USE OF FINE UNHEATED WIRES FOR HEAT TRANSFER MEASUREMENTS IN THE SHOCK TUBE

by

Walter H. Christiansen
ERRATA FOR

Memorandum No. 55
June 1, 1960

"Use of Fine Unheated Wires for Heat Transfer Measurements in the Shock Tube"

by
Walter H. Christiansen

page 13 -- Equation (20b) --

now reads $\frac{Q_{2D}}{Q_{3D}} \approx 1 + \frac{2}{\lambda} \frac{t}{\eta} + \ldots$

It should read: $\frac{Q_{2D}}{Q_{3D}} \approx 1 + \frac{2}{\sqrt{\pi}} \sqrt{\frac{t}{\eta \lambda}}$

page 14 -- last line --

now reads: "a two per cent error in the"

It should read: "a ten per cent error in the"
USE OF FINE UNHEATED WIRES FOR
HEAT TRANSFER MEASUREMENTS IN THE SHOCK TUBE

by
Walter H. Christiansen

Clark E. Millikan, Director
Guggenheim Aeronautical Laboratory

ARMY ORDNANCE CONTRACT NO. DA-04-495-Ord-1960
ACKNOWLEDGMENTS

The author wishes to express his gratitude to Dr. Anatol Roshko for initiating this project and for his comments and review of the manuscript.
ABSTRACT

This report describes the application of fine cold wires for heat transfer measurements in the shock tube. The use of the calorimetric property of the wire results in a heat transfer instrument with an output of .25 mv/oC and a response lag of less than 1 µsec. The gage construction, calibration, and response characteristics are discussed. Some preliminary results are also presented.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>vi</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Construction of the Gage</td>
<td>3</td>
</tr>
<tr>
<td>III. Metals for Use as a Fine Cold Wire</td>
<td>5</td>
</tr>
<tr>
<td>IV. Response Characteristics of a Fine Cold Wire</td>
<td>6</td>
</tr>
<tr>
<td>V. Support Effects on Heat Transfer Measurements</td>
<td>11</td>
</tr>
<tr>
<td>VI. Calibration of the Gage</td>
<td>15</td>
</tr>
<tr>
<td>VII. Estimate of Heat Conduction Losses to the Surrounding Media During Calibration</td>
<td>19</td>
</tr>
<tr>
<td>VIII. Operating Technique</td>
<td>22</td>
</tr>
<tr>
<td>IX. Preliminary Heat Transfer Measurements</td>
<td>24</td>
</tr>
<tr>
<td>X. Concluding Remarks</td>
<td>25</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
<tr>
<td>Figures</td>
<td>27</td>
</tr>
<tr>
<td>NUMBER</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>The Gage and its Mounting</td>
</tr>
<tr>
<td>2</td>
<td>Equilibrium Temperature of the Wire as a Function of the Wire Geometry</td>
</tr>
<tr>
<td>3</td>
<td>Calibration Circuit</td>
</tr>
<tr>
<td>4</td>
<td>Characteristics of Calibration Circuit</td>
</tr>
<tr>
<td>5</td>
<td>Effect of Surrounding Media on Gage Output During Calibration</td>
</tr>
<tr>
<td>6</td>
<td>Block Diagram of Gage and Shock Tube for Heat Transfer Measurements</td>
</tr>
<tr>
<td>7</td>
<td>Typical Gage Responses in Shock Tube</td>
</tr>
<tr>
<td>8a</td>
<td>Preliminary Results</td>
</tr>
<tr>
<td>8b</td>
<td>Preliminary Results</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

d diameter of wire, cm
l, L length of wire, cm
\delta some characteristic length, cm
\psi distance measured along wire, cm
\alpha coefficient of resistivity, 1/°C
\rho density, \(\frac{gm}{cm^3} \)
c specific heat, \(\frac{cal}{gm°C} \)
T temperature, °C
R resistance, ohms
\sigma specific resistance, ohm cm
AR aspect ratio, l/d
E oscilloscope voltage, volts
V battery voltage, volts
I current, amps
C capacitance, farads
U velocity, cm/sec
k thermal conductivity, \(\frac{cal}{°C \ sec \ cm} \)
t time, sec
Q quantity of heat, cal
q heat transfer/unit area, \(\frac{cal}{cm^2 \ sec} \)
m mass of the wire, \(\frac{\pi d^2 \rho}{4} \), g

Nu Nusselt no. \(\frac{Q}{\pi \delta k \Delta T} = \frac{q d}{k \Delta T} \)
\tau time constant \(\frac{d^2 \rho c}{\pi \delta k \Delta T} \), sec
\Delta Laplace transform of time
\lambda non-dimensional length \(\frac{Nu \frac{k_e}{\delta}}{k_w} \left(\frac{d}{\lambda} \right)^2 \)
p. pressure, mm Hg.

Subscripts

\(i \) some initial condition

\(w \) wire

\(r \) recovery temperature of wire

\(a \) air
A new heat transfer instrument has been developed for use in the shock tube. This report describes in detail the construction, calibration, and use of this instrument. The instrument is a fine "cold wire" that utilizes the transient nature of the hot flows produced in the shock tube for heat transfer or anemometry measurements. Physically, its appearance is similar to an ordinary hot wire anemometer, but conceptually, its application and use is quite different. A photograph of the gage and its mounting is shown in Figure 1. The gage uses only a small excitation current to produce a voltage signal across the wire. There is essentially no joule heating in the wire, and it will practically maintain the temperature of its surroundings before the initiation of the hot flow. After the shock wave passes over the wire, the wire begins to heat up in this flow. This heating continues until the wire reaches an equilibrium temperature or until the hot flow ceases. The wire is assumed to be a perfect calorimeter, that is, all the heat convected to the wire is stored in the wire itself. Calorimetric methods of heat transfer measurements have been used before in the shock tubes. (1,2) The resulting change of wire temperature produces a resistance change of the wire which is conveniently read as a voltage on an oscilloscope.

For quantitative heat transfer measurements, the physical constants \(a, \rho, c\) and the geometrical quantities \(d\) and \(l\) must be known. Thus we have to evaluate two additional physical constants (\(\rho\) and \(c\)) using this method of heat transfer measurement as compared to ordinary or steady state measurements with hot wires. An electrical calibration method has been developed to evaluate them.
The wires used in this report are made of either tungsten or platinum. The excitation current is adjusted so that there is no appreciable heating of the wire \((\Delta T = T_w - T_i = 0 \text{°C}) \), resulting in an output signal of .25 mv/oc. Preliminary measurements, calibration technique, end loss corrections, and response characteristics are presented to illustrate the performance of the instrument more fully.
II. CONSTRUCTION OF THE GAGE

The wires can be made of practically any metal such as nickel, aluminum, or platinum. The maximum signal output, tensile strength, and commercial availability should be kept in mind. (See Part III.) In this investigation both platinum and tungsten wires were used with diameters comparable to those of standard hot wires -- roughly .0001" - .001". These are readily available from commercial firms. Either wire gives a good signal due to a flow in the shock tube, but tungsten has the obvious advantage of high tensile strength. However, it is available only in limited sizes.

The wire is conveniently supported by two sewing needles held in a bakelite wedge. (See Figure 1.) The wedge is attached to a side wall plug with electrical leads and inserted into the shock tube. For heat transfer measurements, the wire is placed perpendicular to the flow and centered on the shock tube axis to minimize any shock tube boundary layer and wall effects. The wedge is removable from the plug for convenience in replacing broken wires or wires of different diameters. The electrical connections are made with the pin connectors from Winchester plugs such as type MRE 20S. These are gold plated and make good electrical contact.

