HYPERSONIC RESEARCH PROJECT

Memorandum No. 35

December 15, 1956

A PRELIMINARY EXPERIMENTAL INVESTIGATION OF
THE FLOW OVER SIMPLE BODIES OF REVOLUTION
AT M=18.4 IN HELIUM

by

Albert G. Munson

ARMY ORDNANCE CONTRACT NO. DA-04-495-Ord-19
A PRELIMINARY EXPERIMENTAL INVESTIGATION OF
THE FLOW OVER SIMPLE BODIES OF REVOLUTION
AT M = 18.4 IN HELIUM

by

Albert G. Munson
ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to his advisor, Professor Lester Lees, for his help and encouragement throughout this work. He is also greatly indebted to Dr. H. T. Nagamatsu for his interest and suggestions during the early part of the work.
ABSTRACT

An experimental investigation was conducted in the GALCIT hypersonic blow-down tunnel to determine surface pressure distributions and shock wave shapes for a series of "sharp"-nosed and slightly-blunted bodies of revolution at a nominal Mach number of 18.4 and a free stream Reynolds number of 6.20×10^5 per inch. The four bodies investigated were as follows: (1) 15° half-angle "sharp" cone; (2) 15° half-angle spherically-blunt cone (bluntness ratio = .24); (3) 20° half-angle "sharp" cone; (4) 2/3-power body.

The pressure distributions on the "sharp" cones agreed well with the Taylor-Maccoll theory. As expected, the pressure near the nose of the blunt cone was much higher than predicted by this theory, but the pressure decreases monotonically to a value lower than the theoretical value on the conical skirt, indicating that the flow has over-expanded. The measured shock wave shape for the 2/3-power body was found to be proportional to $x^{0.69}$, and the shock wave ordinates agree closely with those predicted by Cole and by Kubota and Lees. Measured surface pressure distributions on the 2/3-power body are predicted satisfactorily by the Kubota-Lees analysis. A simple correction for boundary layer growth accounts for most of the increase in pressure on the rear portion of the body over the values predicted by inviscid theory.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>List of Symbols</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>II. Equipment and Procedure</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>A. Equipment</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1. Wind Tunnel Description</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Wind Tunnel Operation and Control</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3. Description of Instrumentation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>a. Manometer</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>b. Wind Tunnel Pressure Instrumentation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>c. Schlieren Apparatus</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4. Wind Tunnel Flow Calibration</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>5. Model Description</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>a. 15° Half-Angle "Sharp" Cone</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>b. 15° Half-Angle Spherically-Blunt Cone</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>c. 20° Half-Angle "Sharp" Cone</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>d. 2/3-Power Pressure Model</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>B. Procedure</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1. Model Mounting and Leak Check</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2. Static Pressure Measurement</td>
<td>11</td>
</tr>
<tr>
<td>PART</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>III.</td>
<td>Discussion of Results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Schlieren Observations</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1. 15° Half-Angle Spherically-Blunt Cone</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2. 2/3-Power Body</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>B. Static Pressure Measurements</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1. Sharp-Nosed 15° and 20° Half-Angle Cones</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2. 15° Half-Angle Spherically-Blunt Cone</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3. 2/3-Power Body</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Figures</td>
<td>20</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_p)</td>
<td>pressure coefficient (\frac{p - p_\infty}{\frac{1}{2} \rho_\infty U_\infty^2})</td>
</tr>
<tr>
<td>(L)</td>
<td>body length</td>
</tr>
<tr>
<td>(M)</td>
<td>Mach number</td>
</tr>
<tr>
<td>(m)</td>
<td>exponent describing body shape, (r_b \sim x^m)</td>
</tr>
<tr>
<td>(p)</td>
<td>pressure</td>
</tr>
<tr>
<td>(\rho_0)</td>
<td>total pressure</td>
</tr>
<tr>
<td>(\rho'_0)</td>
<td>total pressure behind a normal shock</td>
</tr>
<tr>
<td>(R)</td>
<td>gas constant per unit mass</td>
</tr>
<tr>
<td>(Re_{\infty L})</td>
<td>Reynolds number (\frac{\rho_\infty U_\infty L}{\mu_\infty})</td>
</tr>
<tr>
<td>(r)</td>
<td>radial distance</td>
</tr>
<tr>
<td>(r_b)</td>
<td>body radius</td>
</tr>
<tr>
<td>(r_n)</td>
<td>nose radius of spherically-blunt cone</td>
</tr>
<tr>
<td>(s)</td>
<td>distance from nose measured along body surface</td>
</tr>
<tr>
<td>(T)</td>
<td>absolute temperature</td>
</tr>
<tr>
<td>(U_\infty)</td>
<td>free stream velocity</td>
</tr>
<tr>
<td>(u)</td>
<td>velocity parallel to body surface</td>
</tr>
<tr>
<td>(x)</td>
<td>distance from nose measured along body axis</td>
</tr>
<tr>
<td>(y)</td>
<td>distance measured normal to body surface</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>ratio of specific heats, (C_p/C_v)</td>
</tr>
<tr>
<td>(\delta^*)</td>
<td>boundary layer displacement thickness, (\int_0^\infty \left(1 - \frac{p}{p_e} \frac{u}{u_e} \right) dy)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>flow deflection angle</td>
</tr>
<tr>
<td>(\theta_c)</td>
<td>cone half angle</td>
</tr>
<tr>
<td>(\rho)</td>
<td>density</td>
</tr>
<tr>
<td>(\mu)</td>
<td>viscosity</td>
</tr>
<tr>
<td>(\tau)</td>
<td>base of log (\frac{r_b}{L})</td>
</tr>
</tbody>
</table>

The subscript "\(\infty \)" refers to free stream conditions and the subscript "\(e \)" denotes quantities evaluated at the outer edge of the boundary layer.
I. INTRODUCTION

At hypersonic flight speeds the gas temperatures near the surface of a body are sufficiently high so that chemical (and possibly electronic) phenomena play an important part in determining the flow field. Because of the complexity of the complete problem, it seems worthwhile to study hypersonic flows in much simpler gases than air, in order to bring out the purely fluid-mechanical effects associated with strong, highly curved shocks and thick boundary layers. For this purpose helium offers an attractive solution as a wind tunnel working fluid. The liquefaction temperature of helium is about $1.5^\circ K$ at a pressure of 0.004 atmospheres, for example, so that Mach numbers of the order of 20 can be produced without the necessity of pre-heating the gas to avoid condensation. Helium obeys the perfect gas law and its specific heat is practically constant over a wide range of temperatures and pressures. In addition, the transport properties of helium are well established.*

