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ABSTRACT

We have constrained the time-space migration of the Zagros foredeep basin by performing Sr isotope

stratigraphy on 31 samples of marine macrofossils from Neogene sediments now exposed in the Za-

gros mountain belt in southwest Iran. Our results show that these deposits (represented mainly by

the Mishan Formation) are strongly diachronous, with ages ranging between 17.2 � 0.2 and

1.1 � 0.1 Ma. These deposits are older in the west (Dezful region) and become progressively youn-

ger towards the south and the south-east (Fars region). Our results show that the marine foredeep

was replaced by a fluvial sedimentary environment between ca. 14 and 12 Ma in the western sector,

while this occurred between ca. 8 and 1 Ma in the eastern sector, becoming younger towards the

south. These results enable us to show that the foreland basin migrated perpendicular to the orogen

at rates of between 17.5 and 50 mm year�1 throughout the Neogene, exceeding migration rates in

the Alps, Pyrenees, Apennines and Himalayan foreland basins. The sporadically elevated rates in the

Zagros appear to be related to times when major widely spaced pre-existing basement faults became

reactivated. Finally, our results, when combined with published data, have enabled us to establish a

new chronostratigraphic diagram for the Neogene portion of the Zagros foreland basin. Our study

highlights that foreland basins are extremely dynamic settings where depocentres and palaeoenviron-

ments may change rapidly in both time and space in relation to migrating deformation.

INTRODUCTION

The Zagros region of south western Iran contains one of

the largest and most impressive active foreland basin sys-

tems on Earth, renowned especially for its abundant

hydrocarbon reserves, massive salt diapirs and glaciers,

soaring anticlines, multiple detachment folding and text-

book modern carbonate system (James & Wynd, 1965;

Kent, 1979; Koop et al., 1982; DeCelles & Currie, 1996;

Talbot & Alavi, 1996; Alavi, 2007). However, compared

to the intensely studied foreland basins of Europe (Ricci

Lucchi, 1986; Allen et al., 1991; Sinclair & Allen, 1992;

Sinclair, 1997a,b; Pfiffner et al., 2002; Verg�es et al.,
2002), North America (Poole, 1974; Cross, 1986; De-

Celles & Currie, 1996; DeCelles, 2004; Horton et al.,
2004; Painter & Carrapa, 2013) and the Himalayas (Lav�e
& Avouac, 2001; Avouac, 2003; Bollinger et al., 2004;
Mugnier & Huyghe, 2006), relatively little is known about

the Zagros foreland basin (see however Homke et al.,
2004; Fakhari et al., 2008; Gavillot et al., 2010; Pirouz
et al., 2011; Saura et al., 2011; Khadivi et al., 2012,

2010). In this paper, we focus on one aspect of the Zagros

that is particularly poorly constrained, namely the age of

sediments comprising the collision-related foredeep sedi-

mentary basin. We hope that by better constraining the

time-space evolution of the foredeep deposits and its

migration rate in a well exposed and active foreland basin

such as the Zagros, we may enhance our ability to success-

fully interpret ancient foredeep deposits such as those

normally studied in more accessible regions of the world.

The foredeep deposits of the Zagros foreland basin are

mainly represented by the Mishan formation, which tra-

ditionally has been assigned to the Early-Middle Miocene

over the entire Zagros (James & Wynd, 1965; Setudehnia,

1972). There are a number of points which make this ‘lay-

ercake’ regional correlation unlikely. First, recent mag-

netostratigraphic studies have demonstrated that the

fluvial wedgetop deposits overlying the Mishan formation

(comprising the Razak, Agha Jari and Bakhtiari forma-

tions) are diachronous across the region, becoming pro-

gressively younger from the north towards the Persian

Gulf in the south (Homke et al., 2004; Khadivi et al.,
2010). Second, our own work has shown that there is a

close similarity between the depositional environments

interpreted for Neogene deposits observed in any one ver-

tical section and the modern depositional environments

observed along a north-south profile, a feature which also

implies diachroneity (Pirouz et al., 2011). Third, based
on our current understanding of how foreland basins

migrate progressively with time as mountain belts widen,

it is hard to imagine how the Zagros foredeep deposits
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could all be of middle Miocene age. Rather, one would

normally expect the deposits to be oldest in the north and

to be very young adjacent to the modern foredeep, repre-

sented by the Persian Gulf in the south.

In this study, we date the marine Zagros foredeep

(Mishan Fm.) deposits for the first time using Strontium

isotope stratigraphy. The Mishan deposits contain few

diagnostic macro- and micro-fossils that provide indepen-

dent age constraints (e.g. Neoalveolina melo curdica,
Ammonia becearri, and Operculina complanata in the proxi-
mal Interior Fars and Miogypsina cf. globulina, Archaias
sp. and Tubucellaria sp. in the distal Interior Fars repre-

senting Middle to Late Miocene respectively). The Sr

isotope technique is a potentially powerful dating method

made possible by the rapid monotonic change in
87Sr/86Sr values during the Neogene. This method has

already been used with success in the Zagros to date the

Oligo-Miocene Asmari Formation (Ehrenberg et al.,
2007; van Buchem et al., 2010; Saura et al., 2011). Our
study fills a gap between these results, and the magneto-

stratigraphic data for the overlying continental deposits

(Homke et al., 2004; Emami, 2008; Khadivi et al., 2010).
The results of our study, along with previously published

age constraints, enable us to establish a new chronostrati-

graphic chart for the Zagros region during the Neogene.

In addition, the results let us calculate propagation rates

for the Zagros foreland basin and provide new constraints

on how the Zagros mountain belt and its adjacent foreland

basin evolved in time and space.