The platinum wires are directly soldered to the supports while tungsten must be copper plated first. In the latter case a thin layer of copper is deposited on the whole length of wire using a copper sulphate solution. It is then soldered to the supports. The plating process then is reversed to leave the wire bare. Spot welding the tungsten wire to the supports is another method of attaching it to the needles. Some damage is done to the supports and wire with this method, but it is more convenient and requires less time than copper plating. Both methods result in good electrical connections.
The construction of the gage provides for a fairly large aspect ratio \(\frac{L}{d} \) to minimize any aerodynamic interference of the supports. This aspect ratio is held between 600 and 1200. For constant aspect ratio, the completed gage has a characteristic resistance proportional to the inverse of the diameter.

\[
R_w = \frac{\sigma \ell}{\pi d^2} = \frac{4 \sigma AR}{\pi} \left(\frac{1}{d} \right)
\]

The gage resistances vary from 2 ohms to 40 ohms at room temperature.
III. METALS FOR USE AS FINE COLD WIRES

The discussion actually falls into three categories: 1) what metals are commercially available for fine wires, 2) what materials are structurally superior and 3) what metals will give the largest signal due to heat transfer? The first two questions are not dealt with here, only the latter.

The voltage signal is (see Part IV)

\[\dot{E} = I R_w = I R_i \alpha_i \dot{T_w} \]

Assuming the wire to be a perfect calorimeter, \(\dot{T_w} \) can be written in terms of heat transfer

\[\dot{Q} = \frac{\pi d^2}{4} \rho c \dot{t}_w \]

With \(R = \frac{\sigma l}{\pi d^2} \), we get

\[\dot{E} = \frac{I \dot{Q}}{\left(\frac{\pi d^2}{4} \right)^2} \left(\frac{\rho \alpha}{\rho c} \right)_w \]

(1)

\(I, Q, \) and \(d \) are fixed by the geometry and flow conditions. Therefore, for maximum \(\dot{E}, \left(\frac{\rho \alpha}{\rho c} \right)_w \) must be maximum. The table* below lists some metals in their relative position with respect to this parameter.

<table>
<thead>
<tr>
<th>Position</th>
<th>Metal</th>
<th>(\sigma)</th>
<th>(\alpha / \rho C)</th>
<th>g/cm³</th>
<th>c</th>
<th>(\frac{\sigma \alpha}{\rho c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe</td>
<td>9.8</td>
<td>0.0065</td>
<td>7.9</td>
<td>0.108</td>
<td>0.074</td>
</tr>
<tr>
<td>2</td>
<td>Pt</td>
<td>9.8</td>
<td>0.0039</td>
<td>21.5</td>
<td>0.032</td>
<td>0.055</td>
</tr>
<tr>
<td>3</td>
<td>Ni</td>
<td>6.9</td>
<td>0.006</td>
<td>8.85</td>
<td>0.112</td>
<td>0.042</td>
</tr>
<tr>
<td>4</td>
<td>Pt90Rh10</td>
<td>18.4</td>
<td>0.0016</td>
<td>21</td>
<td>0.034</td>
<td>0.041</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>5.5</td>
<td>0.0045</td>
<td>19.3</td>
<td>0.032</td>
<td>0.040</td>
</tr>
<tr>
<td>6</td>
<td>Pt90Ir10</td>
<td>22</td>
<td>0.001</td>
<td>21.6</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>7</td>
<td>Al</td>
<td>2.7</td>
<td>0.0045</td>
<td>2.7</td>
<td>0.226</td>
<td>0.02</td>
</tr>
<tr>
<td>8</td>
<td>Au</td>
<td>2.4</td>
<td>0.0034</td>
<td>19.3</td>
<td>0.031</td>
<td>0.014</td>
</tr>
</tbody>
</table>

* Physical properties from Ref. (3)
IV. RESPONSE CHARACTERISTICS OF A FINE COLD WIRE

The response time of the instrument is limited by two characteristic times: 1) the characteristic time it takes to set up flow about the wire 2) the characteristic time it takes to heat the wire uniformly throughout its volume.

1) The time required to establish flow over the wire is of order \(\frac{5d}{U} \) (assuming 5 body diameters to establish this flow). For the larger wire sizes this time is approximately 1 \(\mu \)sec.

2) Heat diffuses with infinite signal velocity, that is, a pulse source of heat can theoretically be felt everywhere. One can define an effective time for penetration of a pulse of heat as

\[
t \sim \frac{Sc \delta^2}{\kappa}
\]

If \(\delta \) is taken to be equal to one half of the diameter of the wire, then this characteristic time is \(t \sim 1.6 \mu \)sec for a 1/2 mil platinum wire and .7 \(\mu \)sec for a tungsten wire. Hence under most conditions in the shock tube, even those that involve small testing times \(O (10 \mu \)sec\), the wire can be considered to be in steady flow and uniform in temperature. For smaller wires, of course, the characteristic times would be shorter.

A temperature rise of the wire is accompanied by a resistance variation of the wire. If this variation is moderate (\(\Delta T \) of the order 200\(^\circ \)C), the resistance of the wire is accurately given by

\[
R_w = R_i \left(1 + a_i (T_w - T_i) \right)
\]

(2)

The subscript \(i \) denotes some initial condition where the properties of the wire are known. If a current is passed through the wire, the voltage drop
across it is equal to

\[\text{IR}_w = E = \text{IR}_i \left(1 + \alpha \left(T_w - T_i \right) \right) \] \hspace{1cm} (3)

The variation in voltage will be \(\Delta E \).

\[\Delta E = \Delta \text{IR}_w + I \Delta \text{R}_w \] \hspace{1cm} (4)

If the voltage source has a high impedance compared to the wire, the current will essentially be constant. This will simplify the computations and reduction of data, although it is not a necessary simplification. Then

\[\Delta E = I \Delta \text{R}_w = I \text{R}_i \alpha \left(T_w - T_i \right) \] \hspace{1cm} (5)

An element made of tungsten with a diameter of .0005" has a resistance of approximately 6 ohms. With \(I = 10 \text{ ma.} \) and \(\alpha = .004/o \), a voltage of .24 mv/o is produced. This seems like a small signal, but it should be remembered that large temperature differences are encountered in the shock tube and the heat content of the wire is small. Therefore the wire may heat up many hundreds of degrees during a run, resulting in a signal of many millivolts.