So far as is known, F. K. Hill (Ref. 1) at the Applied Physics Laboratory was the first to utilize helium as a wind tunnel working fluid. More recently, Hammitt (Ref. 2) and Bogdonoff at Princeton studied the flow around some simple bodies in helium in the range $11 < M < 13$, with particular emphasis on leading-edge effects. Their results show that the influence of a blunt leading-edge on a flat plate extends many hundreds of leading-edge thicknesses downstream at

* There are also secondary advantages, such as the fact that the isentropic area ratio at a given Mach number and the total head loss across a normal shock are both much lower in helium than in air.
hypersonic speeds. Lees (Ref. 3) shows theoretically that in this case the inviscid transverse flow field exhibits certain similarity properties typical of a "constant-energy" flow behind an expanding, strong shock wave. The shape of the bow shock wave $R(x)$ not too close to the nose is given by $R/d = K_1(\gamma)(x/d)^{1/3}$ for a body of revolution, and by $R/d = K_0(\gamma)(x/d)^{2/3}$ for a two-dimensional body. This last result agrees closely with the experimental results of Hammitt and Bogdonoff.

Flow similarity is also possible for a class of slender bodies of the form $r_b \sim x^m$; a later study by Kubota and Lees (Ref. 4) shows that the values of m must lie in the range $m' < m \leq 1$ for all $\gamma > 1$, where $m' = 2/3$ for a two-dimensional body and $m' = 1/3$ for a body of revolution.

In his study of Newtonian flow around slender bodies of arbitrary shape, J. D. Cole (Ref. 5) also considered the family $r_b \sim x^m$ as a special case. Here the parameter $(\gamma - 1)/(\gamma + 1)$ is small, and the Newtonian parameter $(\gamma - 1)M_\infty^2 \varphi^2$ must be of the order unity, or larger.

Although Cole did not show it explicitly, the same limitations on the value of m apply to his analysis.

The present investigation in the GALCIT helium tunnel was undertaken to provide experimental data on shock wave shapes and surface pressure distributions for simple bodies of revolution, where the theoretical results already furnish some guide-lines. The bodies selected were two sharp-nosed cones of 15° and 20° half-angle, a 15° half-angle cone with a nose bluntness ratio of 0.24, and a body of the form $r_b/r_{b,\text{max}} = (x/L)^{2/3}$. The nominal Mach number is 18.4.

This investigation was sponsored by the U. S. Army Ordnance and the Office of Ordnance Research, under Contract No. DA-04-495-Ord-19.
II. EQUIPMENT AND PROCEDURE

A. Equipment

1. Wind Tunnel Description

Two hypersonic helium tunnels have been described in detail in the literature (Refs. 1 and 2). Both are axially-symmetric blow-down tunnels with conical nozzles. The helium tunnel constructed at Johns Hopkins University has a nozzle cone angle of 10° and a test section diameter of approximately 1.94 inches. The source of working fluid is high pressure bottled gas. When nitrogen is used the test section Mach number is approximately 9.1. This tunnel has been used for studies of the supersaturation of nitrogen in hypersonic wind tunnels and for studies of boundary layers in hypersonic flow.

The helium tunnel at Princeton University has a nozzle angle of 11° and a test section diameter of 3-1/4 inches. The helium is obtained in tank semi-trailers which are used as a high pressure storage system. An air-operated ejector is used to evacuate the diffuser. The test section Mach number range is 11 to 15 and the Reynolds number ranges from 0.6×10^6 to 1.8×10^6 per inch, approximately. This tunnel has been used for shock wave boundary layer interaction problems on such bodies as flat plates, cones, and wedges.

The present investigation was conducted in the GALCIT hypersonic blow-down tunnel utilizing bottled helium as a high pressure source of working fluid. The diffuser was connected to the GALCIT hypersonic wind tunnel plant. This plant consists of thirteen rotary vane-type positive displacement compressors and three reciprocating
piston type compressors. For the present investigation the plant was operated with five stages of compression using the thirteen vane-type compressors only. The helium was not heated so that the stagnation temperature was about $520^\circ R$. The range of stagnation pressures was 500 psi to 1500 psi, the Mach number ranged from 17 to 19.4, and the Reynolds numbers varied from 2.50×10^5/inch to 7.0×10^5/inch in the test section. The operating compression ratio of the wind tunnel ($i.e., \frac{p_0}{p_f}$) was 1500 to 2000, or five to seven times the equivalent ratio across a normal shock at $M_\infty = 19$. With 3 bottles available, the running time of the wind tunnel was one to two minutes.

A sketch of the helium tunnel is shown in Figure 1. The nozzle is an axially-symmetric brass cone with a throat diameter of 0.050 inches, an exit diameter of 1.676", and a total cone angle of 10°. The center section, also made of brass, is approximately 7 inches long and butts directly to the nozzle. This section has parallel walls with a diameter of 1.676 inches for the first 8.9 inches of its length, and tapers linearly to a 2.0 inch diameter. Windows 3 inches long and 1 inch high are mounted 2.0 inches from the beginning of the straight section. The diffuser section, which is 2.0 inches in diameter, bolts directly to the downstream end of this center section. The diffuser section has been offset to facilitate the design of a hand-actuated axial traverse system.

2. Wind Tunnel Operation and Control

With no helium flow, the nozzle, diffuser, and piping were evacuated to a pressure of two to three mm. Hg abs. To establish supersonic flow with most models it was found necessary to start the
tunnel with the model located about one inch downstream of the throat, and then withdraw the model slowly to the desired location in the test section.

The stagnation pressure was measured with an Ashcroft Laboratory test gage which has a capacity of 1500 psi and is subdivided into 10 psi increments. The stagnation pressure was controlled by a high pressure gas regulator manufactured by the Victor Equipment Company of San Francisco, California. This regulator allowed a variation of ± 5 psi at most in 2 minutes running time. Since all tests were made at either 1000 psi or 800 psi this variation amounts to about ± ½ per cent in \(p_0 \).