GEOLOGICAL SETTINGOF THE
ZAGROSBASIN

The Zagros foreland basin (SW Iran) occurs along the

northern margin of the Arabian plate that is currently

colliding with the Eurasian plate (Takin, 1972; Berberi-

an & King, 1981; Talbot & Alavi, 1996) (Fig. 1). The

Zagros region and the stable Arabian platform were part

of Gondwana during the entire Palaeozoic (Stocklin,

1968; Berberian & King, 1981; Sepehr & Cosgrove,

2004). This region rifted off Gondwana during the

Permo-Trias to form the Neo-Tethys oceanic basin.

Northern part of the Arabia developed as a passive mar-

gin between the Jurassic and the Early Cretaceous

before subduction began in the Late Cretaceous. Sub-

duction of the Arabian margin beneath the Eurasian

plate continued into the Tertiary until the Early Mio-

cene when continent-continent collision began, which

has continued until present day (Berberian, 1995; Talbot

& Alavi, 1996; Alavi, 2004; Homke et al., 2004; Agard
et al., 2005; Mouthereau et al., 2007; Allen & Arm-

strong, 2008; Khadivi et al., 2010). Today, the Arabian

plate moves at an average rate of ca. 20 mm year�1

towards Eurasia (Tatar et al., 2002; Hessami et al.,
2006; Reilinger et al., 2006; Walpersdorf et al., 2006)

resulting in 10 mm year�1 of pure shortening (Tatar

et al., 2002), regional surface uplift and active subsi-

dence in the foreland.

Fig. 1. Map showing locations of samples analyzed for strontium isotope stratigraphy (blue dots), previously published palaeomag-

netic age constraints (red dots) and measured lithostratigraphic sections (white stars) across the Zagros region. Abbreviations are

defined as follows: A, Asaluyeh; AF, Afrineh; AJ, Agha Jari; B, Bostaneh; C, Charak; CHG, Chaman goli; CHM, Chahar makan;

CHN, Changuleh; G, Gatvand; GA, Gach; H, Haftkel; K, Kaftar; KK, Kaharak; M, Mand; MS, Masjed Solayman; N, Nakh; Q,

Qeshm; S, Sepidar; SI, Siah; Z, Zarinabad; MZRF, Main Zagros Reverse Fault; HZF, High Zagros Fault; ZMFF, Zagros Mountain

Frontal Fault; ZFF, Zagros Foredeep Fault; Q-K, Qatar-Kazerun Lineament; ZDF, Zagros Deformation Front.
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NEOGENE-RECENT ZAGROS
FORELANDBASIN STRATIGRAPHY

The Neogene-Recent foreland basin displays a broadly

upward-coarsening regressive mega-cycle that records the

progressive uplift and southward migration of the Zagros

mountain belt through time (Fig. 2), as has been recog-

nized by numerous authors (Alavi, 2004, 2007; Fakhari

et al., 2008; Heydari, 2008; Khadivi et al., 2010; Pirouz
et al., 2011). For our study, the base of the foreland basin

sequence is considered to be marked by the Gachsaran

Formation, which includes about ca. 1000 m of clastic,

evaporitic deposits and coloured marl interbeds. The

depositional environment of the Gachsaran Formation is

mostly sabkha and supratidal, which was sometimes

replaced by shallow restricted marine conditions. This

lithofacies association is known as the Razak Formation in

the High Zagros region and the interior Fars area and

consists of a basal conglomerate bed overlain by red mud-

stones along with siltstone interbeds, sandstone bodies

and bioclastic limestones (Fig. 2) (Pirouz et al., 2011).
The Gachsaran Formation separates the Neogene fore-

land basin deposits from the older platform carbonates.

These evaporitic units are overlain by the Mishan Forma-

tion (the main focus of this study), with a thickness that

varies between ca. 50 and 1600 m, increasing towards the

east (James & Wynd, 1965; Setudehnia, 1972; Kashfi,

1980; Motiei, 1993). The Mishan Formation can be

divided into three main lithofacies associations (MNL,

MNR, MNM) on the basis of interpreted depositional

environment (Pirouz et al., 2011). The MNL lithofacies

association consists of evaporite deposits, red mudstones,

green marls, sandstones, sandy limestones and limestones

(including bryozoans, ostracods and foraminifera) and has

a maximum thickness of ca. 300 m. This lithofacies asso-

ciation is interpreted to be deposited in a restricted envi-

ronment such as lagoon. The MNR lithofacies association,

commonly known as the Guri Member, consists of

Fig. 2. Three representative lithostrati-

graphic sections (Masjed Solayman,

Kaharak and Nakh) of the Zagros fore-

land basin. The location of these strati-

graphic sections is shown on the Fig. 1.
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massive to thick-bedded reefal limestones (including

algae, gastropods, bryozoans and benthic foraminifera)

and grainstones. It is best developed east of the Qatar-Ka-

zerun lineament in the Fars region. This lithofacies asso-

ciation is interpreted to be deposited on the inner ramp of

a shallow marine environment. This massive limestone is

replaced by green marls with thin limestone interbeds

west of the Qatar-Kazerun fault zone. The upper lithofa-

cies association MNM of the Mishan Formation contains

thickly bedded green marls (containing small benthic

foraminifera) with thin limestone and oyster beds. This

lithofacies association is interpreted to be deposited in the

deeper part (outer ramp) of a shallow marine basin. In a

vertical section, the Mishan deposits are overlain by the

Agha Jari continental to estuarine deposits (Fig. 2). These

dominantly fluvial sediments were most likely deposited

in a meandering river system with high sinuosity at the

base to possibly low sinuosity at the top (Pirouz et al.,
2011). The repeated red sandstone and mudstones of the

Agha Jari Formation are overlain by the Bakhtiari con-

glomerates (Fig. 2) that are interpreted to be deposited in

a braided fluvial depositional system (James & Wynd,

1965; Fakhari et al., 2008; Pirouz et al., 2011).