An ordinary heat balance of the wire is given by*

\[\text{HEAT STORED} = \text{HEAT PRODUCED INTERIOR} + \text{HEAT CONVECTED} + \text{HEAT CONDUCTED} \]

\[(\text{JOULE HEAT}) + (\text{FORCED CONVECTION}) + (\text{TO SUPPORTS}) \]

* At very low densities radiation may have to be taken into account.
With the assumption that the wire does not have any heat conduction losses to the supports and is uniformly heated in any cross-section, there will be no spatial variance of the temperature in the wire. This results in the simple equation

\[
\frac{d}{dt} mc(T_w - T_i) = I^2 R_w + \mathcal{Q}_{\text{forced convection}}
\]

(6)

This equation graphically illustrates the difference between an ordinary hot wire and a cold wire as used in the shock tube. The left hand side of equation 6 is zero for steady state measurements with a hot wire or its use with compensating amplifiers. The Joule heat then equals the forced convection heat transfer. For a cold wire however, the Joule heat term is zero and thus

\[
\frac{d}{dt} mc(T_w - T_i) = \mathcal{Q}_{\text{forced convection}}
\]

(7)

This equation can be readily integrated with the assumption of constant material properties.

\[
\int_{T_i}^{T_w} \frac{\pi d^2 l \rho c}{4} \frac{dT_w}{T_i} = \int_0^t dt
\]

(8)

\[
d\frac{c}{4} \int_{T_i}^{T_w} \frac{dT_w}{q} = t
\]

For \(q = \text{constant} = q_0 \)

\[
d\frac{c}{4q_0} (T_w - T_i) = t
\]

(9)

The temperature of the wire changes linearly with time.
However for a calorimeter gage, the heat transfer \(q \) is not necessarily constant, since the temperature difference between the wire and flow decreases as the wire heats up. Hot wire results \(^4\) show that the Nusselt number is nearly constant for fixed flow conditions and all heat transfer rates.

Define

\[
N_u = \frac{Q}{\pi \ell (T_w - T_i)} = \frac{g \ell}{l_c (T_c - T_w)}
\]

Substituting into equation (7), we get

\[
\frac{d \rho c}{4} \int_{T_i}^{T_w} \frac{dT_w}{N_u \ell (T_c - T_w)} = \tau = \frac{d \rho c}{4 N_u \ell} \int_{T_i}^{T_w} \frac{dT_w}{T_c - T_w}
\]

and

\[
T_w = T_c - (T_c - T_i) e^{- \frac{4 N_u \ell \rho c \tau}{d \rho c}}
\]

The time constant for this idealized case is the intercept of the initial slope of the response with \(T_c \). This gives for the response time (a measure of the time for thermal adjustment of the wire)

\[
\tau = \frac{d \rho c}{4 N_u \ell}
\]

Typical time constants range from .1 to 10 msec. Generally speaking these times are longer than the uniform flow times encountered in the shock tube.

The forced convection heat transfer rate to the wire is given by

\[
Q = g \pi \ell d = \frac{\pi d \ell}{4} \rho c \frac{dT_w}{dt}
\]

Since \(\Delta T = \frac{E}{I R_i} \xi \) \((\text{constant current operation})\)
\[q = \frac{d\sigma e}{4\alpha i} \left(\frac{1}{IR_i} \right) \frac{dE}{dt} \]

Hence the heat transfer per unit area is directly proportional to the time rate of change of the voltage across the wire.
V. SUPPORT EFFECTS ON HEAT TRANSFER MEASUREMENTS

As has been mentioned previously, the wire and its supports begin to heat up after the passage of the shock wave. However, the supports do not heat up as rapidly as the wire does because of their large differences in mass. This causes a temperature difference to be set up between the wire and its supports. When this occurs the wire is no longer a perfect calorimeter because some heat is lost by conduction to the supports.

If heat transfer measurements are made at some time after the shock has passed by, some correction will have to be made to correct for this heat loss. It is the purpose of this section to estimate this correction.

To make the mathematical problem more tractable the following assumptions are made 1) no radiation effects 2) no Joule heating 3) the physical parameters are constant and 4) the Nusselt no. does not depend on the heat transfer rates. Consider the heat balance of a small differential element.

\[
- \frac{k_w}{4} \frac{dT_w}{dx} \frac{d^2 T_w}{dx^2} + \frac{\nu_k R_e (T_h - T_w) dx}{d} = Q_{\text{forced}}
\]

Where

\[
Q_{\text{forced}} = \frac{\pi d^2}{4} \rho_w C_w \frac{dT_w}{dx} dx
\]

This results in the following differential equation:

\[
\frac{k_w}{4} \frac{d^2 T_w}{dx^2} + \frac{\nu_k R_e (T_h - T_w)}{d} = \frac{d^2}{4} \rho_w C_w \frac{dT_w}{dx}
\]

Let

\[\nu = \frac{4 \nu_k R_e}{d^2 \rho_w C_w} \]

\[\chi = \frac{k_w}{\rho_w C_w} \]

\[\Theta = \frac{T_w - T_i}{T_h - T_i} \]
The boundary condition and the initial condition are assumed to be

\[\Theta(x, t) = \begin{cases} \Theta(x, 0) = 0 \\ \Theta(\pm \frac{L}{2}, t) = 0 \end{cases}\]

\[\kappa \frac{\partial^2 \Theta}{\partial x^2} + \nu (1 - \Theta) = \frac{\partial \Theta}{\partial t}\]

(14)

Apply the Laplace transformation to the time variable.

\[\frac{d^2 \tilde{\Theta}}{dx^2} - \left(\frac{\nu + 1}{\kappa} \right) \tilde{\Theta} = -\frac{\nu}{\kappa}\]

(15)

With the transformed B.C, the solution to this equation gives:

\[\tilde{\Theta}(x, \mu) = \frac{\nu}{\lambda (\nu + 1)} \left[1 - \frac{\cosh \sqrt{\frac{\nu + 1}{\kappa}} x}{\cosh \sqrt{\frac{\nu + 1}{\kappa}} \frac{L}{2}} \right]\]

(16)

This expression is then inverted with the help of reference 5.

\[\Theta = \frac{T_w - T_i}{T_h - T_i} = 1 - \frac{\cosh \sqrt{\frac{\nu + 1}{\kappa}} \frac{L}{2}}{\cosh \sqrt{\lambda}} \frac{2}{\pi} e^{-\frac{t}{2\tau} \sum_{n=0}^{\infty} \frac{(\nu + 1)^2 \pi^2 n^2 + \lambda}{(n + \frac{1}{2})^2 \pi^2 + \lambda}} e^{-\frac{(n + \frac{1}{2})^2 \pi^2 + \lambda}{2\tau}}\]

(17)

where \[\lambda = \frac{Nu \kappa_a}{Le_w} \left(\frac{L}{d} \right)^2\] a non-dimensional length

\[\tau = \frac{d^2 s_w C_w}{4 - Nu \kappa_a}\] ideal two dimensional time constant of wire.

From this expression the average temperature \(\bar{T}_w \) can be calculated.
This mean wire temperature represents the temperature that is used to calculate the voltage signal.

\[E = I R_w = I R_i \propto \frac{1}{T_w} \]

The measured heat rate takes account only of the heat stored in the wire and this is equal to \(\frac{\pi d^3 L}{4} \rho c \frac{1}{T_w} \) or:

\[\dot{Q}_{3D} = \frac{\pi d^3 L}{4} \rho c (T_a - T_i) \left[2 \frac{c}{t} \right] \left[\sum_{n=0}^{\infty} \frac{e^{-\frac{t}{2\lambda} \left(n + \frac{1}{2} \right)^2 \pi^2}}{(n + \frac{1}{2})^2} \right] \]

Ideally

\[\dot{Q}_{2D} = \frac{\pi d^3 L}{4} \rho c (T_a - T_i) \left[\frac{c}{t} \right] \]

Therefore

\[\frac{\dot{Q}_{2D \, \text{ideal}}}{\dot{Q}_{3D \, \text{measured \ value}}} = \frac{\pi^2}{2} \sum_{n=0}^{\infty} \frac{e^{-\frac{t}{2\lambda} \left(n + \frac{1}{2} \right)^2 \pi^2}}{(n + \frac{1}{2})^2} \]

