Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV

The CMS Collaboration

Abstract

A model-independent search for a narrow resonance produced in proton-proton collisions at \(\sqrt{s} = 8 \) TeV and decaying to a pair of 125 GeV Higgs bosons that in turn each decays into a bottom quark-antiquark pair is performed by the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 17.9 fb\(^{-1}\). No evidence for a signal is observed. Upper limits at a 95% confidence level on the production cross section for such a resonance, in the mass range from 270 to 1100 GeV, are reported. Using these results, a radion with decay constant of 1 TeV and mass from 300 to 1100 GeV, and a Kaluza–Klein graviton with mass from 380 to 830 GeV are excluded at a 95% confidence level.

Published in Physics Letters B as \texttt{doi:10.1016/j.physletb.2015.08.047}.
1 Introduction

Following the discovery of a Higgs boson (H) at the CERN LHC [1-3], with mass around 125 GeV and properties so far consistent with the standard model (SM) of particle physics, it has become important to search for new resonances that decay into pairs of such Higgs bosons. While non-resonant pair production of the Higgs boson is allowed in the SM, the theoretical production cross section is approximately 10 fb [4] and well beyond the sensitivity of currently acquired data. However, several well-motivated hypotheses of physics beyond the standard model posit narrow-width resonances that decay into pairs of Higgs bosons, and could be produced with large enough cross sections to be probed with existing data. The radion [5] and Kaluza–Klein (KK) gravitons in the Randall–Sundrum (RS1) [6] model of warped extra dimensions are examples of such resonances [7].

This letter reports the results of a model-independent search for the resonant pair production of Higgs bosons. The search for the narrow width resonance, denoted by X, is performed in the 270–1100 GeV mass range. Data from proton-proton collisions at the LHC and recorded by the CMS experiment corresponding to an integrated luminosity of 17.9 ± 0.5 fb$^{-1}$ at $\sqrt{s} = 8$ TeV is used. We perform this search for the case where both Higgs bosons decay into bottom quark-antiquark pairs ($b\bar{b}$) [8]. The main challenge of this search is to distinguish the signal of four bottom quarks in the final state that hadronize into jets (b jets) from the copious multijet background described by quantum chromodynamics (QCD) in pp collisions. We address this challenge by suitable event selection criteria that include dedicated b-jet identification techniques and a model of the multijet background that is validated in data control regions. Our results may be compared with a search performed by the ATLAS experiment [9] that also probes the physics of resonant Higgs boson pair production, albeit in the channel where one Higgs boson decays to bottom quarks and the other decays to photons.

2 Detector and Event Reconstruction

A detailed description of the CMS detector, together with a description of the coordinate system used and the relevant kinematic variables, can be found in Ref. [10]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter that generates an axial magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are detected and their properties measured in gas-ionization detectors embedded in a steel flux-return yoke outside the solenoid. Jets are reconstructed using the anti-k_T clustering algorithm [11, 12] with a distance parameter of 0.5 applied on the collection of particle candidates reconstructed by the particle-flow (PF) algorithm [13, 14]. The PF algorithm reconstructs and identifies each individual particle with a combination of information from the various elements of the CMS detector. To mitigate the effect of additional particles that do not originate from the hard interaction in jet reconstruction, we subtract charged hadrons that do not arise from the primary vertex associated with the jet from the collection of clustered particles. Further, an average neutral energy density from particles not arising from the primary vertex is evaluated and subtracted from the jets [15]. Energy corrections for the jets are determined as functions of the jet transverse momentum p_T and pseudorapidity $|\eta|$. Jet identification criteria [16] to reject detector noise misidentified as jets, and jets not originating from the hard interaction are also applied.