3. Description of Instrumentation

a. Manometer

Pressures were measured by a fourteen-tube silicone manometer referenced to a very low pressure (Ref. 6). The reference pressure was measured with an ionization gage called the "Alphatron", which indicated that this pressure was approximately 20 microns or .020 millimeters of mercury. This value is about 2 per cent of the static pressure measured on the nozzle side wall, and 0.05 per cent of the lowest static pressure measured on the models.

b. Wind Tunnel Pressure Instrumentation

Pitot pressures were measured with a single tube .083 inches in diameter, and also with a two-tube rake in which each tube has a diameter of .040 inches. Within the accuracy of the pressure measure-
ments these two instruments gave the same result. Both were supported from the rear in the same manner as models were supported. (See II. B. 1.) Five static pressure orifices .013 inches in diameter were placed in the nozzle in the locations given below. (Here x is the distance from the throat and L is the nozzle length.)

<table>
<thead>
<tr>
<th>Orifice</th>
<th>x/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.149</td>
</tr>
<tr>
<td>2</td>
<td>.443</td>
</tr>
<tr>
<td>3</td>
<td>.577</td>
</tr>
<tr>
<td>4</td>
<td>.705</td>
</tr>
<tr>
<td>5</td>
<td>.839</td>
</tr>
</tbody>
</table>

c. Schlieren Apparatus

A sketch of the schlieren system is shown in Figure 2. The light source is an AH-4 mercury vapor lamp and the parabolic mirror has a focal length of 4 ft. Since the negative lens is placed between the knife edge and the camera, its only function is to increase the size of the image. Schlieren photographs were taken with a camera shutter speed of 1/50 second.

Because of the fact that helium gas has a very low index of refraction the schlieren system used here was barely adequate to photograph the shock wave configuration around the model. It was found possible with proper combinations of exposing, developing, and printing to photograph segments of shock waves which were too faint to be viewed on a ground glass screen. In general it was found desirable to underexpose slightly in order to obtain a negative which was not very dense. Negatives of this type seemed to have considerably more contrast than negatives of normal density. High contrast developer
was used and printing was done on high contrast paper.

4. Wind Tunnel Flow Calibration

Total pressure distributions across the nozzle were measured at three axial stations; station 1 lies 1.44 inches upstream of the nozzle exit, station 2 is located at the nozzle exit, and station 3 is located in the center section 2.14 inches downstream of the nozzle exit. These results (Fig. 4) show that the thick wall boundary layer reduced the effective working area of the wind tunnel by a factor of 4. The total pressure and Mach number vary \pm 8 per cent and \pm 2.8 per cent respectively across the working section. The axial variation in Mach number is about 0.7 per inch. (Fig. 5)

It is evident that if the model tested is small enough the variation in Mach number and total pressure across the space it occupies is small. The total pressure variation across a model with 0.313 inch base diameter is \pm 1.2 per cent. If the model is 0.5 inches long the axial Mach number variation is 0.35. This flow is considered sufficiently uniform for a preliminary investigation.

5. Model Description

A description of the models tested and their principal dimensions is given in the following table: (All models were made of brass.)
<table>
<thead>
<tr>
<th>Model</th>
<th>Base Diameter (Inches)</th>
<th>Length (Inches)</th>
<th>Nose Diameter (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15° Half-Angle "Sharp" Cone</td>
<td>0.313</td>
<td>0.582</td>
<td>0.010</td>
</tr>
<tr>
<td>15° Half-Angle Spherically-Blunt Cone</td>
<td>0.313</td>
<td>0.480</td>
<td>0.075</td>
</tr>
<tr>
<td>20° Half-Angle "Sharp" Cone</td>
<td>0.281</td>
<td>0.385</td>
<td>0.001</td>
</tr>
<tr>
<td>2/3-Power Body (\frac{r}{r_{max}}) = \left(\frac{x}{L} \right)^{2/3})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model for Shock Wave Shape</td>
<td>0.313</td>
<td>0.50</td>
<td>0.004</td>
</tr>
<tr>
<td>Pressure Model</td>
<td>0.322</td>
<td>0.532</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Each model was fitted to a cylindrical afterbody of the same base diameter as the base diameter of the model and approximately three inches long. The models were supported by a sting of 1/4 inch diameter from the rear which contained all the pressure leads. Each model contained five pressure orifices spaced as follows: \(s \) is the distance from the nose measured along the body surface.

a. 15° Half-Angle "Sharp" Cone (See Fig. 3.)

<table>
<thead>
<tr>
<th>Orifice</th>
<th>(s'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.030</td>
</tr>
<tr>
<td>2</td>
<td>0.150</td>
</tr>
<tr>
<td>3</td>
<td>0.270</td>
</tr>
<tr>
<td>4</td>
<td>0.380</td>
</tr>
<tr>
<td>5</td>
<td>0.510</td>
</tr>
</tbody>
</table>
b. 15° Half-Angle Spherically-Blunt Cone

<table>
<thead>
<tr>
<th>Orifice</th>
<th>(s'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td>2</td>
<td>0.085</td>
</tr>
<tr>
<td>3</td>
<td>0.140</td>
</tr>
<tr>
<td>4</td>
<td>0.210</td>
</tr>
<tr>
<td>5</td>
<td>0.360</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{Orifice} & \quad \text{\(s'' \)} \\
n & \quad 0.050 \\
2 & \quad 0.085 \\
3 & \quad 0.140 \\
4 & \quad 0.210 \\
5 & \quad 0.360
\end{align*} \]

\[\begin{align*}
\text{c. 20° Half-Angle "Sharp" Cone} \\
\text{Orifice} & \quad \text{\(s'' \)} \\
n & \quad 0.050 \\
2 & \quad 0.130 \\
3 & \quad 0.210 \\
4 & \quad 0.290 \\
5 & \quad 0.370
\end{align*} \]

\[\begin{align*}
\text{d. 2/3-Power Pressure Model} \\
\text{Orifice} & \quad \text{\(s' \)} \\
n & \quad 0.028 \\
2 & \quad 0.073 \\
3 & \quad 0.1477 \\
4 & \quad 0.2523 \\
5 & \quad 0.400
\end{align*} \]

\[\begin{align*}
\text{B. Procedure} \\
1. \text{Model Mounting and Leak Check} \\
\text{All models were supported by stings approximately 40" long, and the stings in turn were mounted at two points: The first support point was 9\frac{1}{2} \text{ inches from the nozzle exit, and this support can be moved both horizontally and vertically. The other support, which was located at the point where the sting passed through the side of the} \end{align*} \]
z-shaped diffuser section (See Figure 1.), consisted of a small metal plate with a 1/4" hole drilled through it and an O-ring groove cut inside the hole. Thus this plate acted both as a support and as a seal. The plate was bolted to a machined flat section on the z-shaped diffuser. A 1/8" hole was drilled through this flat section so that the sting could pass through both holes. This mounting gave a small amount of adjustment to the rear support, and the models could be placed at any distance from the axis of symmetry of the tunnel with any desired angle of attack. The end of the sting was gripped by a brass guide which was free to slide between two stops. These stops set the limits of axial movement of the model in the wind tunnel.