If \(\frac{t}{2 \lambda} \ll 1 \), this function can be represented by

\[\frac{\dot{Q}_{2D}}{\dot{Q}_{3D}} \approx 1 + \frac{2}{\lambda} \frac{t}{2} + \ldots \]

At \(t = 0 \), the three dimensional heat transfer rate is identical with that of the two dimensional case and no end loss correction is needed. The time constant for the three dimensional wire is taken as the intercept of the initial slope of the wire's response with the equilibrium wire temperature.
Since the initial temperature slopes of the two and three dimensional wires are the same, the three dimensional time constant is related to the two dimensional one by

\[\tau_{3D} = \tau \left(\frac{\bar{T}_w - \bar{T}_i}{\bar{T}_n - \bar{T}_i} \right)_{\text{equilibrium}} \quad (21) \]

A plot of the equilibrium wire temperature and \(\frac{\tau_{3D}}{\tau} \) is given as a function of \(\lambda \) in figure 2. Generally, \(\lambda \) is of the order 100, which gives a two per cent error in the measured heat transfer rate at \(t/\tau = 1 \).
VI. CALIBRATION OF THE GAGE

If the instrument is to be used for quantitative heat transfer measurements the physical and geometrical properties must be known. If only crude heat transfer measurements are to be made, handbook values of physical constants and manufacturer's specifications on the geometry would be acceptable. However, if more accurate results are desired individual calibration is necessary, since the above method is only good to $\pm 20\%$.

The separate quantity α can be determined by measuring the resistance of the wire between melting ice and boiling water. This is standard practice in hot wire anemometry. A sample from each spool of wire was calibrated in this fashion and the results were assumed to apply to the rest of the spool. This method is believed to give α to within one percent error. No attempt was made to calibrate the wire over a broader range of temperatures since it is believed that this calibration would be sufficiently accurate for wire temperatures up to $300^\circ C$, especially for tungsten. In almost all cases, the measured α was considerably lower than those quoted in the handbooks.

The diameter and length of the wire used in the gage can be determined optically. Since the diameter of the wire is very important in these heat transfer measurements, it is desirable to check the manufacturers quoted diameter. In most cases the wires diameters are within $\pm 5\%$ of the quoted figure, although some wires exceed this considerably. A sample of each spool of wire was measured. The results were then assumed to apply to the whole spool.

The last constant to check is the combination pc. An electrical means of calibration was chosen because it is fast, convenient, and accurate.
This type of calibration offers the additional convenience of easily checking the physical constants between shock tube runs. The method is to use a known heat input, measure the gage output and thereby determine the quantity \(pc \).

A constant current discharge was obtained by utilizing a capacitor with a time constant \(RC \) much longer than the testing time. The calibration circuit is shown in figure 3. This circuit is a slight modification of the bridge used by Josef Rabinowicz\(^{(6)}\). The calibration was done in air at atmospheric pressure. With the assumption of no end losses to the supports and no heat conduction to the surrounding fluid, the equation that governs the response becomes:

\[
\frac{d}{dt} mc (T_w - T_i) = I^2 R_w
\]

(22)

The assumption of no heat conduction to the surrounding medium is weak. The heat loss to the surrounding fluid is a strong function of time and diameter. In Section VII an attempt is made to evaluate this assumption. The heating current \(I \) is given by

\[
I = \frac{V}{R_2 + R_w}
\]

(23)

where \(R_w \) is the actual resistance of the gage at any time. Substituting into equation (22) gives

\[
\frac{\pi d^2 \rho c}{4} \frac{dT_w}{dt} = \frac{V^2}{(R_2 + R_w)^2} R_w = \frac{V^2 R_i \left[1 + \alpha_i \left(\frac{T_w - T_i}{R_2 + R_i} \right) \right]}{(R_2 + R_i)^2 \left(1 + \frac{R_i \alpha_i \left(\frac{T_w - T_i}{R_2 + R_i} \right)}{R_2} \right)^2}
\]

(24a)
If \(a \Delta T \ll 1 \) (small times), the right side of the equation can be expanded

\[
\frac{\pi d^2 l}{4} \rho c \frac{dT_w}{dt} = \frac{V^2 R_i}{(R_2 + R_i)^2} \left[1 + \frac{R_2 - R_i}{R_2 + R_i} \alpha_i \Delta T + \ldots \right]
\]

The solution of this equation with the initial condition \(T_w = T_i \) at \(t = 0 \) gives for small times

\[
T_w - T_i = \frac{4 V^2 R_i}{\pi d^2 l \rho c (R_2 + R_i)^2} t + \ldots
\]

or

\[
\Delta R = \frac{4 \alpha_i}{\pi d^2 l \rho c (R_2 + R_i)^2} \frac{V^2 R_i^2 t}{(R_2 + R_i)^2}
\]

The voltage output \(\Delta E \) of the bridge due to the heating of the wire is given by

\[
\Delta E = \frac{\sqrt{R_2} \Delta R}{(R_2 + R_i)^2}
\]

In this analysis both the changing current and resistance in the bridge was taken into account. This gives for \(\rho c \)

\[
\rho c = \frac{\sqrt{3} R_2 R_i \alpha_i t}{\frac{\pi d^2 l}{4} (R_2 + R_i)^4 E}
\]

Figure (4) shows that for small testing times the response is indeed a straight line. Of course if the experimenter feels certain about the constant \(\rho c \), the calibration could be used to determine some other parameter (e.g. the diameter) or group of parameters.

* Caution should be used with the electrical discharge technique. The energy produced and stored in the wire must not raise the temperature of the wire more than a few hundred degrees. The voltage used for calibration must be varied accordingly.
If care is taken to measure the resistances, voltages, and volumes to 1/2% accuracy, the overall calibration should be better than 5%. The calibrations of each gage were repeatable to 1%. The values of \(p_c \) for tungsten wire used in this report varied between \(0.6 \) and \(0.65 \, \text{cm}^3/\text{oc} \). The handbook value is approximately \(0.62 \, \text{cm}^3/\text{oc} \). It is felt that most of this variation of \(p_c \) actually represents the variance of the other physical and geometrical properties of the wire since these were determined by spool values rather than individual calibrations.
VII. ESTIMATE OF HEAT CONDUCTION LOSSES TO THE SURROUNDING MEDIA DURING CALIBRATION

In calibrating the wire, some error is introduced due to the heat conduction to the surrounding medium. Figure (5) shows this effect. The rate at which heat is lost will be a function of the diffusivity of the surrounding medium, time, diameter of the wire, and other physical constants which are usually kept constant during all the calibrations. The ratio of heat conduction rate to the stored heat rate is the error in the calibration due to the presence of this heat loss mechanism.

\[
\frac{\dot{Q}_c}{Q_S} = \varepsilon
\] (28)

It is this function that is studied here.

The value of \(\dot{Q}_c \) requires the complete solution of the heat equation in cylindrical coordinates with the appropriate initial conditions.

\[
\frac{k_a}{\pi} \frac{d}{dr} \left(r \frac{dT}{dr} \right) = \rho C_a \frac{dT}{dt}
\]

No solution of this equation in closed form could be found even for the simple case of a step rise in temperature of the wire \(7\).

