance to the Redox Balance of the Lung Epithelial Lining Fluid

Shinichi Enamia,b,c,*, Michael R. Hoffmannd and Agustín J. Colussid,*

aThe Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan

bResearch Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan

cPRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

dLinde Center for Global Environmental Science, California Institute of Technology, California 91125, U.S.A

*Authors to whom correspondence should be addressed: enami.shinichi.3r@kyoto-u.ac.jp; phone,+81-774-38-4601, or ajcoluss@caltech.edu
Ozone is produced from ultrapure O\(_2\) (purity > 99.995 \%) flowing at 1.0 standard liters per minute (SLM) through a discharge ozonizer (KSQ-050, Kotohira). O\(_3\)(g) concentration is measured online by a UV-Vis absorption spectrophotometry at 300 nm (absorption cross section = \(3.9 \times 10^{-19}\) cm\(^2\) molecule\(^{-1}\))\(^1\), prior to entering the reaction chamber. Throughout, the reported [O\(_3\)(g)] values correspond to the concentrations actually sensed by the microjets in the reaction chamber, which are 10 times smaller than those determined upstream UV absorbances due to dilution by the drying gas (N\(_2\)). H\(_2\)O(g) is constantly added by sparging milli-Q water with N\(_2\)(g) carrier gas at 0.2 SLM, whose flow is measured by a mass flow controller. It is assumed that the chamber is saturated with H\(_2\)O(g) at 298 K throughout. The 266 nm radiation emitted by our Nd\(^{3+}\):YAG laser setup (LOTIS TII, LS-2131M-10) through the harmonic generator assembly HG-TF (pulse duration 8 ± 1 ns, 266 nm beam diameter 10.0 ± 1.0 mm, beam divergence ≤ 1.5 mrad, 10 Hz) is used to generate ·OH(g) in situ (Fig. S1).

Conditions in the present experiments were: drying gas flow rate: 12 L min\(^{-1}\); drying gas temperature: 340 °C; inlet voltage: +3.5 kV relative to ground; fragmentor voltage value: 60 V. GSH (> 97 \%) and GSSG (> 98 \%) were purchased from Tokyo Chemical Industry (Tokyo). Fe(II)Cl\(_2\)·4H\(_2\)O (> 99 \%) was purchased from Sigma-Aldrich. All solutions were prepared in purified water (Resistivity ≥18.2 MΩ cm at 298 K) from a Millipore Milli-Q water purification system. These samples are acidic (pH 3-6) and used as they are without adjusting by NaOH. The pH of the injected solutions was measured before measurement with a calibrated pH-meter, Horiba LAQUA F-74.

[-OH(g)] estimates
The photo-dissociation of O$_3$(g) by 266 nm into O(1D), followed by the reaction of O(1D) with H$_2$O(g), in competition with its quenching by N$_2$(g) and O$_2$(g) into O(3P) promptly yields ·OH(g).2 The concentration of ·OH(g) is estimated from the O$_3$(g) absorption cross sections, laser fluence, and reported gas-phase kinetic parameters. Since number of photons is larger than number of O$_3$(g) molecules under present conditions, we could estimate the initial O(1D) concentrations from 266 nm photolysis from Beer’s law:

\begin{equation}
\ln(N_0/N) = I_0 \sigma \Phi_{dis}
\end{equation}

\begin{equation}
N = N_0 \exp(-I_0 \sigma \Phi_{dis})
\end{equation}

where σ is the absorption cross section, Φ_{dis} is the dissociation quantum yield, I_0 is the laser fluence in number of photons per unit area, N_0 is the number of molecules before laser irradiation, and N is the number of molecules after laser irradiation.3 O(1D) reacts with excess H$_2$O(g) ([H$_2$O(g)] \sim 7.6 x 10^{17} molecule cm-3) to generate ·OH radical within ~6 ns (derived from $k_1 = 2.2 \times 10^{-10}$ cm3 molecule-1 s-1), reaction R 1:4,4

\begin{equation}
\text{O(1D) + H$_2$O } \rightarrow \text{ 2 ·OH}
\end{equation}

or, is competitively quenched by N$_2$ and O$_2$, reactions R 2a and R 2b:1,4

\begin{equation}
\text{O(1D) + N$_2$ } \rightarrow \text{ O(3P) + N$_2$}
\end{equation}

\begin{equation}
\text{O(1D) + O$_2$ } \rightarrow \text{ O(3P) + O$_2$}
\end{equation}

We evaluate that ~ 20% O(1D) is converted into ·OH radicals under present conditions.

By changing [O$_3$(g)] and 266 nm laser energy, [-OH]$_0$ can be varied from a few tens of ppbv to 100 ppmv under present conditions.

The secondary chemistry by the reaction of ·OH with O$_3$ ($k = 7.3 \times 10^{-14}$ cm3 molecule$^{-1}$ s$^{-1}$)4 is unimportant since the ·OH lifetime by this reaction > 500 μs. It is also noted that the reaction of O(1D) with reactant(aq) is negligible. By assuming a rate constant for
such process as large as $k = 6 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, we estimate that this $O(^1D)$ reaction path at [reactant(aq)] = 100 μM = 6.0×10^{16} molecules cm$^{-3}$, is still > 20 times slower than the gas phase reactions R1, 2a and 2b. The fact that the same products were observed on aqueous GSH microjets 0.01 - 100 mM range also supports it. We also note that $O(^3P)$ is mainly consumed by O_2 to regenerate O_3 ($\tau \sim 36 \mu$s) under the present condition.
Figure S1 - Schematic diagram of setup used to study the OH radical + GSH reaction at the air-water interface.
Figure S2 Negative ion electrospray mass spectrum of 0.1 mM GSH microjets (pH 4.4) in the absence (cyan)/presence (red) of 266 nm laser beam irradiation at 40 mJ pulse$^{-1}$ (maximum power) under H$_2$O/O$_2$/N$_2$ atmosphere.
Figure S3 Negative ion electrospray mass spectrum of 1 mM GSSG microjets (pH 3.4) in the absence (cyan)/presence (red) of 266 nm laser beam irradiation at 40 mJ pulse$^{-1}$ (maximum power) under H$_2$O/O$_2$/N$_2$ atmosphere.
Figure S4 Negative ion ES mass spectra of aqueous 10 mM GSH (pH 3.1) microjets in O₂(g)/H₂O(g)/N₂(g) mixtures (blue) or exposed to ~160 ppmv O₃(g) in O₂(g)/H₂O(g)/N₂(g) mixtures without (cyan)/with (red) 40 mJ 266 nm pulses. ([OH(g)]₀ ≤ 14 ppmv). 1 ppmv = 2.46 × 10¹³ molecules cm⁻³. Note the absence of signals at m/z = 305 and 611 under 266 nm irradiation (red).
Figure S5 The m/z = 305, 337, and 611 products yields derived from signal intensities of the products divided by the decrease of the m/z = 306 (GSH\(^{-}\)) reactant under identical \([·OH(g)] ≤ 15 \text{ ppmv} \) (1 \text{ ppmv} = 2.46 \times 10^{13} \text{ molecules cm}^{-3}) as a function of [GSH].

SI REFERENCES