The pressure leads were brought outside the wind tunnel through the sting and connected directly to saran tubing which led to the manometer. Leak checking was performed by evacuating the pressure lead and manometer tube, then clamping off the vacuum pump. A pressure rise in the system, indicating leakage, was shown by a movement of the manometer fluid. A movement of one centimeter of silicone in two hours was considered sufficiently small for the present preliminary investigation.

For static pressure measurements the models were located at the end of the nozzle section. For schlieren observations the models had to be located farther downstream between the windows in the center section. A new center section, identical to the first except that the windows are located 1-1/4 inches farther upstream, was constructed. This was done so that the model could be placed near the end of the nozzle where the flow was reasonably uniform. The models were then
located 9 inches downstream of the end of the nozzle.

2. Static Pressure Measurement

Model static pressures were measured with the silicone oil manometer described earlier. The response time of this manometer was measured in the following manner: Each model was placed in a vacuum chamber and its pressure leads connected to the manometer. Each manometer tube was equipped with a valve which sealed off the tube. The vacuum chamber was then evacuated to the expected model pressure, and the valves were opened and the time for each tube to reach equilibrium was recorded. With this arrangement the manometer tubes can be set at any desired pressure level initially. When the initial pressure set in the manometer tube was within 15 per cent of the pressure in the vacuum chamber, it was observed that less than one minute was required for the pressure in the tube to approach within 1 per cent of the pressure in the vacuum chamber, i.e., the "time lag error" of the manometer is less than 1 per cent. All wind tunnel tests were run for more than one minute.

The first model (15° half angle "sharp" cone) was tested in three angular positions spaced 90° apart around the model axis. In all cases the model was located on the centerline of the wind tunnel and the model axis lined up with the tunnel axis. From the nature of the initial data obtained, however, it was evident that scatter was caused by flow inclination in the wind tunnel. For hypersonic flow over slender bodies

\[C_p \sim \varphi^2 \]
where \(C_p \) is the pressure coefficient \(\frac{P - P_\infty}{\frac{1}{2} \rho u_\infty^2} \), and \(\Theta \) is the angle of flow deflection. Therefore,

\[
\frac{\Delta p}{p} = \frac{2 \Delta \Theta}{\Theta}
\]

Here \(\Delta p/p \) was obtained from the experimental data and \(\Delta \Theta \) was calculated from the above formula. The result found is that the flow is inclined downward in the vertical plane at an angle of 0.4°. There is no flow inclination in the horizontal plane. The model was then pitched upward 0.4°.* The tests were repeated and a considerable decrease in scatter of the data resulted. All subsequent tests were run at 0.4° pitch.

* Since the two model supports described earlier did not have sufficient travel to permit the model to be pitched by this amount, and at the same time be placed on the wind tunnel centerline, the sting supports were bent slightly.
III. DISCUSSION OF RESULTS

A. Schlieren Observations

1. 15° Half-Angle Spherically-Blunt Cone

Figure 6 is a schlieren photograph of the 15° half-angle spherically-blunt cone at a free stream Mach number of 18.4. The detached bow wave is very close to the nose of the body. Within the field of view (axial distance 18 nose radii downstream) the bow shock wave is curved and the shock wave angle has not yet reached the asymptotic value corresponding to the semi-infinite 15° cone.

2. 2/3-Power Body

Figure 7 is a schlieren photograph of the 2/3-power body at the same free stream conditions as those for the spherically-blunt cone described above. The bow shock wave lies very close to the body surface, and the radial distance of the shock from the body axis as measured by means of an optical comparator was found to be proportional to \(x^{0.69} \) (Fig. 8), as compared with the 2/3-power variation predicted by hypersonic slender-body theory. The ratio of the distance of the shock from the body axis, \(R \), to the body radius, \(r_b \), varies from a value of about 1.38 at \(r_b/r_{b_{\text{max}}} = 0.50 \) to a value of about 1.32 at \(r_b/r_{b_{\text{max}}} = 1.0 \). According to the theoretical results of Kubota and Lees (Ref. 4), \(R/r_b = 1.29 \) for \(m = 2/3 \) and \(\gamma = 5/3 \). Cole's theory (Ref. 5) gives

\[
R/r_b = 1 + \frac{2\pi}{3\gamma^3} \left(\frac{\gamma - 1}{\delta + 1} \right) + \ldots \quad \text{for} \quad m = 2/3, \quad \text{or} \quad R/r_b = 1.30 \quad \text{for} \quad \text{helium.}
\]

The difference between these two predictions is too small to be represented on Figure 8. The close agreement between these two theoretical values indicates that the first term in Cole's series expansion is quite adequate.
for the shock shape in this case [although not for the surface pressure distribution (Section III. B. 3)].

B. Static Pressure Measurements

1. Sharp-Nosed 15° and 20° Half-Angle Cones

Lees (Ref. 7) has obtained an approximate relation giving the pressure distribution on an unyawed cone in hypersonic flow. The approximation can be considered valid for \(M_\infty > 4 \) and \((1/M_\infty) < \theta_c < \Upsilon \) where \(\Upsilon \approx 28° \) corresponds to the upper limit of the region where hypersonic similarity applies. The present experiments fall within this range. The pressure distribution for the 15° half-angle sharp cone is given in Figure 9, and the agreement with the theory is in general considered good. The difference between the calculated pressure coefficient and that observed for the first orifice may be caused by the fact that it is located only three nose diameters downstream of the slightly blunt (0.010″ diameter nose), or it may be caused by the effect of the boundary layer. The inconsistency in the two pressures measured by the third orifice is not understood. The difference in pressures is far larger than the experimental errors. One possible explanation is that a wave is present in the wind tunnel which strikes the model only on one side.