Dimensional Analysis suggests that the heat lost by conduction is represented by

\[
\dot{Q}_c = \frac{k_a(T_w-T_a)}{\ell} f \left(\frac{d^2 \rho a C_a}{4 k_a \ell t} \right)
\] (29a)

or

\[
\dot{Q}_c = \frac{k_a(T_w-T_a) \pi \ell d}{\ell} f \left(\frac{d^2 \rho a C_a}{4 k_a \ell t} \right)
\] (29b)
The stored heat rate is

\[\dot{Q}_s = \frac{d}{dt} \left[\pi \frac{d^2 l}{4} \rho_w c_w (T_w - T_i) \right] = \pi \frac{d}{dt} \frac{d^2 l}{4} \rho_w c_w \frac{T_w}{T_w} \] \hspace{1cm} (30)

Therefore

\[\frac{\dot{Q}_c}{\dot{Q}_s} = \frac{4 \rho_a (T_w - T_a)}{d^2 \rho_w c_w T_w} f \left(\frac{d^2 \rho_a c_a}{4 \rho_a t} \right) = \varepsilon \] \hspace{1cm} (31)

In the case of calibration of the wire, \((T_w - T_a)\) is approximately represented by the function \(A t\), where \(A\) is a constant.

\[\frac{\dot{Q}_c}{\dot{Q}_s} = \frac{4 \rho_a A t}{d^2 \rho_w c_w A} f \left(\frac{d^2 \rho_a c_a}{4 \rho_a t} \right) \] \hspace{1cm} (31)

The empirical form of \(f\) is approximated by

\[f = B \left(\frac{d^2 \rho_a c_a}{4 \rho_a t} \right)^\beta \] \hspace{1cm} (32)

Fitting this to the calibration experiments gives

\[B = 1 \pm 20\%; \quad \beta = 0.07 \pm 10\% \]

in the range

\[1 < \frac{d^2 \rho_a c_a}{4 \rho_a t} < 100 \]

Substituting equation (32) into equation (31) gives

\[\varepsilon = \left(\frac{4 \rho_a t}{\rho_w c_w d^2} \right) \left(\frac{d^2 \rho_a c_a}{4 \rho_a t} \right)^{0.07} \] \hspace{1cm} (33a)

The density of the surrounding medium can be written in terms of pressure and temperature with the help of the ideal gas law.

\[\varepsilon = \left(\frac{4 \rho_a t}{\rho_w c_w d^2} \right) \left(\frac{d^2 \rho_a c_a}{4 \rho_a R_a T_a t} \right)^{0.07} \] \hspace{1cm} (33b)
This formula shows the strong dependence of the calibration error on the
diameter of the wire and time while the pressure has only a slight effect.
If the allowable error is one percent, the maximum permissible calibration
time is approximately 200 μsec for a 1 mil wire and only 2 μsec for a
1/10 mil wire, under atmospheric conditions. For accurate calibration,
the calibration time must be reduced drastically with diameter.
VIII. OPERATING TECHNIQUE

In making heat transfer measurements with this instrument, the wire's initial resistance is measured on a wheatstone bridge. The bridge also supplies the necessary excitation current which is monitored by a 1 ohm precision resistor and a Leeds and Northrup potentiometer. This current is kept constant by a swamping resistor in the bridge circuit which is 100 to 1000 times larger than the gage resistance. Gage resistances and excitation currents vary with the diameter. Typical values are:

\[R = 2-40 \text{ ohms} \]
\[I = 20-1 \text{ ma} \]

The signal is recorded on a Tektronix 535 oscilloscope which is triggered by the passing of the shock wave. With careful calibration of the oscilloscope and gage, heat transfer measurements can be made to 5%. The gage calibration does not appreciably change if the initial resistance of the wire remains constant*. A variance in the initial resistance of the wire of one percent may indicate that recalibration is needed to correct for a small change in this gage constant. The tungsten wires have an amazing durability if carefully built. Wires made from \(.0005''\) W have lasted more than 20 consecutive runs in the shock tube at \(M_S \sim 4\), and \(p_1 \sim 10 \text{ mm Hg}\).

Figure 6 illustrates the circuit used for heat transfer measurements.

* As a rule some surface deterioration of the wires would be expected due to oxidation at the elevated wire temperatures in the hot flow. No large deterioration has been noticed due to this mechanism even after many consecutive runs in the shock tube. This is attributable to the short testing times involved. If the wire is in a reasonably stable state (i.e., not undergoing a phase transition), this fact permits the wire to be used consecutively without recalibration or at least with a minimum of recalibration.
IX. PRELIMINARY HEAT TRANSFER MEASUREMENTS

Preliminary heat transfer measurements were made on some fine wires. After the passage of the initial shock wave the wires response should follow equation (10). If the flow times are short compared to τ, the heat transfer is nearly constant and the response is a straight line. If the flow time is long compared to the time constant, the response is exponential. Figure (7) depicts these two conditions.

In this figure the termination of the hot flow is denoted by the first discontinuity after the arrival of the shock. This discontinuity is the contact surface and has been used in the study of the duration of the hot flow in the shock tube8.

The results of several runs are shown in figure (8). For the pressures and Mach nos. shown the heat transfer is proportional to $\sqrt{P/\Delta}$ as one would expect from hot wire data.
X. CONCLUDING REMARKS

This report has described the application of fine cold wires for heat transfer measurements in the shock tube. With proper care taken in constructing and calibrating the wire, quantitative heat transfer measurements can be taken. The electrical calibration in air described herein has proved satisfactory, provided that any heat conduction to the surrounding media has been taken into account. Under conditions of radically changing heat transfer rates, the wires can be used as shock detection devices, contact surface detectors, or other timing operations.

It is convenient now to summarize some of the features of a fine cold wire as used in the shock tube.

1) Because the wire is not preheated, it maintains the temperature of its supports. Therefore, after the shock wave has passed over the wire, initially there are no end loss corrections.

2) No oxidation or surface deterioration of the wire due to preheating the wire.

3) Since end loss corrections are initially zero, a smaller aspect ratio (ℓ/d) can be used resulting in less wire breakage.

4) Heat transfer signals are easily interpreted and have no memory.

5) The response time is of order \(\frac{d}{U} \). For moderate shock speeds, this time is less than 1 \(\mu \text{sec} \).

With its fast response time the gage should be applicable to many short duration flow problems with a hot gas.

* The well known one dimensional heat transfer gage is an example of an instrument that has a memory. The heat transfer is related to the surface temperature by \(q = A \int_0^\infty \frac{T'(\tau) d\tau}{\sqrt{t-\tau}} \). The integrand contains a weighting term that weights past times.
REFERENCES

FIGURE 1

THE GAGE AND ITS MOUNTING
FIGURE 2

EQUILIBRIUM TEMPERATURE OF THE WIRE AS A FUNCTION OF THE WIRE GEOMETRY
Micro Switch

Galvanometer

BNC Connector

Oscilloscope Connection

Positions for Inserting Series and Parallel Resistors with Banana Plugs

$R_w = R_3 = R_4 = 50 \text{ ohm}$

$R_5 = 500 \text{ ohm}$

$R_6 = 0 - 1000 \text{ ohm}$

$R_7 = 1000 \text{ ohm}$

$R_8 = 0 - 1000 \text{ ohm}$ (0.25% linearity Helipot)

$C = 250 \text{ microfarads}$

FIGURE 3

CALIBRATION CIRCUIT
FIGURE 4

CHARACTERISTICS OF CALIBRATION CIRCUIT
FIGURE 5

EFFECT OF SURROUNDING MEDIA ON GAGE OUTPUT DURING CALIBRATION
FIGURE 6

BLOCK DIAGRAM OF GAGE AND SHOCK TUBE FOR HEAT TRANSFER MEASUREMENTS
\[t/\tau < < 1 \]