STRONTIUM ISOTOPE STRATIGRAPHY

The Sr isotope dating method is based on direct compari-

son between measured 87Sr/86Sr from a sample and the

known variation in seawater 87Sr/86Sr calibrated through

time (Burke et al., 1982; Elderfield, 1986; McArthur

et al., 2001; McArthur & Howarth, 2004). This method

therefore requires measurement of 87Sr/86Sr in minerals

that precipitated from seawater and have resisted diage-

netic alteration of the original 87Sr/86Sr value. Some

intervals of the geological timescale are particularly

favourable for this method because they show high, nearly

constant rates of change of marine 87Sr/86Sr values. The

variation in the 87Sr/86Sr ratio during the Neogene is the

most promising period for Sr isotope stratigraphy due to

its rapid monotonous increase from 0.7082 to 0.7092

through geological time (Fig. 3), with age uncertainties of

better than �1 Ma (Elderfield, 1986; McKenzie et al.,
1988; Hodell et al., 1991; McArthur et al., 2001).

Samplingstrategyandmethods

The most reliable material for Sr isotope dating is bio-

genic calcite, especially unaltered mollusc shells large

enough to be physically separated from the surrounding

rock (Elderfield, 1986). For this study, we have collected

31 samples from 15 different sites across the Zagros

region. These samples were not obviously influenced by

diagenesis and consisted mainly of macrofossils such as

oysters and bivalves containing well preserved biogenic

calcite that still exists in its original aragonitic or low Mg

calcite form.

About fifty milligrams of each sample was physically

separated from the enclosing rocks using a binocular

microscope. Samples were washed several times with

deionized water using an ultrasonic machine. The pre-

pared samples were dissolved in 1.8 mL of 2 M acetic

acid. The solution was then centrifuged and the super-

natant was pipetted out, dried on a hot plate and con-

verted to nitrate form for column chemistry. Sr was

separated from the matrix using a Sr-spec resin and was

loaded onto a Re filament with a TaO activator. Stron-

tium isotope measurements were done at the University

of Geneva using the TRITON Thermo Finnigan Ther-

mal Ionization Mass Spectrometer (TIMS). Isotope

ratios were measured on Farady cups in static mode

using the virtual amplifier mode to reduce uncertainty

in the amplifier cross-calibration. The 87Sr/86Sr values

were internally corrected for fractionation using a
88Sr/86Sr value of 8.375209. All strontium ratios pre-

sented in this paper were subsequently normalized off-

line to the value of the SRM987 standard

(87Sr/86Sr = 0.710248) by applying a + 0.03& per amu

correction factor based on more than 100 measurements

of the SRM987 standard. The long-term (>100 mea-

surements) external reproducibility (1 r) of the

SRM987 standard is <7 ppm. The numerical ages of

the samples were determined by plotting the measured
87Sr/86Sr values on the 87Sr/86Sr LOWESS (LOcally

WEighted Scatterplot Smoothing) curve (Fig. 4) cali-

brated by McArthur et al. (2001). These ages represent

the maximum ages of the fossils and they correspond to

depositional ages of sediments if no reworking has taken

place. The LOWESS best-fit curve gives robust statisti-

cal uncertainties on any measured age (McArthur et al.,
2001; McArthur & Howarth, 2004). The uncertainty of

ages in this paper includes uncertainty of the Sr global

seawater curve, measurements, tools and any isotopic

heterogeneity. The strontium isotope values of 31 sam-

ples (A.1) are categorized into three distinctive groups

and explained in the next section on the basis of the

geological provinces within which they occur.

Fig. 3. Variation of 87Sr/86Sr in sea water through Phanerozoic

time (modified fromMcArthur & Howarth, 2004) along with

determined age range of the Mishan foredeep deposits in the Za-

gros foreland basin.
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AGERESULTS OFMARINE FOREDEEP
DEPOSITS

Western sector

In the western Zagros, six samples were analyzed from

five sections (Zarinabad, Gatvand, Masjed Solayman, Ha-

ftkel and Agha Jari anticlines) in the southern part of the

western sector (Lorestan and Khuzestan provinces)

(Fig. 5a). The maximum absolute ages of the marine

deposits are 16.7 � 0.2 Ma at the base and

12.8 � 0.5 Ma at the top in the southern part of the

Mountain Frontal Fault in the western sector of the Za-

gros region (Figs 4 and 5).

Eastern sector

In the eastern Zagros mountain belt, 10 sections were

considered for Sr isotope dating (Fig. 5a). A total of 25

fossils were collected along the measured sections and

outcrops of the Neogene deposits in the Simply Folded

Belt. Results show that the marine deposits have a wide

range of 87Sr/86Sr, which indicates a long temporal dura-

tion for the marine basin in the Fars region. The oldest

measured Sr age of the Mishan Formation is

17.2 � 0.2 Ma in the Zagros simply folded belt, while an

age of 1.1 � 0.1 Ma was obtained in the uppermost pre-

served unit in the distal part of the simply folded belt next

to the modern coast of the Persian Gulf (Figs 4 and 5).

The thick marine deposits in the Fars were deposited in a

relatively deep basin compared with the Lorestan and

Khuzestan regions and were possibly less affected by con-

tinental input (Pirouz, 2013). The results of the Fars

region are divided into two sectors: Interior and Coastal

Fars, which are explained in the next sections.