The results for the 20° half-angle sharp cone are presented in Figure 10. The experimental values agree closely with cone theory. The scatter in the experimental points is about twice the estimated experimental error.
Except possibly for the first orifice location on the 15° sharp-cone there is no evidence of boundary layer-shock wave interaction on these bodies.

2. 15° Half-Angle Spherically-Blunt Cone

As shown in Figure 11, the pressures near the nose are high, as expected, but decrease monotonically to values below the predicted asymptotic pressures for a semi-infinite cone. The pressure measured at the point of tangency of the spherical nose and the cone is more than twice the pressure measured on the 15° sharp cone. The pressures at a distance of six nose radii downstream on the cone are approximately twenty five per cent lower than the pressure measured on the sharp cone. Over-expansions on bodies as slender as this one are not observed in experiments in air (\(\gamma = 1.4\)) in the Mach number range 6 - 7.8 (Refs. 4 and 8). These differences between the behavior in helium and in air have not yet been explained.

3. 2/3-Power Body

In Figure 12 the measured surface pressure distribution on the 2/3-power body is shown for a test section Mach number of 18.4 and a stagnation pressure of 1015 psia, corresponding to a Reynolds number of \(3.30 \times 10^5\) based on body length.* According to the hypersonic slender-body theory \(C_p \sim x^{2/3}\) for this body. The Kubota-Lees approach (Ref. 4) gives

* This value of Reynolds number is encountered by a body about 25 feet long flying at this same Mach number at an altitude of about 200,000 feet.
\[C_p = \left[\frac{2m^2}{z_b} F(z_b) \right] (x/L)^{-2/3} \text{, where } \tau = \frac{r_b}{r_{b\text{max}}} / L \]

For \(m = 2/3 \) and \(\gamma = 5/3 \) they find

\[C_p = 0.805 \tau^2 (x/L)^{-2/3} \text{, or } C_p = 1.81 \left(\frac{dr_b}{dx} \right)^2 \]

On the other hand Cole (Ref. 5) finds that

\[C_p = 2 \left(\frac{dr_b}{dx} \right)^2 + r_b \frac{d^2 r_b}{dx^2} \]

in a first approximation, which is identical with Busemann's result.

For bodies of the form \(r_b \sim x^m \), this expression is

\[C_p = m(3m - 1) \tau^2 (x/L)^{2(m-1)} = 0.667 \tau^2 (x/L)^{-2/3} \text{, or} \]

\[C_p = (3 - \frac{1}{m}) \left(\frac{dr_b}{dx} \right)^2 = 1.50 \left(\frac{dr_b}{dx} \right)^2 \]

when \(m = 2/3 \). These two theoretical results are compared with experiment in Figure 12. The surface pressure distribution is predicted fairly well by the analysis of Reference 4. Boundary layer growth over the body surface is apparently responsible for the fact that the pressures over the rear of the body are somewhat higher than expected.

A rapid estimate of the boundary layer thickness on the 2/3-power body that is sufficiently accurate for our present purpose is obtained by applying the approximation of "local similarity". As shown in Reference 9 (for example) the displacement thickness is given by

\[\delta^* = \left(\frac{2 \pi}{r_b} \right)^{1/3} \frac{\rho e u_e}{\rho u} \int_{0}^{\infty} \left(\frac{\rho e}{\rho} - \frac{u}{u_e} \right) d\eta \]
where

\[\frac{\omega}{\bar{\omega}} = \int_{0}^{\infty} \frac{\rho \mu}{p} u_e r_b^2 \, ds = \bar{\omega} \int_{0}^{\infty} p u_e r_b^2 \, ds, \quad * \]

and

\[\omega = \mu/RT. \]

In our case, \(u_e \approx u_\infty \), and we take

\[1 + \frac{\gamma - 1}{2} M_e^2 = \frac{\gamma - 1}{2} M_e^2. \]

For a Prandtl number of unity and an insulated surface

\[\frac{\rho_e}{\rho} = 1 + \frac{\gamma - 1}{2} M_e^2 \left[1 - \left(\frac{u}{u_e} \right)^2 \right]. \]

As a first approximation,

\[C_p = B \left(\frac{dr_b}{dx} \right)^2 \]

where \(r_b = \frac{\gamma}{x} \frac{m}{L^{m-1}} \), and \(p/p_\infty = \frac{\gamma}{2} M_\infty^2 C_p \).

Then the pressure gradient parameter \(\bar{\beta} \) is given by

\[\bar{\beta} = \frac{2 \gamma}{M_e} \frac{dM_e}{ds} = -\frac{\gamma - 1}{\gamma} \frac{s}{p} \frac{dp}{ds} = \frac{\gamma - 1}{\gamma} \frac{2(1-m)}{4m-1}. \]

For \(m = 2/3 \), \(\gamma = 5/3 \), we find that \(\bar{\beta} = 4/25 \), and the integral

* Here the average value of the product \(\rho \mu \) replaces the value \(\rho_e \mu_e \) at the outer edge of the boundary layer employed in Reference 9. The average value of \(\rho \mu \) is taken at a temperature \(\bar{T} \), where

\[\frac{\bar{T}}{T} = \frac{T_e + T_w}{2} \approx 150^\circ K. \]
\[\int_0^\infty \left(\frac{\rho_e}{\rho} - \frac{u}{u_e} \right) \, d\eta = \int_0^\infty \left(1 - \frac{u^2}{u_e^2} \right) \, d\eta = \int_0^\infty \left[(1 - \frac{u}{u_e}) + (\frac{u}{u_e} - \frac{u^2}{u_e^2}) \right] \, d\eta \]

has the value 1.44 for this value of \(\beta \), as computed from the "similar solutions". (See for example, Table I, Reference 10).