Sweep: \(100 \, \mu \text{sec/cm} \)
Experimental Flow Duration: \(450 \, \mu \text{sec} \)
Material: Tungsten
\(\tau = 3400 \, \mu \text{sec} \)
d: \(= .001'' \)
\(t/\tau = .132 \)

\[t/\tau \geq 1 \]

Sweep: \(200 \, \mu \text{sec/cm} \)
Experimental Flow Duration: \(540 \, \mu \text{sec} \)
Material: Tungsten
\(\tau = 485 \, \mu \text{sec} \)
d: \(= .0002'' \)
\(t/\tau = 1.11 \)

FIGURE 7

TYPICAL GAGE RESPONSES IN THE SHOCK TUBE
FIGURE 8a
PRELIMINARY RESULTS
FIGURE 8b
PRELIMINARY RESULTS
GUGGENHEIM AERONAUTICAL LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

HYPERSONIC RESEARCH PROJECT
Contract No. DA-04-495-Ord-19

DISTRIBUTION LIST

U. S. Government Agencies

Los Angeles Ordnance District
55 South Grand Avenue
Pasadena 2, California
Attention: Mr. E. L. Stone
2 copies

Los Angeles Ordnance District
55 South Grand Avenue
Pasadena 2, California
Attention: ORDEV-00- Mr. Typaldos
3 copies

Chief of Ordnance
Department of the Army
ORDTB - Ballistic Section
The Pentagon
Washington 25, D. C.
Attention: Mr. G. Stetson

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDTB
For Transmittal To

Department of Commerce
Office of Technical Information

Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina
10 copies

Ordnance Aerophysics Laboratory
Daingerfield, Texas
Attention: Mr. R. J. Valluz

Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.
Attention: ORDTL 06. 33

Commanding General
Army Ballistics Missile Agency
Huntsville, Alabama
Attention: ORDAB-1P
2 copies

Commanding General
Army Ballistics Missile Agency
Huntsville, Alabama
Attention: ORDAB-DA
Mr. T. G. Reed

Commanding General
Redstone Arsenal
Huntsville, Alabama
Attention: Technical Library

Army Ballistic Missile Agency
ORDAB-DA
Development Operations Division
Redstone Arsenal
Huntsville, Alabama
Attention: Dr. Ernst D. Geissler
Director, Aeroballistics Lab.

Army Ballistic Missile Agency
ORDAB-DA
Development Operations Division
Redstone Arsenal
Huntsville, Alabama
Attention: Dr. Daum

Chief of Staff
United States Army
The Pentagon
Washington 25, D. C.
Attention: Director/Research

Exterior Ballistic Laboratories
Aberdeen Proving Ground
Maryland
Attention: Mr. C. L. Poor
Ballsitic Research Laboratories
Aberdeen Proving Ground
Maryland
Attention: Dr. Joseph Sternberg

Commanding General
White Sands Proving Ground
Las Cruces, New Mexico

Commander
Air Force
Office of Scientific Research
Washington 25, D. C.
Attention: RDTRRF

Air Force
Office of Scientific Research
SRR
Washington 25, D. C.
Attention: Dr. Carl Kaplan

Mechanics Division
Air Force
Office of Scientific Research
Washington 25, D. C.

Commander
Hq., Air Research and Development Command
Bolling Air Force Base
Washington, D. C.
Attention: RDS-TIS-3

Air Force Armament Center
Air Research and Development Command
Eglin Air Force Base
Florida
Attention: Technical Library

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: WCLSR

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: WCLSW

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: WCLSW, Mr. P. Antonatos

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: Dr. H. K. Doetsch

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: Dr. G. Guderley

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attention: WCLJD, Lt. R. D. Stewart

Director of Research and Development
DCS/D
Headquarters
USAF
Washington 25, D. C.
Attention: AFDRD-RE

Commander
Western Development Division
P. O. Box 262
Inglewood, California

Commander
Western Development Division
5760 Arbor Vitae Street
Los Angeles, California
Attention: Maj. Gen. B. A. Schriever

Commander
Arnold Engineering Development Center
Tullahoma, Tennessee
Attention: AEORL

Air University Library
Maxwell Air Force Base
Alabama

Commander
Air Force Missile Development Center
Holloman Air Force Base
New Mexico
Attention: Dr. G. Eber (MDGRS)
U. S. Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland
Attention: Dr. H. Kurzweg

U. S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland
Attention: Dr. R. K. Lobb

U. S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland
Attention: Dr. Z. I. Slawsky

U. S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland
Attention: Dr. R. Wilson

U. S. Naval Ordnance Test Station
China Lake
Inyokern, California
Attention: Mr. Howard R. Kelly, Head
Aerodynamics Branch,
Code 5032

Navy Department
Bureau of Ordnance
Technical Library
Washington 25, D. C.
Attention: Ad-3

Director
Naval Research Laboratory
Washington 25, D. C.

Office of Naval Research
Department of the Navy
Washington 25, D. C.
Attention: Mr. M. Tulin

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia

Bureau of Aeronautics
Department of the Navy
Room 2 w 75
Washington 25, D. C.
Attention: Mr. F. A. Louden

Commander
Armed Services Technical Information Agency
Attention: TIPDR
Arlington Hall Station
Arlington 12, Virginia
10 copies

National Bureau of Standards
Department of Commerce
Washington 25, D. C.
Attention: Dr. G. E. Schubauer

National Aeronautics and Space Administration
1512 H Street, N. W.
Washington 25, D. C.
Attention: Dr. H. L. Dryden, Director
5 copies

National Aeronautics and Space Administration
Ames Aeronautical Laboratory
Moffett Field, California
Attention: Mr. H. Julian Allen

National Aeronautics and Space Administration
Ames Aeronautical Laboratory
Moffett Field, California
Attention: Dr. D. Chapman

National Aeronautics and Space Administration
Ames Aeronautical Laboratory
Moffett Field, California
Attention: Dr. A. C. Charters

National Aeronautics and Space Administration
Ames Aeronautical Laboratory
Moffett Field, California
Attention: Mr. A. J. Eggers

National Aeronautics and Space Administration
Ames Aeronautical Laboratory
Moffett Field, California
Attention: Mr. Robert T. Jones

National Aeronautics and Space Administration
Ames Aeronautical Laboratory
Moffett Field, California
Attention: Dr. M. K. Rubesin
National Aeronautics and Space Administration
Ames Aeronautical Laboratory
Moffett Field, California
Attention: Mr. J. R. Stalder

National Aeronautics and Space Administration
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Mr. M. Bertram

National Aeronautics and Space Administration
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Dr. A. Busemann

National Aeronautics and Space Administration
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Mr. Clinton E. Brown

National Aeronautics and Space Administration
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Mr. C. McLellan

National Aeronautics and Space Administration
Langley Aeronautical Laboratory
Langley Field, Virginia
Attention: Mr. John Stack

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland 35, Ohio
Attention: Library
George Mandel

2 copies

Technical Information Service
P. O. Box 62
Oak Ridge, Tennessee
U. S. Government Agencies
For Transmittal to
Foreign Countries

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Australian Joint Services Mission

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Australian Joint Services Mission

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Canadian Joint Staff

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Professor S. Irmay
Division of Hydraulic Engineering
TECHNION
Israel Institute of Technology
Haifa, Israel

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Professor S. Irmay
Director of Hydraulic Engineering
TECHNION
Israel Institute of Technology