Interior Fars

The middle part of the Zagros basin in the Fars region is

considered for Sr dating in five sections (Sepidar, Kaftar,

Gach, Siah and Nakh anticlines) (Fig. 5a). A total of 11

fossils were sampled in our field studies. The maximum

age of the marine foredeep is 17.2 � 0.2 Ma, while the

youngest marine deposits have an age of 6.7 � 0.3 Ma

(Figs 4 and 5).

Coastal Fars

Strontium dating analysis has been carried out on 14 sam-

ples from five sections (Asaluyeh, Mand, Charak, Bosta-

neh and Qeshm anticlines) in the distal part of the Zagros

simply folded belt next to the modern coast of the Persian

Gulf (Fig. 5a). The Neogene succession above the Gachs-

aran Formation is mostly marine in the Coastal Fars

region. The oldest sample of marine material has an age of

11.5 � 0.5 Ma while the uppermost unit has an age of

1.1 � 0.1 Ma (Figs 4 and 5).

DISCUSSION

Ageof the Zagrosmarine foredeep

Based on the Sr isotope ages, previous palaeomagnetic

studies (Homke et al., 2004; Emami, 2008; Khadivi et al.,
2010) and the thickness of preserved foredeep deposits,

we have calculated net deposition rates for the Mishan

Formation at individual sections. The net average deposi-

tion rate is about 0.1 � 0.02 mm year�1. These calcula-

tions enabled us to estimate the ages of the upper and

lower stratigraphic contacts for the Mishan marine depos-

its under the assumption that the depositional rates are

constant in time (Fig. 5b). These estimates are of interest

because they enable us to roughly evaluate at a regional

scale the time at which deposition in the basin changed

from continental to marine conditions (in the case of the

lower contact) or marine to continental conditions (for the

upper contact).

This analysis shows that the western part of the Zagros

foreland basin (Lorestan and Khuzestan regions) records

a shallow marine foredeep between ca. 16.5 and 14.2 Ma,

while in the southern portion of the Khuzestan (Dezful

embayment) the marine foredeep occurs between ca. 17
and 12 Ma (Fig. 5b). The passage from a marine to a

non-marine environment occurred in the Late Langhian

(ca. 14.2 Ma) in the north and in the Serravallian

(ca. 12 Ma) in the south western part of the Zagros basin.

We consider these times to roughly indicate when

Fig. 4. Plot of the Sr isotope age results of the marine foredeep

deposits (Mishan Formation) on the LOWESS curve (McAr-

thur et al., 2001). Abbreviations are defined as follows (see also
Fig. 5a): A, Asaluyeh; AJ, Agha Jari; B, Bostaneh; C, Charak;

G, Gatvand; GA, Gach; H, Haftkel; K, Kaftar; M, Mand; MS,

Masjed Solayman; N, Nakh; Q, Qeshm; S, Sepidar; SI, Siah; Z,

Zarinabad.

© 2014 The Authors
Basin Research © 2014 John Wiley & Sons Ltd , European Association of Geoscientists & Engineers and International Association of Sedimentologists718

M. Pirouz et al.



different parts of the basin became overfilled. It is worth

noting that magnetostratigraphic investigations indicate

that the deposition of continental sediments started not

later than ca. 12.8 Ma in the Zarinabad and ca. 12.3 Ma

in the Changuleh (Fig. 1) in the extreme western sector

(Lorestan region) (Homke et al., 2004), which match well

with our results.

The eastern part of the Zagros foreland basin (Fars)

records a shallow marine foredeep between ca. 18–15 Ma

and ca. 13–8 Ma in the Interior Fars (Fig. 5b), separated

by a fluvial sedimentary environment between the

Langhian and Serravallian (ca. 15–13 Ma). These results also

imply that the underlying Razak fluvial sedimentary envi-

ronment (Fig. 2) occurred in the Burdigalian, which is

comparable with results of magnetostratigraphy (Khadivi

et al., 2010) obtained from the Razak Formation in the

northern part of the Interior Fars (Chahar Makan).

Towards the south in the Nakh section, the Mishan For-

mation shows a longer time duration between the Burdi-

galian and Messinian (ca. 17–4.2 Ma). Towards the

south in the Coastal Fars region, the oldest outcrop has an

age of ca. 11.5, whereas the base of the Mishan Formation

(a)

(b)

Fig. 5. (a) Map showing locations of samples analyzed for strontium isotope dating and micropalaeontology (star) across the Zagros

region. (b) Distribution of the Sr isotope results of the marine foredeep deposits (Mishan Formation) within the Zagros region. Abso-

lute age ranges of the Mishan are shown with pink filled quadrants, extrapolated age range is shown with open quadrants (calculated

based upon Sr dating results and net deposition rate), and error bars are indicated in black. Fossils (star) are Archaias sp. (a), Operculina
complanata (b), Spherogypsina sp. (c), Borelis pygmaea (d), Bigenerina sp. (e), Amphistegina lesson (f),Miogypsina cf. globulina (g), Archa-
ias sp. (h), and Tubucellaria sp. (i). Question marks in Figure (b) imply that the base of the Mishan foredeep deposits has no outcrop.

Abbreviations are defined as follows: Cal., Calabrian; G., Gelasian; P., Piacenzian; Zan., Zanclean; Mes., Messinian; Tor., Tortonian;

Ser., Serravallian; Lan., Langhian; Bur., Burdigalian; A, Asaluyeh; AJ, Agha Jari; B, Bostaneh; C, Charak; G, Gatvand; GA, Gach; H,

Haftkel; K, Kaftar; M, Mand; MS, Masjed Solayman; N, Nakh; Q, Qeshm; S, Sepidar; SI, Siah; Z, Zarinabad.
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is located at a depth of �350 m below the sea level and

has an extrapolated age of ca. 14.7 Ma. The top of the

Mishan Formation has an age of ca. 1.5 Ma (in the Bosta-

neh anticline) next to the modern coast of the Persian

Gulf (Fig. 5b).