In order to identify (tag) b jets, we rely on the fact that bottom quarks hadronize into b hadrons which have decay lengths of the order of $c\tau = 450 \mu$m. Thus, their decay products originate
from secondary vertices made of tracks that have impact parameters with respect to the primary vertex of a similar scale. The pixel tracker provides an impact parameter resolution of about 15 \mu m for charged tracks with |\eta| < 2.4. To maximize the b-tagging performance of the detector, we combine the output discriminants of several b-tagging algorithms described in Ref. [17] with a trained artificial neural network. This we call the combined multivariate (CMVA) algorithm. In particular, we combine the outputs of the combined secondary vertex (CSV) tagger that uses secondary vertices identified by the inclusive vertex finder (IVF) algorithm [18], the jet probability (JP) tagger, and the two soft lepton taggers.

The first level of the trigger, consisting of customized processors, collects data for this analysis using information from the calorimeters and requires two jets to exceed \(p_T \) thresholds of 56 or 64 GeV, depending on luminosity conditions. The second level of the trigger, consisting of software algorithms executed on a farm of commercial processors, uses information from the entire detector to reconstruct PF jets, and requires four PF jets with |\eta| < 2.4 and \(p_T > 30 \) GeV, of which two jets must have \(p_T > 80 \) GeV. Further, to record signal events and reject background QCD multijet events, two jets are required to be tagged by the CSV b-tagging algorithm implemented at the trigger.

3 Simulated Samples

To model the production of a generic narrow-width spin-0 resonance, we use a Monte Carlo simulation of the RS1 radion produced through gluon fusion. The angular distributions of a spin-2 resonance are distinct from those of a spin-0 resonance, and result in different kinematic distributions. Therefore, we evaluate the signal efficiencies for a narrow-width spin-2 resonance from a separate simulation of the first excitation of the KK graviton produced through gluon fusion in the same extra dimension scenario as the radion. The resonance is forced to decay to a pair of Higgs bosons where both Higgs bosons decay to b\bar{b}. Samples of these signal events, as well as background events from diboson, W+jets, Z+jets and top-quark pair production (tt) processes, are generated using the \textsc{MadGraph} 5.1 [19] program interfaced with \textsc{Pythia} 6.4 [20] for parton showering and hadronization. QCD multijet event samples are simulated with the \textsc{Pythia} 6.4 program. A sample of events where the Higgs boson is produced in association with a Z boson is simulated using the \textsc{POWHEG} event generator [21–23] interfaced with the \textsc{Herwig++} [24] program for showering and hadronization. We set the \textsc{Pythia} 6.4 parameters for the underlying event to the Z2* tune [25]. The response of the CMS detector is modeled using \textsc{Geant4} [26].

On average, 21 pp interactions occurred per bunch crossing in the data used in this analysis. Additional simulated pp interactions overlapping with the event of interest were added to the simulated samples to reproduce the distribution of the number of primary vertices per event reconstructed in data.

4 Event Selection

The trigger-level jet \(p_T \) thresholds confine our search for a narrow-width \(X \to HH \to b\bar{b}b\bar{b} \) resonance to masses above 270 GeV. Beyond \(m_X \approx 800 \) GeV, the selection efficiency is increasingly limited by the merging of jets from the same Higgs boson, and we curtail this search at 1100 GeV. The kinematic distributions of the decay products vary substantially over this mass range. Therefore, to optimize the search sensitivity, we use different event selection criteria in three main kinematic regions: the low-mass region (LMR) for mass hypotheses from 270 to
Figure 1: Illustration of the SR, SB, VR and VS kinematic regions in the \((m_{H_1}, m_{H_2})\) plane used to motivate and validate the parametric model for the QCD multijet background. The quantities \(m_{H_1}\) and \(m_{H_2}\) are the two reconstructed Higgs boson masses. The distribution in data events after b-tagging and kinematic selections is shown with the SR blinded.