Finally

\[
\frac{\delta^*}{L} = 1.44 \left(\frac{\gamma - 1}{m} \right) \frac{1}{\gamma} \sqrt{\frac{\omega/\omega_\infty}{B \gamma (4m-1)}} \frac{M_\infty}{\sqrt{Re_{L_\infty}}} \left(\frac{x}{L} \right)^{3/2 - m}
\]

and

\[
\frac{d\delta^*}{dx} = 1.44 \left(\frac{\gamma - 1}{m} \right) \frac{3}{m} \frac{1}{\gamma} \sqrt{\frac{\omega/\omega_\infty}{B \gamma (4m-1)}} \frac{M_\infty}{\sqrt{Re_{L_\infty}}} \left(\frac{x}{L} \right)^{1/2 - m}
\]

For \(M_\infty = 18.4 \), \(Re_L = 3.3 \times 10^5 \), \(\gamma = 0.303 \), \(m = 2/3 \), \(\gamma = 5/3 \),

\(\omega/\omega_\infty = 0.306 \) (helium), and \(B = 1.81 \), one finds \(\delta^*/L = 0.038 \) \((x/L)^{5/6}\)

and \(d\delta^*/dx = 0.03 (x/L)^{-1/6} \).

By taking \(C_p = 1.81 \left[\frac{dr_p}{dx} + \left(\frac{d\delta^*}{dx} \right) \right]^2 \)

we obtain \(C_p = 0.0735 (x/L)^{-2/3} \left[1 + 0.148 (x/L)^{1/6} \right]^2 \)

This "corrected" pressure distribution is compared with the experimental values and with the inviscid pressure \(C_p = 0.0735 (x/L)^{-2/3} \) in Figure 13. Evidently the boundary layer effect accounts for most of the pressure increment over the rear of the body.
REFERENCES

FIG. 1 CROSS SECTION OF AXIAL SYMMETRIC NOZZLE AND DIFFUSER
FIG. 2 SCHEMATIC OF SCHLIEREN SYSTEM
FIG. 3 TYPICAL PRESSURE MODEL
FIG. 4 TOTAL HEAD SURVEYS IN THE TRANSVERSE PLANE FOR VARIOUS AXIAL POSITIONS
FIG. 5 MACH NUMBER DISTRIBUTION ALONG CENTERLINE OF WIND TUNNEL
FIGURE 6
SCHLIEREN PHOTOGRAPH OF 15° SPHERICALLY-BLUNT CONE
WITH KNIFE EDGE VERTICAL

FIGURE 7
SCHLIEREN PHOTOGRAPH OF 2/3 POWER BODY
WITH KNIFE EDGE HORIZONTAL
FIG. 8 SHOCK WAVE SHAPE FOR $\frac{2}{3}$ POWER BODY
FIG. 9 PRESSURE DISTRIBUTION ON 15° HALF-ANGLE "SHARP" CONE
Figure 10 shows the pressure distribution on a 20° half-angle sharp cone. The figure compares the experimental data (open circles) with the cone theory (solid line) from Reference 7. The equation for the pressure coefficient C_p is given as:

$$C_p = \frac{\Delta p}{\frac{1}{2} \rho U_0^2}$$

where Δp is the pressure difference, ρ is the density, and U_0 is the velocity. The figures show the pressure distribution for $M = 18.4$, position 1 at the base of the cone.
FIG. 11 PRESSURE DISTRIBUTION ON 15° HALF-ANGLE SPHERICALLY-BLUNT CONE, \(\frac{r_{\text{max}}}{r_N} = 0.24 \)
FIG. 12 PRESSURE DISTRIBUTION ON $\frac{2}{3}$ - POWER BODY

- EXPERIMENTAL DATA - POSITION I
- MODEL ROTATED 180° FROM POSITION I
- KUBOTA-LEES (REF. 4)
- COLE (REF. 5)

$M_\infty = 18.4, \quad Re_\infty = 3.3 \times 10^5$
FIG. 13 EFFECT OF BOUNDARY LAYER GROWTH ON PRESSURE DISTRIBUTION OVER 2/3 - POWER BODY

INVISCID (REF. 4)

INVISCID + BOUNDARY LAYER CORRECTION

O \(\triangle \) EXPERIMENTAL DATA

\(M_\infty = 18.4, \; Re_\infty = 3.3 \times 10^5 \)
DISTRIBUTION LIST

U. S. Government Agencies

Los Angeles Ordnance District
55 South Grand Avenue
Pasadena, California
Attention: Mr. E. L. Stone
2 copies

Los Angeles Ordnance District
55 South Grand Avenue
Pasadena 2, California
Attention: ORDEV-00-Mr. Z. Typaldos

Western Division
Office of Scientific Research
Hq., Air Research and Development Command
P. O. Box 2035
Pasadena 2, California
Attention: Dr. Morton Alperin

Office of the Chief of Ordnance
ORDTB - Ballistic Section
The Pentagon
Washington 25, D. C.
Attention: Mr. G. Stetson
2 copies

Office Chief of Ordnance
Department of Army
Washington 25, D. C.
Attention: ORDGU-SE
Foreign Relations Section
For Australian Joint Services Mission

Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina
10 copies

Exterior Ballistic Laboratories
Aberdeen Proving Ground
Maryland
Attention: Mr. C. L. Poor

Ballistic Research Laboratories
Aberdeen Proving Ground
Maryland
Attention: Dr. Joseph Sternberg

Commanding General
Headquarters
Air Research and Development Command
P. O. Box 1395
Baltimore 3, Maryland
Attention: RDTRRF

U. S. Naval Ordnance Laboratory
White Oak
Silver Spring 19, Maryland
Attention: Dr. R. K. Lobb

Commander
Western Development Division
P. O. Box 262
Inglewood, California

Commander
Western Development Division
5760 Arbor Vitae Street
Los Angeles, California
Attention: Brig. Gen. B. A. Schriever

Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attention: ORDTB
For Transmittal To
Department of Commerce
Office of Technical Information
Armed Services Technical
Information Agency
Document Service Center
Knott Building
Dayton 2, Ohio
Attention: DSC-SD22
5 copies

Lewis Flight Propulsion Laboratory
National Advisory Committee
for Aeronautics
Cleveland Municipal Airport
Cleveland 11, Ohio
Attention: Dr. A. Silverstein

Lewis Flight Propulsion Laboratory
National Advisory Committee
for Aeronautics
Cleveland Municipal Airport
Cleveland 11, Ohio
Attention: Dr. J. C. Evvard

Ames Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Moffett Field, California
Attention: Mr. H. Julian Allen