In general, during the Langhian (ca. 17–15 Ma), the

very shallow marine environment (lagoon and restricted

environments) of the Mishan Formation extended to the

north and covered the initial wedge top basin (Razak For-

mation) deposits in the eastern (Fars) part of the basin,

while supratidal and sabkha deposits accumulated in the

western (Dezful) part of the basin (Pirouz, 2013). Later

on, the MNR (Guri Member) and MNM lithofacies asso-

ciations are well developed in the western sector and are

relatively older in the north (between ca. 13 and 9 Ma),

becoming younger (between ca. 12 and 1 Ma) in the more

distal part of the basin in Coastal Fars region (Fig. 5b).

Based upon our new results and magnetostratigraphic

data from the Razak, Agha Jari and Bakhtiari fluvial

deposits (Homke et al., 2004; Emami, 2008; Khadivi

et al., 2010) along with Sr results for the Asmari (Ehren-

berg et al., 2007; van Buchem et al., 2010), we have estab-
lished a new chronostratigraphic chart for the Neogene

part of the Zagros foreland basin (Fig. 6). This chart dif-

fers significantly from the pre-existing diagram in that the

Mishan, Agha Jari and Bakhtiari Formations are all

strongly diachronous across the basin. In addition, the

upper limit of the Asmari Formation (the age for the base

of the foreland basin) is moved back in time.

Migration ratesof the Zagros foredeep

Our results also enable us to provide new constraints on

foredeep migration rates across the Zagros basin (Table 1

(a)

(b)

Fig. 6. Pre-existing (a) and newly revised (b) chronostratigraphic charts of the Zagros foreland basin. The old chart is from James &

Wynd (1965). The new chart is based on our new Sr data result along with Sr results for the Asmari (Ehrenberg et al., 2007; van Bu-
chem et al., 2010) and magnetostratigraphic data of the Razak, Agha Jari and Bakhtiari fluvial deposits (Homke et al., 2004; Emami,

2008; Khadivi et al., 2010). Abbreviations are defined as follows: K, Kaftar; M, Mand; MS, Masjed Solayman; N, Nakh; Q, Qeshm;

S, Sepidar; Z, Zarinabad.
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and Fig. 7). The Sr ages for the uppermost part of the

Mishan Formation show that the marine foredeep was

completely filled in the northern part of the Interior Fars

around ca. 8.4 Ma (Sepidar and Gach anticlines) and

ca. 4.2 Ma in the southern Interior Fars (Nakh anticline)

(Fig. 5). Based on the present-day distance obtained from

restored structural and seismic cross-sections (Jahani

et al., 2009) between those two outcrops, approximately

136 km of southward foredeep migration occurred in

4.2 Ma (between 8.4 and 4.2 Ma) with a rate of

32.4 mm year�1. In comparison, the distance between

the Nakh anticline and the Persian Gulf coast, which is

where the modern foredeep is found, is less than 60 km

(Fig. 5). Therefore, here the migration occurred between

4.2 and 1 Ma with a rate of 18.7 mm year�1. In the wes-

tern part of the Zagros basin, the Neogene deposits record

approximately 185 km of southeastward foredeep migra-

tion using interpreted seismic lines (Sherkati & Letouzey,

2004) within 2 million years, which implies an along strike

migration rate of 92.5 mm year�1 and an orogen-perpen-

dicular migration rate of 56.5 mm year�1 in the Late

Serravallian (ca. 12 Ma), 18.5 mm year�1 in the Early

Serravallian (ca. 13 Ma) and less than 10 mm year�1 in

the Late Langhian (ca. 14 Ma). These results show that

the migration rate of the Mishan foredeep depocentre was

2.5 times faster during the Serravallian in the western sec-

tor and two times faster during the Tortonian and Mes-

sinian in the eastern sector compared with the Zanclean to

present.

The western sector of the Zagros foreland basin became

overfilled (Pirouz, 2013) after 12 Ma after which no mar-

ker is available to calculate the rate of propagation in

detail. Nevertheless, the overall minimum propagation

rate is about 20 mm year�1 in the western sector during

the last 12 Ma on the basis of the available data.

The foreland basin migration rates calculated here for

the Zagros (between 50 and 17.8 mm year�1) are among

the highest for any pro-foreland basin in the world

(Fig. 7). However, this migration rate is a function of

convergence rate, flexural rigidity, sediment supply and

accommodation space as discussed previously and differs

from one to another foreland. For instance, the basin

migration rates are about 5–10 mm year�1 in the Apen-

nines (Ricci Lucchi, 1986), between 5 and

12.9 mm year�1 in the Alps (Sinclair, 1997b), about

10 mm year�1 in the southern Pyrenees (Verg�es et al.,
2002), between 4 and 48 mm year�1 in the Andes retro-

foreland in Argentina (DeCelles et al., 2011), and

15 mm year�1 in the Ganges basin in Himalaya (Mugnier

& Huyghe, 2006).