Event selection begins with the identification of events containing at least four jets in the central region of the detector (\(|\eta| < 2.4\)) that are b-tagged and have \(p_T > 40\) GeV. To b-tag a jet, we require it to pass a working point for the CMVA algorithm that maximizes the sensitivity of this search. For jets with \(p_T > 40\) GeV and \(|\eta| < 2.4\) this working point yields a 75% efficiency for tagging jets originating from b hadrons and a mistagging rate of 3% for light-flavor jets. For the LMR, we combine these b jets into pairs to create HH candidates such that \(|m_H - 125\) GeV\(< 35\) GeV for each candidate Higgs boson. The mass resolution on the Higgs boson in the LMR is found to be approximately 9 GeV. Selected HH candidates are required to have at least two jets with \(p_T > 90\) GeV. In the MMR, signal events have large Lorentz factors for the Higgs boson candidates. Therefore, HH candidates for this region are constructed from four jets such that the \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}\) between the jets associated with an H candidate remain within 1.5, where \(\Delta \eta\) and \(\Delta \phi\) are the differences in the pseudorapidities and azimuthal angles of the two jets. For the HMR, we use the same criteria used in the MMR with an additional requirement of \(p_T > 300\) GeV on one of the H candidates to better discriminate signal events from background. In all three regions, in case of multiple HH candidates in an event, the combination with the smallest \(|m_{H_1} - m_{H_2}|\) is chosen. Having identified the two Higgs boson candidates in each event, we plot their masses, \(m_{H_1}\) and \(m_{H_2}\), on a two-dimensional histogram as shown in Fig.1. \(H_1\) and \(H_2\) are chosen at random from the two reconstructed H candidates. As the final selection criterion applied in each of the three mass hypothesis regions, we require events to fall within the signal region (SR) defined as \(\sqrt{\Delta m_{H_1}^2 + \Delta m_{H_2}^2} < 17.5\) GeV, where \(\Delta m_{H_1,2} = m_{H_{1,2}} - 125\) GeV.
Table 1: Efficiencies of the event selection criteria for generic spin-0 and spin-2 resonances decaying to a pair of Higgs bosons in the four b jet final state at representative masses.

<table>
<thead>
<tr>
<th>selection eff. (%)</th>
<th>Mass (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td>spin-0</td>
<td>0.05</td>
</tr>
<tr>
<td>spin-2</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Figure 2: A maximum likelihood fit to the m_X distribution of simulated signal events for the 700 GeV mass hypothesis. The distribution is fitted to a Gaussian core smoothly extended on both sides to exponential tails. Here n is the number of degrees of freedom in the fit.

The efficiencies of these selection criteria for spin-0 and spin-2 resonances at representative masses are shown in Table 1. The major loss in efficiency for all mass hypotheses comes from the b-tagging requirement for 4 jets. For the 300 GeV mass hypothesis, this is compounded by the trigger inefficiency. The distribution of the aforementioned ΔR between jets from a single Higgs boson is narrower for the spin-2 resonance, and thus requiring $\Delta R < 1.5$ results in a higher efficiency for it.

5 Signal Modeling

For signal events, the aforementioned event selection criteria are expected to produce a sharp peak in the m_X distribution over a relatively featureless background from events arising from SM processes. The interference between SM background processes and the narrow resonant signal is expected to be negligible. To search for signal events at various mass hypotheses, we fit the m_X distribution in data events in the SR to a parametric model for the signal peak on top of parametric models appropriate for components of the SM background. This procedure is performed for the LMR, the MMR, and the HMR separately.

To improve the mass resolution of the signal $X \rightarrow HH$ resonance, we perform a fit that constrains the invariant masses of the Higgs boson candidates. In the fit, the momenta of the re-
constructed b jets are allowed to float within their expected resolutions. Since the uncertainty in the reconstructed mass of the Higgs boson candidate due to the measurement of jet direction is smaller than that due to the measurement of jet energy, this constraint mainly affects the latter. This fit improves the invariant mass resolution of the reconstructed signal resonance by 20–40%, depending on the mass hypothesis. Extensive tests in background-dominated control regions in data show that no artificial structures are introduced in the background mass distributions by this procedure.