Ames Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Moffett Field, California
Attention: Dr. D. Chapman

Ames Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Moffett Field, California
Attention: Dr. A. C. Charters

Ames Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Moffett Field, California
Attention: Mr. A. J. Eggers

Ames Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Moffett Field, California
Attention: Dr. M. K. Rubesin

Ames Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Moffett Field, California
Attention: Mr. J. R. Stalder

Holoman Air Force Base
Alamogordo, New Mexico
Attention: Dr. G. Eber

Langley Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Langley Field, Virginia
Attention: Mr. M. Bertram

Langley Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Langley Field, Virginia
Attention: Dr. A. Buseman

Langley Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Langley Field, Virginia
Attention: Mr. C. McLellan

Langley Aeronautical Laboratory
National Advisory Committee
for Aeronautics
Langley Field, Virginia
Attention: Mr. John Stack

National Advisory Committee
for Aeronautics
1512 H Street, N.W.
Washington 25, D.C.
Attention: Dr. H. L. Dryden, Director

National Bureau of Standards
Department of Commerce
Washington 25, D.C.
Attention: Dr. G. B. Schubauer

Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland
Attention: Dr. H. Kurzweg

U.S. Naval Air Missile Test Center
Point Mugu, California
Attention: Mr. J. H. Carrington,
Chief Engineer

U.S. Naval Ordnance Test Station
China Lake
Inyokern, California
Attention: Mr. Howard R. Kelly, Head
Aerodynamics Branch,
Code 5032
Commanding General
Army Ballistics Missile Agency
Huntsville, Alabama
Attention: ORDAB-DA-Mr. T. G. Reed
3 copies

Commanding General
Army Ballistics Missile Agency
Huntsville, Alabama
Attention: ORDAB-1P
2 copies

Commanding General
Redstone Arsenal
Huntsville, Alabama
Attention: Technical Library

Commanding General
Redstone Arsenal
Huntsville, Alabama
Attention: Dr. E. Geissler

Air Force Armament Center
Air Research and Development Command
Eglin Air Force Base, Florida
Attention: Technical Library

Navy Department
Bureau of Ordnance
Technical Library
Washington 25, D. C.
Attention: Ad-3
Universities and Non-Profit Organizations

Brown University
Graduate Division of Applied Mathematics
Providence 12, Rhode Island
Attention: Prof. W. Prager

Brown University
Graduate Division of Applied Mathematics
Providence 12, Rhode Island
Attention: Dr. R. Probstein

University of California at Berkeley
Berkeley, California
Attention: Prof. S. A. Schaaf

University of California at Los Angeles
Department of Engineering
Los Angeles 24, California
Attention: Dr. L. M. K. Boelter

Case Institute of Technology
Cleveland, Ohio
Attention: Dr. G. Kuerti

Catholic University of America
Department of Physics
Washington 17, D. C.
Attention: Prof. K. F. Herzfeld

Cornell Aeronautical Laboratory
Buffalo, New York
Attention: Dr. A. Flax

Cornell Aeronautical Laboratory
Buffalo, New York
Attention: Dr. Ira G. Ross, Director

Cornell University
Graduate School of Aeronautical Engineering
Ithaca, New York
Attention: Dr. W. R. Sears

Harvard University
Department of Applied Physics and Engineering Science
Cambridge 38, Massachusetts
Attention: Dr. A. Bryson

Harvard University
Department of Applied Physics and Engineering Science
Cambridge 38, Massachusetts
Attention: Dr. H. W. Emmons

University of Illinois
Department of Aeronautical Engineering
Urbana, Illinois
Attention: Prof. C. H. Fletcher

Iowa Institute of Hydraulic Research
State University of Iowa
Iowa City, Iowa
Attention: Prof. R. R. Kama

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. E. A. Bonney

The Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attention: Dr. F. N. Frenkiel

The Johns Hopkins University
Department of Aeronautical Engineering
Baltimore 18, Maryland
Attention: Dr. F. H. Clauser

The Johns Hopkins University
Department of Aeronautical Engineering
Baltimore 18, Maryland
Attention: Dr. L. Kovasznay

The Johns Hopkins University
Department of Mechanical Engineering
Baltimore 18, Maryland
Attention: Dr. S. Corrsin

Lehigh University
Physics Department
Bethlehem, Pennsylvania
Attention: Dr. R. Emrich

University of Maryland
Department of Aeronautical Engineering
College Park, Maryland
Attention: Dr. S. F. Shen

University of Maryland
Institute of Fluid Dynamics and Applied Mathematics
College Park, Maryland
Attention: Director

University of Maryland
Institute of Fluid Dynamics and Applied Mathematics
College Park, Maryland
Attention: Dr. H. T. Yang
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attention: Dr. Z. Kopal

Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attention: Dr. A. H. Shapiro

Massachusetts Institute of Technology
Department of Aeronautical Engineering
Cambridge 39, Massachusetts
Attention: Prof. M. Finston

Massachusetts Institute of Technology
Department of Aeronautical Engineering
Cambridge 39, Massachusetts
Attention: Prof. J. R. Markham

Massachusetts Institute of Technology
Department of Aeronautical Engineering
Cambridge 39, Massachusetts
Attention: Dr. G. Stever

University of Michigan
Ann Arbor, Michigan
Attention: H. P. Liepmann

University of Michigan
Department of Aeronautical Engineering
East Engineering Building
Ann Arbor, Michigan
Attention: Dr. Arnold Kuethe

University of Michigan
Department of Aeronautical Engineering
East Engineering Building
Ann Arbor, Michigan
Attention: Prof. W. C. Nelson

University of Michigan
Department of Physics
Ann Arbor, Michigan
Attention: Dr. O. Laporte

University of Minnesota
Department of Aeronautical Engineering
Minneapolis 14, Minnesota
Attention: Prof. J. D. Akerman

University of Minnesota
Department of Aeronautical Engineering
Minneapolis 14, Minnesota
Attention: Dr. C. C. Chang

University of Minnesota
Department of Aeronautical Engineering
Minneapolis 14, Minnesota
Attention: Dr. R. Hermann

University of Minnesota
Department of Mechanical Engineering
Division of Thermodynamics
Minneapolis, Minnesota
Attention: Dr. E. R. G. Eckert