Controlson ratesof foredeepmigration

What caused the Zagros foredeep to migrate in the man-

ner outlined in the previous section? The stratigraphic

architecture of a foreland basin may be influenced by a

variety of factors, notably eustatic sea level variations

(Catuneanu, 2002; Miller et al., 2005), sediment supply

and the creation of accommodation space (Allen et al.,
2013; Ballato & Strecker, 2014), which itself depends on

Table 1. Calculated propagation rates for the Neogene Zagros

foreland basin

Sector T (Ma) P (km Ma�1) Source

Eastern Zagros

4.2–1 18.75

This study8.2–4.2 32.5

11.5–8.2 0 to >32
13.5–11.5 0

16–13.5 24 Khadivi et al. (2010);
Pirouz (2013)18–16 20

Western Zagros

9–0 >10 to <20
This study12–9 <10

12.5–12 52

14.5–12.5 0 to <10 Pirouz (2013)
16–14.4 0

Fig. 7. Foreland basin propagation rates (perpendicular to the orogen) for different basins along the Alpine-Himalayan system. The

propagation rate of the western Zagros is shown in pink. Dashed line represents a rough estimate based upon our results and previous

palaeomagnetostatigraphy and biostratigraphy studies (Homke et al., 2004; Emami, 2008; Fakhari et al., 2008). The propagation rate
for the eastern Zagros is shown in black (this study), the Alps in blue (Sinclair et al., 1991; von Hagke et al., 2012), Apennines in green
(Ricci Lucchi, 1986), Himalaya in red (Mugnier & Huyghe, 2006).
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the distribution of deformation in the orogen (Ricci

Lucchi, 1986) and the flexural rigidity of the foreland lith-

osphere (Allen & Allen, 2005). Changes in any one of

these factors may drive regression or transgression of the

coastline, causing the adjacent depositional environments

to migrate laterally.

For example, an abrupt climate-driven increase in sedi-

ment flux into the basin is expected to trigger a coastal

regression, without any advancement of deformation in

the orogen (Ballato & Strecker, 2014). On the other hand,

thrust-load emplacement in the deforming mountain belt

may drive flexural subsidence in the foredeep, causing

transgression to occur. At the same time, this may lead to

higher topographic relief, steeper slopes, faster erosion

and greater supply of sediment to the basin, which may be

manifest by progradation of a coarse clastic wedge into

the basin. The possibilities for complicated interactions

involving feedback are numerous, making it challenging

to understand with any certainty controls on variations in

foreland basin architecture.

Despite these complications, it is clear that the Zagros

foreland basin migrates roughly towards to southwest

through time, as does the deformation front. This corre-

spondence suggests to us that the advancement of the Za-

gros orogen (i.e. the deformation front) plays a first order

control on migration of the foredeep basin. In this section,

we test whether widening of the deforming mountain belt

can explain the observed (orthogonal) foredeep propaga-

tion rates observed in the Zagros.

Assuming an orogen has a gross triangular geometry

and that it enlarges in response to frontal accretion of sed-

iments from an incoming plate undergoing no erosion,

Dahlen (1990) showed that the wedge width grows

according to:

W ¼
ffiffiffiffiffiffiffiffiffi
2hvt

p

tanðaþ bÞ
� �1=2

;

where w is the width of the orogen (m), h is the thick-

ness of sediments on the incoming plate (m) moving at

speed v (m s�1) relative to the wedge backstop, t is the
time (s) since accretion began, a is the surface slope of the

wedge and b is the slope of the detachment dipping

towards the mountain belt. The rate at which the wedge

widens (that we associate with the rate at which the fore-

deep migrates) can be obtained by differentiating (1) with

respect to time to yield:

@w

@t
¼ hvffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hvt
tanðaþbÞ

q
tanðaþ bÞ

: ð2Þ

Figure 8 shows w and ow/ot computed from Eqn (2)

vs. time (dash line) for parameter values relevant to the

Zagros [h = 8 km from the basal Hormuz salt to the Oli-

go-Miocene Asmari Formation (Morris, 1977; Alavi,

2004, 2007), v = 20 km Ma�1 (Reilinger et al., 2006),

a = 2°, b = 2.5–3° (Snyder & Barazangi, 1986; Paul

et al., 2010)]. The timing of collision is not well con-

strained but took place no later than about 20 Ma (Kha-

divi et al., 2010; Ballato et al., 2011; Mouthereau, 2011;

McQuarrie & van Hinsbergen, 2013), which is when the

first clear signs of clastic deposition occurred in the north-

ern part of the Zagros (represented by the Razak forma-

tion) (Khadivi et al., 2010). One sees that high

propagation rates of ca. 40 mm year�1 are possible within

the first few million years following collision, but these

rates decrease rapidly and are anticipated to be no more

that ca. 10 mm year�1 after 10 My. After 20 Ma, the oro-

gen would have a total width of 338 km, which is similar

to the width of the Zagros in the Fars regions today.

DeCelles & DeCelles (2001) showed that the variation

in the wedge dip (i.e. b) through time can have a large

influence on wedge propagation rates. Assuming that b
decreases linearly with time, these authors showed that

the propagation rate initially decreases, as with the Dah-

len model, whereas after a certain time it begins to

increase. This acceleration takes place because as the

wedge taper decreases, there is progressively less area in

the orogen to accommodate mass accreted at the deforma-

tion front, causing it to widen more rapidly. We have used

the DeCelles & DeCelles (2001) model to test whether it

can explain the variations in the propagation rates

observed in the Zagros. In this model, the orogen width

(w) and orogen propagation rate (ow/ot) are computed

according to:

w ¼ b0 Bj j þ x20
� �

Kj j a
Kj j � t

� � � Bj j
						

						
1=2

; ð3Þ

(a)

(b)