We build the parametric model for each signal mass hypothesis by fitting the shape of the m_X distribution of simulated events that are accepted by the selection criteria and corrected for differences between data and simulation. A sum of two Gaussian functions, requiring five parameters, is used for the LMR fit to account for tails in the distribution from incorrect combinations of jets. In the MMR and the HMR, we fit a function with a Gaussian core smoothly extended on both sides to exponential tails, such that the function is continuous both in its value and its first derivative. This requires two parameters for the mean and width of the Gaussian function, and two other parameters for the exponential tails on both sides. An example of a parametric model for the MMR signal obtained through this procedure is shown in Fig. 2. While the model is constructed for the mass hypothesis of 700 GeV, its Gaussian core peaks at 714 GeV and has a width of 21 GeV. This mass shift is found to be linear in m_X and occurs due to the aforementioned constraint of jet momenta to m_H.

6 Background Modeling

While the composition of background events in the SR is expected to be dominated by QCD multijet processes, we find through simulation that $t\bar{t}$ production contributes approximately 22%, 27%, and 24% in the LMR, MMR, and HMR, respectively. We also find that Z+jets, ZZ, and ZH processes contribute less than 1% of the background and therefore neglect them in this analysis. The m_X distribution of these $t\bar{t}$ events is found to be somewhat different in shape from that of QCD multijet events, and therefore we treat it as a distinct component of the background and model it with a parametric form. We obtain this parametric form by fitting the shape of the m_X distribution of simulated $t\bar{t}$ events accepted by the event selection criteria to a function with a Gaussian core smoothly extended to an exponential tail on the high side. This function, henceforth referred to as GaussExp, is continuous in its value and its first derivative. It has two parameters for the mean and width of the Gaussian function and one parameter for the decay constant of the exponential tail. This model is normalized to a $t\bar{t}$ cross section of 234 pb [27], and is allowed to float with a systematic uncertainty of 15% in the final fit to account for theoretical and measurement uncertainties in our kinematically boosted region.

We use the GaussExp parametric model to fit the m_X distribution of the QCD multijet component of the background in the SR. With the SR kept blinded, we motivate and validate this choice of parametric model by the fact that it fits well the shape of the m_X QCD multijet background distributions in several different regions of the (m_{H_1}, m_{H_2}) plane depicted in Fig. 1 and described below. We do not aim to predict the parameters of the model in the SR from the other regions. These fits are performed for the LMR between 260 and 650 GeV, for the MMR between 400 and 900 GeV, and for the HMR between 600 and 1200 GeV. In each case the $t\bar{t}$ contribution, as expected from simulation, is subtracted.

We define a sideband region (SB) to the SR as $17.5 \text{ GeV} < \sqrt{\Delta m_{H_1}^2 + \Delta m_{H_2}^2} < 35 \text{ GeV}$ and $\Delta m_{H_1} \Delta m_{H_2} < 0$. For events in this region, the m_X distribution is expected to be kinematically similar to that for events in the SR, since in each of the sidebands one of the reconstructed
Figure 3: The m_X distributions in data (after the $t\bar{t}$ background has been subtracted) in the SB of the MMR (top left), the CR of the MMR (top right), the VS of the LMR (bottom left), and the VR of the LMR (bottom right). The distributions are fitted to the GaussExp parametric model. The shaded regions correspond to $\pm 1\sigma$ variations of this fit. Here n is the number of degrees of freedom in each fit. The pull, for a given bin, is defined as the number of data events minus the value of the fit model, divided by the uncertainty in the number of data events.
Higgs boson masses is slightly higher in value than for events in the SR while the other is slightly lower. As an example, Fig. 3 top left shows the fit performed for events in the SB passing the HMR selection. Another set of events that pass the kinematic requirements of the event selection criteria in the SR region of the \((m_{H_1}, m_{H_2})\) plane but required to have one of the four jets not be b-tagged is selected to further test the applicability of the GaussExp model in describing the \(m_X\) distribution of the QCD multijet background in a different but kinematically similar region. This is called the data Control Region (CR), and the fit for these events, that would have otherwise passed the HMR selection, is also shown in Fig. 3 on the top-right. In both cases, the goodness of the fit, characterized by the \(\chi^2\) per degree of freedom, is found to be reasonable.