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Dr. Josef Rabinowicz
Department of Aeronautical Engineering
TECHNION
Israel Institute of Technology
Haifa, Israel

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Prof. Dr. Yosuiro Kobashi
Aerodynamics Division
National Aeronautical Laboratory
Shinkawa 700 Mitaka City
Tokyo, Japan

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Professor Itiro Tani
Aeronautical Research Institute
Tokyo University
Komaba, Meguro-ku
Tokyo, Japan

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Professor D. C. Fack
Royal Technical College
Glasgow, Scotland

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Professor Itiro Tani
Aeronautical Research Institute
Tokyo University
Komaba, Meguro-ku
Tokyo, Japan

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section

For Transmittal To
Dr. Robert H. Korkegi (1 copy)
Commanding Officer
Office of Naval Research
Branch Office
Navy, 100
FPO
New York, N. Y.
2 copies

Air Research and Development Command
European Office
Shell Building
60 Rue Rabenstein
Brussels, Belgium
Attention: Col. Lee Gossick, Chief
5 copies

Centre de Formation en Aerodynamique
Experimentale, C. F. A. E.
Rhode-Saint-Genese
72 Chaussee de Waterloo
Belgium
Attention: Library (1 copy)
Attention: Dr. Robert H. Korkegi (1 copy)
Universities and Non-Profit Organizations

Brown University
Providence 12, Rhode Island
Attention: Professor R. Meyer

Brown University
Graduate Division of Applied Mathematics
Providence 12, Rhode Island
Attention: Dr. W. Prager

Brown University
Graduate Division of Applied Mathematics
Providence 12, Rhode Island
Attention: Dr. R. Probstein

University of California
Low Pressures Research
Institute of Engineering Research
Engineering Field Station
1301 South 46th Street
Richmond, California
Attention: Professor S. A. Schaaf

University of California at Los Angeles
Department of Engineering
Los Angeles 24, California
Attention: Dr. L. M. K. Boelter

University of California at Los Angeles
Department of Engineering
Los Angeles 24, California
Attention: Professor J. Miles

Case Institute of Technology
Cleveland, Ohio
Attention: Dr. G. Kuerti

Catholic University of America
Department of Physics
Washington 17, D. C.
Attention: Professor K. F. Herzfeld

Cornell University
Graduate School of Aeronautical Engineering
Ithaca, New York
Attention: Dr. E. L. Resler, Jr.

Cornell University
Graduate School of Aeronautical Engineering
Ithaca, New York
Attention: Dr. W. R. Sears

Cornell University
College of Engineering
Ithaca, New York
Attention: Professor N. Rott

University of Florida
Department of Aeronautical Engineering
Gainesville, Florida
Attention: Professor D. T. Williams

Harvard University
Department of Applied Physics and Engineering Science
Cambridge 38, Massachusetts
Attention: Dr. A. Bryson

Harvard University
Department of Applied Physics and Engineering Science
Cambridge 38, Massachusetts
Attention: Dr. H. W. Emmons

University of Illinois
Department of Aeronautical Engineering
Urbana, Illinois
Attention: Dr. Allen I. Ormsbee

University of Illinois
Aeronautical Institute
Urbana, Illinois
Attention: Professor H. O. Barthel

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. E. A. Bonney

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. F. N. Frenkel

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. F. K. Hill

The Johns Hopkins University
Department of Aeronautical Engineering
Baltimore 18, Maryland
Attention: Dr. F. H. Clauser

The Johns Hopkins University
Department of Aeronautical Engineering
Baltimore 18, Maryland
Attention: Dr. L. Kovasznay
The Johns Hopkins University
Department of Mechanical Engineering
Baltimore 18, Maryland
Attention: Dr. S. Corrsin

Lehigh University
Physics Department
Bethlehem, Pennsylvania
Attention: Dr. R. Emrich

Los Alamos Scientific Laboratory
of the University of California
J Division
P. O. Box 1663
Los Alamos, New Mexico
Attention: Dr. Keith Boyer

University of Maryland
Department of Aeronautical Engineering
College Park, Maryland
Attention: Dr. S. F. Shen

University of Maryland
Institute of Fluid Dynamics and
Applied Mathematics
College Park, Maryland
Attention: Director

University of Maryland
Institute of Fluid Dynamics and
Applied Mathematics
College Park, Maryland
Attention: Professor J. M. Burgers

University of Maryland
Institute of Fluid Dynamics and
Applied Mathematics
College Park, Maryland
Attention: Professor F. R. Hama

University of Maryland
Institute of Fluid Dynamics and
Applied Mathematics
College Park, Maryland
Attention: Professor S. I. Pai

Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attention: Dr. A. H. Shapiro

Massachusetts Institute of Technology
Department of Aeronautical Engineering
Cambridge 39, Massachusetts
Attention: Professor E. Mollo-Christensen

Massachusetts Institute of Technology
Department of Aeronautical Engineering
Cambridge 39, Massachusetts
Attention: Dr. G. Stever

Massachusetts Institute of Technology
Fluid Dynamics Research Group
Cambridge 39, Massachusetts
Attention: Dr. Leon Trilling

Massachusetts Institute of Technology
Department of Mathematics
Cambridge 39, Massachusetts
Attention: Professor C. C. Lin

University of Michigan
Ann Arbor, Michigan
Attention: Dr. H. P. Liepmann

University of Michigan
Department of Aeronautical Engineering
Ann Arbor, Michigan
Attention: Dr. Arnold Kuethe

University of Michigan
Department of Aeronautical Engineering
East Engineering Building
Ann Arbor, Michigan
Attention: Professor W. C. Nelson

University of Michigan
Department of Aeronautical Engineering
Aircraft Propulsion Laboratory
Ann Arbor, Michigan
Attention: Mr. J. A. Nicholls

University of Michigan
Department of Aeronautical Engineering
Ann Arbor, Michigan
Attention: Professor W. W. Willmarth

University of Michigan
Department of Physics
Ann Arbor, Michigan
Attention: Dr. O. Laporte

University of Minnesota
Department of Aeronautical Engineering
Minneapolis 14, Minnesota
Attention: Professor J. D. Akerman
Rensselaer Polytechnic Institute
Aeronautics Department
Troy, New York
Attention: Dr. R. P. Harrington

Rensselaer Polytechnic Institute
Aeronautics Department
Troy, New York
Attention: Dr. T. Y. Li

Rouss Physical Laboratory
University of Virginia
Charlottesville, Virginia
Attention: Dr. J. W. Beams

University of Southern California
Engineering Center
3518 University Avenue
Los Angeles 7, California
Attention: Dr. Raymond Chuan

University of Southern California
Aeronautical Laboratories Department
Box 1001
Oxnard, California
Attention: Mr. J. H. Carrington,
Chief Engineer

Stanford University
Department of Mechanical Engineering
Palo Alto, California
Attention: Dr. D. Bershader

Stanford University
Department of Aeronautical Engineering
Palo Alto, California
Attention: Professor Walter Vincenti

University of Texas
Defense Research Laboratory
500 East 24th Street
Austin, Texas
Attention: Professor M. J. Thompson

University of Washington
Department of Aeronautical Engineering
Seattle 5, Washington
Attention: Professor F. S. Eastman

University of Washington
Department of Aeronautical Engineering
Seattle 5, Washington
Attention: Professor R. E. Street
Industrial Companies and Research Companies

Aeronautical Research Associates of Princeton
50 Washington Road
Princeton, New Jersey
Attention: Dr. Coleman Du P. Donaldson