Fig. 8. Wedge widening (a) and rate of widening (deformation

front propagation rate) (b) as a function of time, predicted by

two different models: Dahlen (1990), dashed line, and DeCelles

& DeCelles (2001), green line for E = 0.67 and black line for

E = 0.8. The equations are defined in the main text. Also shown

are our estimates for the Zagros obtained from Sr isotope stratig-

raphy (red line).
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@w

ot
¼ Kj j

2xb0
:
ð Bj j þ x2Þ2
Bj j þ x20

" #
; ð4Þ

Where

B ¼ 2vhEð Þ
K

K ¼ bf � b0
� �
tf � t0

E is the fraction of rock that survives erosion to build

the wedge (varying between 0 and 1), b0 and bf are the ini-
tial and final slopes of the detachment dipping towards

the mountain belt at times t0 and tf, t is the time (s), v is

velocity (m s�1) of foreland subduction, h is the thickness
(m) of sediments on the incoming plate, M0 is the pre-

existing mass of the wedge and x0 is the initial wedge

width (DeCelles & DeCelles, 2001). The erosion parame-

ter E can be calculated from the following relation:

E ¼
x2bf
2

�M0

� �
vhtf

ð5Þ

In Fig. 8 we plot the results of Eqns (3) and (4) using

parameter values estimated for the Zagros. Using

x = 350 km, bf = 2.5–3° (Snyder & Barazangi, 1986;

Paul et al., 2010), v = 20 km Ma�1 (Reilinger et al.,
2006), h = 8 km (Morris, 1977; Alavi, 2004, 2007),

tf = 25 Ma (Khadivi et al., 2010; Ballato et al., 2011;

Mouthereau, 2011; McQuarrie & van Hinsbergen, 2013)

and M0 = 0 assuming all of the mass of the wedge is due

to thrusting yields E ffi 0.67–0.80 from Eqn (5). This

implies that more than two thirds of the mass going into

the Zagros wedge survives erosion to build up topogra-

phy. The plot (green line for E = 0.67 and black line for

E = 0.8) predicts that ow/ot decreased rapidly during the

first 10 Ma of shortening in the Zagros. This rate has

been constant at about 10.5–11.5 km Ma�1 between 15

and 10 Ma, but the curves suggest that since the Zagros

fold-thrust belt reached a width of ca. 160–180 km

(depending on the actual change in b) the propagation

rate has accelerated up to 17–18.5 km Ma�1.

Comparison with propagation rates based on Sr isotope

stratigraphy (Fig. 8b) (red curve) shows that although the

simple models can match observed rates immediately fol-

lowing collision, they fail to explain elevated propagation

rates (ca. 33 mm year�1) between 11 and 8 Ma.

We suspect the main reason for the inability of the sim-

ple wedge model to explain foreland basin propagation

rates in the Zagros is due to migration of deformation

front beneath the active foredeep i.e. basement faulting. It

is worth noting that number of other studies have pro-

posed involvement of the basement faults in the deforma-

tion (Blanc et al., 2003; Sherkati & Letouzey, 2004;

Molinaro et al., 2005; Sepehr & Cosgrove, 2005; Mouthe-

reau et al., 2007; Emami et al., 2010; Verg�es et al., 2011).
Although there is no clear seismic image of the Zagros

basement in the eastern sector due to the Hormuz salt,

fault plane solutions of the large earthquakes with hypo-

centers located below the salt (Jackson, 1980) indicate

high angle reverse faulting (40–50) on a large number of

faults across the entire width of the Zagros belt (Fig. 9)

(Jackson, 1980; Snyder & Barazangi, 1986; Talebian &

Jackson, 2004). This reverse faulting is probably occur-

ring by reactivation of old normal faults formed originally

during Permo-Triassic extension (Jackson, 1980).

We suggest that the rapid migration rate

(33 mm year�1) during Late Miocene presents the time

when sub-wedge deformation jumped forward from the

Mountain Frontal Fault to the Zagros Foredeep Fault in

the south (Fig. 10). This would have uplifted large parts

of the previous foredeep basin while generating new sub-

sidence in the footwall far south of the previous foredeep,

Fig. 9. Summary of fault plane solutions in the Zagros Fold-Thrust belt (modified from Talebian & Jackson, 2004; Jackson, 1980).
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leading to a large apparent foredeep propagation rate.

This suggestion is consistent with Khadivi et al. (2012)
who identified late Miocene uplift on the basis of appetite

fission track thermal modelling and Hessami et al. (2001)
who showed that the Zagros deformation front coincided

with the Mountain Frontal Fault in the Early Miocene

and the Zagros Foredeep Fault in the Late Miocene on

the basis of unconformities. In addition, our interpreta-

tion is in good agreement with other studies that show fas-

ter folding occurred after 12 Ma (Khadivi et al., 2010)
and slowing down of Arabia-Eurasia convergence

ca. 30% from ca. 5 Ma to the present day (Austermann

& Iaffaldano, 2013).

CONCLUSIONS

On the basis of our new Sr isotope stratigraphy results,

we have shown that the marine foredeep in the Zagros

foreland basin (represented by the Mishan Formation)

has a wide age range and shows prominent diachronous

characteristics. The marine deposits are oldest in north-

west (ca. 17 Ma) and become gradually younger towards

the southeast (ca. 1 Ma). The western part of the Zagros

basin became overfilled at about ca. 12 Ma and the main

depocentre migrated towards the southeast. In the east-

ern sector (northern Interior Fars) the basin became

overfilled at ca. 8.4 Ma, while this occurred at

ca. 4.2 Ma in the southern Interior Fars. These new age

constraints demonstrate that the Zagros foredeep basin

migrated rapidly towards the southwest during the Neo-

gene at rates of between about 10 and 50 mm year�1,

with rates two times faster in the past (Miocene) com-

pared with the Pliocene. These foredeep migration rates

are not easily explained by progressive widening of a crit-

ical wedge growing by frontal accretion. Rather periods

of rapid foredeep migration appear to be controlled by

reactivation of major widely spaced basement faults. This

has resulted in periods during which the foredeep

stepped abruptly forward leading to high apparent fore-

deep propagation rates exceeding those measured in any

other foreland basin worldwide. Our study highlights the

major role played by basement faults in the Zagros in

controlling sedimentation in the foreland basin – some-

thing that would not be expected on the basis of the sur-

face geology that is dominated largely by thin-skinned

style deformation.
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APPENDIX A

No Location Sample

Min.

age

Age

(Ma)

Max.

age 87Sr/86Sr Error Formation L.A.