These two cases already lend significant confidence to the choice of the GaussExp parametric model for the SR. However, we carry out further checks in neighboring validation regions (VR) with a corresponding sideband (VS) that are defined similarly to the SR and SB regions but with \(m_{H_1} = m_{H_2}\) centered at different values. The good fits for the \(m_X\) distributions in these regions not only demonstrate the applicability of the GaussExp model to describe these kinematically distinct QCD multijet events, but also that events in the VR are in fact kinematically similar to those in the VS. As examples, Fig. 3 bottom-left and bottom-right plots show the results of these fits for the LMR selection for the VS and the VR, respectively, both centered at \(m_{H_1} = m_{H_2} = 90\) GeV. We obtain similar results for the VR centered at \(m_{H_1} = m_{H_2} = 107.5, 142.5\) and 160 GeV.

While the GaussExp function fits well the \(m_X\) distribution from QCD multijet events in all these distinct regions and therefore can be expected to be a good approximation of the parametric form of the true parent distribution for events in the SR, other similar parametric models could be chosen instead. Therefore, a systematic uncertainty associated with the choice of this parametric model is evaluated by assuming a 7th order Bernstein polynomial, which also fits the \(m_X\) distribution well in the SB, to be the true distribution. Pseudo-datasets are generated from this polynomial function and fitted with the GaussExp function as well as other polynomial functions to compute biases in the reconstructed signal strength. This procedure is performed for each mass hypothesis. These biases are found to be of the order of 100 fb for the LMR, 10 fb for the MMR, and 20 fb for the HMR. We account for this bias as a signal-shaped systematic uncertainty in the background model with normalization centered at zero and a Gaussian uncertainty with standard deviation equal to the bias.

Table 2: Relative systematic uncertainties in the selection efficiencies for signal and \(t\bar{t}\) events in the LMR, the MMR, and the HMR.

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>Impact in LMR (%)</th>
<th>Impact in MMR (%)</th>
<th>Impact in HMR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signal (t\bar{t})</td>
<td>Signal (t\bar{t})</td>
<td>Signal (t\bar{t})</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>0.1–0.2</td>
<td>0.8</td>
<td>0.0–0.2</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>2.4–7.0</td>
<td>2.7</td>
<td>5.5–7.0</td>
</tr>
<tr>
<td>b-tagging scale factor</td>
<td>12.7</td>
<td>12.7</td>
<td>12.7</td>
</tr>
<tr>
<td>Trigger scale factor</td>
<td>6.0–18.8</td>
<td>9.1</td>
<td>6.1–8.0</td>
</tr>
</tbody>
</table>

7 Systematic Uncertainties

Sources of systematic uncertainties that affect the selection efficiencies for signal and \(t\bar{t}\) events are listed in Table 2 and described below. We vary the jet energy scale \(p_T\) and \(\eta\) and find that this affects signal efficiencies by a relative factor of up to 0.2% and \(t\bar{t}\) efficiencies by up to 0.8%. We evaluate the effect of uncertainty in the jet energy scale
resolution by varying the jet energies according to the measured uncertainty. This is found to affect signal efficiencies by 2–7%, and \(\bar{t}t \) efficiencies by 2–3%. These uncertainties affect not only the normalizations but also the parameters of the signal and \(\bar{t}t \) models, and are taken into account as nuisance parameters in the final fit.

The trigger efficiencies for signal and \(\bar{t}t \) events are evaluated approximately by passing generated events through a trigger simulation. We then correct these efficiencies for differences between simulation and data by computing the difference in a \(\bar{t}t \)-enriched control region obtained using a trigger that requires at least one muon with \(p_T > 24 \) GeV. Further, event selection criteria requiring at least one muon with \(p_T > 40 \) GeV and at least four jets in the central region of the detector with \(p_T > 40 \) GeV are applied. The data-to-simulation correction factor is characterized by the \(p_T \) and CMVA discriminants of the relevant jets. Uncertainties in this factor impact signal efficiencies by 6–18%, and \(\bar{t}t \) efficiencies by 7–9%.

