Kinetic Inductance Parametric Up-Converter
Abstract
We describe a novel class of devices based on the nonlinearity of the kinetic inductance of a superconducting thin film. By placing a current-dependent inductance in a microwave resonator, small currents can be measured through their effect on the resonator's frequency. By using a high-resistivity material for the film and nanowires as kinetic inductors, we can achieve a large coefficient of nonlinearity to improve device sensitivity. We demonstrate a current sensitivity of 8pA/√Hz, making this device useful for transition-edge sensor (TES) readout and other cutting-edge applications. An advantage of these devices is their natural ability to be multiplexed in the frequency domain, enabling large detector arrays for TES-based instruments. A traveling-wave version of the device, consisting of a thin-film microwave transmission line, is also sensitive to small currents as they change the phase length of the line due to their effect on its inductance. We demonstrate a current sensitivity of 5pA/√Hz for this version of the device, making it also suitable for TES readout as well as other current-detection applications. It has the advantage of multi-GHz bandwidth and greater dynamic range, offering a different approach to the resonator version of the device.
Additional Information
© 2015 Springer Science+Business Media New York. Published online: 30 November 2015. This work is supported by NASA Space Technology Research Fellowship Grant NNX12AM42H. Devices were fabricated at JPL.Additional details
- Eprint ID
- 62647
- Resolver ID
- CaltechAUTHORS:20151207-102625019
- NASA Space Technology Research Fellowship
- NNX12AM42H
- Created
-
2015-12-08Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field