Aeronutronic Systems, Inc.
1234 Air Way
Glendale, California
Attention: Dr. J. Charyk

Aeronutronic Systems, Inc.
1234 Air Way
Glendale, California
Attention: Dr. L. Kavanau

Aerophysics Development Corp.
P. O. Box 689
Santa Barbara, California
Attention: Librarian

Allied Research Associates, Inc.
43 Leon Street
Boston, Massachusetts
Attention: Dr. T. R. Goodman

ARO, Inc.
P. O. Box 162
Tullahoma, Tennessee
Attention: Dr. B. Goethert

ARO, Inc.
G. D. F.
Arnold Air Force Station
Tennessee
Attention: J. L. Potter

ARO, Inc.
P. O. Box 162
Tullahoma, Tennessee
Attention: Librarian, Gas Dynamics Facility

AVCO Manufacturing Corp.
2385 Revere Beach Parkway
Everett 49, Massachusetts
Attention: Dr. A. Kantrowitz

AVCO Manufacturing Corp.
2385 Revere Beach Parkway
Everett 49, Massachusetts
Attention: Dr. Harry E. Petschek

AVCO Manufacturing Corp.
2385 Revere Beach Parkway
Everett 49, Massachusetts
Attention: Library

Boeing Airplane Company
P. O. Box 3107
Seattle 14, Washington
Attention: Mr. G. Snyder

Chance Vought Aircraft, Inc.
P. O. Box 5907
Dallas, Texas
Attention: Mr. J. R. Clark

CONVAIR
A Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. C. Bossart

CONVAIR
A Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. W. H. Dorrance
 Dept. 1-16

CONVAIR
A Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. W. B. Mitchell

CONVAIR
A Division of General Dynamics Corp.
Scientific Research Laboratory
5001 Kearny Villa Road
San Diego 11, California
Attention: Mr. Merwin Sibulkin

CONVAIR
A Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. W. B. Fallis

CONVAIR
A Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. E. B. Maske
CONVAIR
A Division of General Dynamics Corp.
Fort Worth, Texas
Attention: Mr. W. G. McMullen

CONVAIR
A Division of General Dynamics Corp.
Fort Worth, Texas
Attention: Mr. R. H. Widmer

Cooperative Wind Tunnel
950 South Raymond Avenue
Pasadena, California
Attention: Mr. F. Felberg

Cornell Aeronautical Laboratory
Buffalo, New York
Attention: Dr. A. Flax

Cornell Aeronautical Laboratory
Buffalo, New York
Attention: Mr. A. Hertzberg

Cornell Aeronautical Laboratory
Buffalo, New York
Attention: Dr. F. K. Moore

Douglas Aircraft Company
Santa Monica, California
Attention: Mr. J. Gunkel

Douglas Aircraft Company
Santa Monica, California
Attention: Mr. Ellis Lapin

Douglas Aircraft Company
Santa Monica, California
Attention: Mr. H. Luskin

Douglas Aircraft Company
Santa Monica, California
Attention: Dr. W. B. Oswald

Douglas Aircraft Company
El Segundo Division
827 Lapham Street
El Segundo, California
Attention: Dr. A. M. O. Smith

General Electric Company
Research Laboratory
Schenectady, New York
Attention: Dr. H. T. Nagamatsu

General Electric Company
Missile and Ordnance Systems Department
3198 Chestnut Street
Philadelphia 4, Pennsylvania
Attention: Documents Library,
L. Chasen, Mgr. Libraries

General Electric Company
Aeroscience Laboratory - MSVD
3750 "D" Street
Philadelphia 24, Pennsylvania
Attention: Library

Giannini Controls Corporation
918 East Green Street
Pasadena, California
Attention: Library

The Glenn L. Martin Company
Aerophysics Research Staff
Flight Vehicle Division
Baltimore 3, Maryland
Attention: Dr. Mark V. Morkovin

The Glenn L. Martin Company
Baltimore 3, Maryland
Attention: Mr. G. S. Trimble, Jr.

Grumman Aircraft Engineering Corp.
Bethpage, New York
Attention: Mr. C. Tilgner, Jr.

Hughes Aircraft Company
Culver City, California
Attention: Dr. A. E. Puckett

Lockheed Aircraft Corporation
Missiles Division
Van Nuys, California
Attention: Library

Lockheed Missile Systems Division
Research and Development Laboratory
Sunnyvale, California
Attention: Dr. W. Griffith

Lockheed Missile Systems Division
P. O. Box 504
Sunnyvale, California
Attention: Dr. L. H. Wilson

Lockheed Missile Systems Division
Lockheed Aircraft Corporation
Palo Alto, California
Attention: Mr. R. Smelt
Lockheed Missile Systems Division
Lockheed Aircraft Corporation
Palo Alto, California
Attention: Mr. Maurice Tucker

Marquhardt Aircraft Company
P. O. Box 2013 - South Annex
Van Nuys, California
Attention: Mr. E. T. Pitkin

McDonnell Aircraft Corporation
Lambert - St. Louis Municipal Airport
P. O. Box 516
St. Louis 3, Missouri
Attention: Mr. K. Perkins

Midwest Research Institute
4049 Pennsylvania
Kansas City, Missouri
Attention: Mr. M. Goland, Director for Engineering Sciences

North American Aviation, Inc.
Aeronautical Laboratory
Downey, California
Attention: Dr. E. R. van Driest

Ramo-Wooldridge Corporation
409 East Manchester Blvd.
Inglewood, California
Attention: Dr. M. U. Clauser

Ramo-Wooldridge Corporation
409 East Manchester Blvd.
Inglewood, California
Attention: Dr. Louis G. Dunn

Ramo-Wooldridge Corporation
P. O. Box 45564, Airport Station
Los Angeles 45, California
Attention: Dr. C. B. Cohen

Ramo-Wooldridge Corporation
P. O. Box 45564, Airport Station
Los Angeles 45, California
Attention: Dr. John Sellars

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Library

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Dr. C. Gazley

Republic Aviation Corporation
Conklin Street
Farmingdale, Long Island, New York
Attention: Dr. W. J. O'Donnell

Republic Aviation Corporation
Re-Entry Simulation Laboratory
Farmingdale, Long Island, New York

Space Technology Laboratories
P. O. Box 95001
Los Angeles 45, California
Attention: Dr. James E. Broadwell

Space Technology Laboratories
5740 Arbor Vitae
Los Angeles 45, California
Attention: Dr. J. Logan

United Aircraft Corporation
East Hartford, Connecticut
Attention: Mr. J. G. Lee
Dr. Harry Ashkenas
Dr. James M. Kendall
Dr. John Laufer
Dr. Thomas Vrebalovich
Dr. Peter P. Wegener
Dr. Harry E. Williams
Mr. Richard Wood
Hypersonic WT; Attn: Mr. G. Goranson
Reports Group
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena 2, California

Dr. S. S. Penner
Dr. Edward Zukoski
Mechanical Engineering Department
California Institute of Technology

Dr. W. D. Rannie
Jet Propulsion Center
California Institute of Technology

Dr. Julian D. Cole
Dr. Donald E. Coles
Dr. P. A. Lagerstrom
Prof. Lester Lees
Dr. H. W. Liepmann
Dr. Clark B. Millikan
Dr. Anatol Roshko

Aeronautics Library
Hypersonic Files (3)
Hypersonic Staff and Research Workers (20)

Foreign
via AGARD Distribution Centers