The \(b \)-tagging efficiencies of the CMVA algorithm for signal and \(\bar{t}t \) events are also evaluated approximately through simulation and then corrected by a data-to-simulation comparison. The comparison is performed in the same \(\bar{t}t \)-enriched control region as the calculation of the trigger efficiency. The correction factor for the \(b \)-tagging efficiencies is consistent with unity. The uncertainty in this factor for four \(b \) jets is evaluated to be 12.7%.

Additionally, the yields of signal events for a given production cross section and \(\bar{t}t \) events are both affected by a 2.6% uncertainty in the measurement of the integrated luminosity \([29]\).

\section{Results}

The \(m_X \) distribution that we observe in data within the SR, along with a binned maximum-likelihood fit with the aforementioned parametric background models, are shown in Fig. 4. We compute the observed and expected upper limits on the cross section for \(pp \rightarrow X \rightarrow HH \rightarrow bb\bar{b}\bar{b} \) at a 95% confidence level (CL) using the modified frequentist CL_{S} method \([30, 31]\) by fitting the data with the parametric signal, \(\bar{t}t \), and QCD multijet models. This is done separately in the disjoint ranges of \(m_X \) for the individual regions described in Section 4, and the limits are presented together in Fig. 5. These limits are shown for the spin-0 resonance on the left, and the spin-2 resonance on the right. The green (dark) and yellow (light) bands respectively represent the 1σ and 2σ confidence intervals around the expected limits. The observed upper limits lie within 2σ of the expected upper limits, and thus we conclude that there is no significant deviation from the background-only hypothesis.

The theoretical cross section for the production via gluon fusion of a radion that decays to a pair of Higgs bosons \([32]\) that each in turn decays to a \(bb \) pair with a branching fraction of 58% \([33]\) is calculated using MadGraph 5.1 \([34]\) and superimposed on the experimental cross section limit for the spin-0 resonance in the plot on the left. In this calculation, the correction factor used to account for next-to-leading-order effects for electroweak couplings \([35]\) and next-to-next-to-leading-order effects for QCD couplings \([36]\) is identical to that used for Higgs boson production through gluon fusion. The warped extra dimension scenario for this radion has the product of the curvature, \(k \), and half the circumference of the extra dimension, \(L \), set to 35, a radion decay constant of \(\Lambda_R = 1 \) TeV, and no radion-Higgs boson mixing. The theoretical cross section for the radion has an uncertainty of approximately 15% that is not used to compute the experimental limits on spin-0 resonance production shown in Fig. 5. Masses for the radion between 300 and 1100 GeV are excluded at a 95% CL. A similarly calculated theoretical cross section for the KK graviton as the resonance \(X \), in the same warped extra dimension scenario, is overlaid on the limit for the spin-2 resonance on the plot on the right. Masses for such a
Figure 4: The m_X distribution in data in the SR between 260 and 650 GeV of the LMR (top left), between 400 and 900 GeV of the MMR (top right), and between 600 and 1200 GeV in the HMR (bottom). All distributions are fitted to the background-only hypothesis for illustration, showing the relative contributions of the QCD multijet (dashed-dotted red) and $t\bar{t}$ (dashed green) processes. The pull, for a given bin, is defined as the number of data events minus the value of the background-only fit, divided by the uncertainty in the number of data events. Also for illustration, we overlay the signal models of the spin-0 resonance (dotted blue) corresponding to mass hypotheses and production cross sections of 350 GeV and 653 fb for the LMR, 700 GeV and 17.6 fb for the MMR, and 900 GeV and 8.1 fb for the HMR. These cross sections correspond to the observed upper limits, which are computed for signal mass hypotheses from 270 to 450 GeV in the LMR, from 450 to 730 GeV in the MMR, and from 730 to 1100 GeV in the HMR.
Figure 5: The observed and expected upper limits on the cross section for \(pp \to X \to HH \to b\bar{b}b\bar{b} \) at a 95% confidence level, where the resonance \(X \) has spin-0 (left) and spin-2 (right). The theoretical cross section for the RS1 radion, with \(\Lambda_R = 1 \text{ TeV}, kL = 35 \), and no radion-Higgs boson mixing, decaying to four \(b \) jets via Higgs bosons is overlaid on the left plot. The theoretical cross section for the first excitation of the KK-graviton for the same parameters is overlaid on the right plot.