New York University
Department of Aeronautics
University Heights
New York 53, New York
Attention: Dr. J. F. Ludloff

New York University
Institute of Mathematics and Mechanics
45 Fourth Street
New York 53, New York
Attention: Dr. R. W. Courant

North Carolina State College
Department of Engineering
Raleigh, North Carolina
Attention: Prof. R. M. Pinkerton

Ohio State University
Aeronautical Engineering Department
Columbus, Ohio
Attention: Prof. A. Tifford

Ohio State University
Aeronautical Engineering Department
Columbus, Ohio
Attention: Prof. G. L. von Eschen

Pennsylvania State College
Department of Aeronautical Engineering
State College, Pennsylvania
Attention: Prof. M. Lessen

Polytechnic Institute of Brooklyn
Aerodynamic Laboratory
527 Atlantic Avenue
Freeport, New York
Attention: Dr. A. Ferri

Polytechnic Institute of Brooklyn
Aerodynamic Laboratory
527 Atlantic Avenue
Freeport, New York
Attention: Dr. P. Libby

Princeton University
Princeton, New Jersey
Attention: Dr. Sin L. Cheng

Princeton University
Forrestal Research Center
Princeton, New Jersey
Attention: Library
Industrial Companies

Aeronutronic Systems, Inc.
1234 Air Way
Glendale, California
Attention: Dr. J. Charyk

Aeronutronic Systems, Inc.
1234 Air Way
Glendale, California
Attention: Dr. L. Kovanau

Aerophysics Development Corp.
P. O. Box 949
Santa Monica, California
Attention: Librarian

ARO, Inc.
P. O. Box 162
Tullahoma, Tennessee
Attention: Mr. R. Smelt

ARO, Inc.
Tullahoma, Tennessee
Attention: Dr. B. Goethert

AVCO Manufacturing Corp.
2385 Revere Beach Parkway
Everett 49, Massachusetts
Attention: Library

AVCO Manufacturing Corp.
2385 Revere Beach Parkway
Everett 49, Massachusetts
Attention: Dr. A. Kantrowitz

Bell Aircraft Corp.
Aerodynamics Section
P. O. Box 1
Buffalo 5, New York
Attention: Dr. Joel S. Isenberg

Bell Aircraft Corp.
P. O. Box 1
Buffalo 5, New York
Attention: Mr. R. J. Woods

Boeing Airplane Company
P. O. Box 3107
Seattle 14, Washington
Attention: Mr. G. Snyder

Chance Vought Aircraft, Inc.
P. O. Box 5907
Dallas, Texas
Attention: Mr. J. R. Clark

Chance Vought Aircraft, Inc.
P. O. Box 5907
Dallas, Texas
Attention: Dr. R. Wilson

CONVAIR
Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. C. Bossart

CONVAIR
Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. W. H. Dorrance
Dept. 1-16

CONVAIR
Division of General Dynamics Corp.
San Diego 12, California
Attention: Mr. W. B. Mitchell

CONVAIR
Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. W. B. Fallis

CONVAIR
Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. E. B. Maske

CONVAIR
Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. W. G. McMullen

CONVAIR
Division of General Dynamics Corp.
Fort Worth 1, Texas
Attention: Mr. R. H. Widmer

Cooperative Wind Tunnel
950 South Raymond Avenue
Pasadena, California
Attention: Mr. F. Felberg

Cooperative Wind Tunnel
950 South Raymond Avenue
Pasadena, California
Attention: Mr. E. I. Pritchard

Douglas Aircraft Company
Santa Monica, California
Attention: Mr. J. Gunke

Douglas Aircraft Company
Santa Monica, California
Attention: Mr. Ellis Lapin
Douglas Aircraft Company
Santa Monica, California
Attention: Mr. H. Luskin

Douglas Aircraft Company
Santa Monica, California
Attention: Dr. W. B. Oswald

General Electric Company
Research Laboratory
Schenectady, New York
Attention: Dr. H. T. Nagamatsu

General Electric Company
Campbell Avenue Plant
Schenectady, New York
Attention: Mr. G. Metcalf

The Glenn L. Martin Company
Baltimore 3, Maryland
Attention: Mr. G. S. Trimble, Jr.

Grumman Aircraft Engineering Corp.
Bethpage, New York
Attention: Mr. C. Tilgner, Jr.

Hughes Aircraft Company
Culver City, California
Attention: Dr. A. E. Puckett

Lockheed Aircraft Corp.
Missiles Division
Van Nuys, California
Attention: Library

Marquhardt Aircraft Company
P. O. Box 2013 - South Annex
Van Nuys, California
Attention: Dr. P. D. Arthur

McDonnell Aircraft Corp.
Lambert-St. Louis Municipal Airport
P. O. Box 516
St. Louis 3, Missouri
Attention: Mr. K. Perkins

North American Aviation, Inc.
Aeronautical Laboratory
Downey, California
Attention: Dr. E. R. Van Driest

Northrop Aircraft, Inc.
1001 East Broadway
Hawthorne, California
Attention: Mr. E. Schmued

Ramo-Wooldridge Corporation
409 East Manchester Blvd.
Inglewood, California
Attention: Dr. M. U. Clauzer

Ramo-Wooldridge Corporation
409 East Manchester Blvd.
Inglewood, California
Attention: Dr. Louis G. Dunn

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Librarian

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Dr. C. Gazley

The RAND Corporation
1700 Main Street
Santa Monica, California
Attention: Mr. E. P. Williams

Republic Aviation Corporation
Conklin Street
Farmingdale, L. I., New York
Attention: Dr. W. J. O'Donnell

United Aircraft Corporation
East Hartford, Connecticut
Attention: Mr. J. G. Lee
Internal

Mr. Frank Goddard
Mr. George Goranson (Bldg. 79)
Dr. John Laufer
Dr. Peter P. Wegener
Reports Group
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena 2, California

Dr. W. D. Rannie,
Goddard Professor
Jet Propulsion Center
California Institute of Technology

Dr. Julian D. Cole
Dr. Donald E. Coles
Dr. P. A. Lagerstrom
Prof. Lester Lees
Dr. H. W. Liepmann
Dr. Clark B. Millikan
Dr. Anatol Roshko

Aeronautics Library
Hypersonic Staff and Research Workers (20)
Hypersonic Files (3)

Foreign Distribution
via AGARD Distribution Centers