Location (X, Y),

Decimal Degree

1 Zarinabad Z 16.042 16.199 16.364 0.7087075379 0.0000032544 Base of the

Mishan

MNL (46.849360°, 33.001219°)

2 Gatvand G 15.632 15.782 15.926 0.7087337988 0.0000036139 Base of the

Mishan

MNL (48.936942°, 32.217760°)

3 Masjed

Solayman

MS1 12.979 13.630 14.644 0.7088046212 0.0000042243 Top of the

Mishan

MNL (49.144565°, 32.060090°)

4 Masjed

Solayman

MS2 16.479 16.722 16.964 0.7086774269 0.0000071215 Base of the

Mishan

MNL (49.145337°, 32.061063°)

5 Haftkel H 12.382 12.815 13.307 0.7088186217 0.0000037557 Top of the

Mishan

MNM (49.520989°, 31.502225°)

6 Agha Jari AJ 15.365 15.521 15.691 0.7087499563 0.0000045176 Base of the

Mishan

MNL (49.715861°, 30.784517°)

7 Sepidar S 9.712 9.954 10.219 0.7088878457 0.0000021092 Middle Mishan MNM (53.181856°, 28.846822°)

8 Kaftar K1 15.668 15.807 15.937 0.7087321764 0.0000028934 Base of the

Mishan

MNU (53.136757°, 28.824337°)

9 Kaftar K2 16.964 17.159 17.362 0.7086520861 0.0000052322 Base of the

Mishan

MNU (53.137042°, 28.825165°)

10 Gach GA1 11.638 12.123 12.500 0.7088339422 0.0000021113 Upper Mishan MNM (54.421042°, 28.141708°)

11 Gach GA2 12.413 12.806 13.245 0.7088188217 0.0000029202 Lower Mishan MNR (54.417141°, 28.139289°)

12 Siah SI1 8.922 9.329 9.664 0.7089090048 0.0000024119 Upper Mishan MNM (54.333422°, 27.553558°)

13 Siah SI2 9.914 10.196 10.509 0.7088794538 0.0000030557 Middle Mishan MNM (54.334410°, 27.557935°)

14 Nakh N1 6.497 6.738 7.053 0.7089617465 0.0000043928 Middle Mishan MNM (54.592669°, 27.090225°)

15 Nakh N2 9.644 9.925 10.227 0.7088888241 0.0000033580 Guri member MNR (54.606354°, 27.096550°)

16 Nakh N3 13.583 14.478 14.786 0.7087973461 0.0000015078 Lower Mishan MNL (54.607207°, 27.098267°)

17 Nakh N4 15.117 15.291 15.418 0.7087659299 0.0000027380 Lower Mishan MNL (54.608071°, 27.098956°)

18 Asaluyeh A1 7.304 7.587 8.316 0.7089392755 0.0000026076 Middle Mishan MNM (52.683609°, 27.587958°)

19 Asaluyeh A2 7.524 7.911 8.631 0.7089330956 0.0000024249 Middle Mishan MNM (52.679356°, 27.584448°)

(continued)
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Table (continued)

No Location Sample

Min.

age

Age

(Ma)

Max.

age 87Sr/86Sr Error Formation L.A.

Location (X, Y),

Decimal Degree

20 Mand M1 5.450 5.565 5.668 0.7090168152 0.0000021935 Upper Mishan MNM (51.285513°, 28.268886°)

21 Mand M2 9.663 9.925 10.206 0.7088888357 0.0000027001 Middle Mishan MNM (51.289894°, 28.272787°)

22 Charak C 2.997 3.955 4.628 0.7090533950 0.0000053106 Middle Mishan MNM (54.309737°, 26.795252°)

23 Qeshm Q1 1.866 2.081 2.261 0.7090830249 0.0000030139 Upper Mishan MNM (55.909904°, 26.866000°)

24 Qeshm Q2 1.859 2.156 2.405 0.7090807449 0.0000054795 Upper Mishan MNM (55.940417°, 26.843406°)

25 Qeshm Q3 4.350 4.702 4.915 0.7090439851 0.0000031887 Middle Mishan MNM (55.899270°, 26.879970°)

26 Qeshm Q4 11.024 11.436 12.062 0.7088452359 0.0000036789 Middle Mishan MNM (55.910813°, 26.865739°)

27 Qeshm Q5 11.044 11.446 12.052 0.7088450759 0.0000033189 Middle Mishan MNM (55.920378°, 26.850626°)

28 Bostaneh B1 0.948 1.070 1.174 0.7091340847 0.0000042876 Upper Mishan MNM (54.855097°, 26.573801°)

29 Bostaneh B2 1.528 1.641 1.780 0.7090974549 0.0000029458 Upper Mishan MNM (54.874809°, 26.575719°)

30 Bostaneh B3 5.343 5.510 5.638 0.7090193352 0.0000032181 Middle Mishan MNM (54.864630°, 26.596274°)

31 Bostaneh B4 5.859 5.978 6.087 0.7089950753 0.0000044399 Middle Mishan MNM (54.847375°, 26.608582°)
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