Theoretical limits are excluded at a 95% CL between 380 and 830 GeV.

9 Summary

We have presented a model-independent search by the CMS experiment at the LHC for a narrow resonance produced in proton-proton collisions at \(\sqrt{s} = 8 \text{ TeV} \) and decaying to a pair of 125 GeV Higgs bosons that in turn each decays into a bottom quark-antiquark pair. The analyzed data correspond to an integrated luminosity of 17.9 fb\(^{-1}\). No evidence for a signal is observed. Upper limits at a 95% CL on the production cross section for such spin-0 and spin-2 resonances, in the mass range from 270 to 1100 GeV, are reported. Using these results, a radion with decay constant of 1 TeV and mass from 300 to 1100 GeV, and a Kaluza–Klein graviton with mass from 380 to 830 GeV are excluded at a 95% confidence level.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and
CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

References

[9] ATLAS Collaboration, “Search For Higgs Boson Pair Production in the $\gamma\gamma t\bar{t}$ Final State using pp Collision Data at $\sqrt{s} = 8$ TeV from the ATLAS Detector”, (2014).

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth\(^1\), V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler\(^1\), W. Kiesenhofer, V. Knünz, M. Krämer\(^1\), I. Krätschmer, D. Liko, I. Mikulec, D. Rabady\(^2\), B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\(^1\)

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebegs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Estadual Paulista a, Universidade Federal do ABC b, S˜ao Paulo, Brazil
C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.8

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran9, A. Ellithi Kamel10, M.A. Mahmoud11, A. Radi12,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris, E. Tziaferi

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, R. Gupta, U. Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma
Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India
A. Abdul salam, D. Dutta, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Firenze, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giardino, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paolotti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
R. Ferretti, F. Ferro, M. Lo Vetere, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
INFIN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy

INFIN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy

INFIN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, P. Vitulo

INFIN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, G. Ciocci, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia, A. Staiano, P. G. Verdini

INFIN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFIN Sezione di Roma, Università di Roma, Roma, Italy

INFIN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy

INFIN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim, M.S. Ryu
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, D.H. Moon, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia
I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev,

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia,

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey

E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey

K. Cankocak, F.I. Vardarlı
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts,

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva
University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

Northwestern University, Evanston, USA
University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoi, P.R. Dudero, J. Faulkner, K. Kovitanggool, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev
Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Cairo University, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at University of Debrecen, Debrecen, Hungary
19: Also at University of Visva-Bharati, Santiniketan, India
20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Ruhuna, Matara, Sri Lanka
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Università degli Studi di Siena, Siena, Italy
26: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
27: Also at Purdue University, West Lafayette, USA
28: Also at Institute for Nuclear Research, Moscow, Russia
29: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
30: Also at National Research Nuclear University ‘Moscow Engineering Physics
Institute’ (MEPhI), Moscow, Russia
31: Also at California Institute of Technology, Pasadena, USA
32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Mersin University, Mersin, Turkey
42: Also at Cag University, Mersin, Turkey
43: Also at Piri Reis University, Istanbul, Turkey
44: Also at Anadolu University, Eskisehir, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Necmettin Erbakan University, Konya, Turkey
48: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
49: Also at Marmara University, Istanbul, Turkey
50: Also at Kafkas University, Kars, Turkey
51: Also at Yildiz Technical University, Istanbul, Turkey
52: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
53: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
54: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
55: Also at Argonne National Laboratory, Argonne, USA
56: Also at Erzincan University, Erzincan, Turkey
57: Also at Texas A&M University at Qatar, Doha, Qatar
58: Also at Kyungpook National University, Daegu, Korea