In situ photolysis of deep ice core contaminants by Čerenkov radiation of cosmic origin

A. J. Colussi and M. R. Hoffmann
W. M. Keck Laboratories, California Institute of Technology, Pasadena, California, USA

Received 15 August 2002; revised 17 October 2002; accepted 31 December 2002; published 28 February 2003.

[1] Ice core contaminants should provide permanent paleoclimatic records if, as it is generally assumed, they remained frozen in place and isolated from sunlight by the reflective overlying snow layers. The excess CO levels recently detected in 1100–1600 AD Greenland ice core air bubbles relative to their Antarctic counterparts [Haan and Raynaud, 1998] amount, however, to an average production of about \(5 \pm 2\) CO molecules cm\(^{-3}\) ice s\(^{-1}\) in that period. Here we show that such rates are quantitatively consistent with the in situ photodecarbonylation of the chromophoric organic matter present in Greenland, but not in the cleaner Antarctic, ice under the Čerenkov radiation fluxes generated by penetrating muons of cosmic origin. The normal CO levels of modern (1600–1800 AD) Greenland records, and their variability earlier in the last millennium correlate significantly with the occurrence of boreal fires and the associated release of organic aerosol [Savarino and Legrand, 1998].

1. Introduction

[2] The reconstruction of paleoatmospheres from the content of ice core air bubbles is crucial to assessing the future impact of anthropogenic emissions on Earth’s climate [Bales and Wolff, 1995; Fischer et al., 1999; Legrand and Mayewski, 1997; Stauffer, 2000]. The agreement between Greenland and Antarctic CO, CO\(_2\) and CH\(_4\) records spanning the last 300 years rules out major interhemispheric gradients [Fischer et al., 1999]. However, CO mixing ratios in older Greenland ice bubbles increasingly exceed modern readings (Figure 1), and the constant (\(\sim 50 \pm 4\) ppbv) Antarctic levels observed over the last two millennia [Haan and Raynaud, 1998]. CO\(_2\) data display a similar pattern [Anklin et al., 1995; Barnola et al., 1995; Tschumi and Stauffer, 2000]. Both phenomena imply in situ chemical processing, and signal the onset of significant contamination in Greenland ice sections deeper than \(\sim 155\) m by species [Savarino and Legrand, 1998] that slowly release CO and CO\(_2\) by unspecified mechanisms. These observations challenge the generalized premise that chemical activity is permanently arrested in deep ice cores, and pose a genuine problem.

[3] Since excess CO\(_2\) could partially arise from the slow acidification of widespread carbonates, and since Greenland ice is verifiably contaminated with higher levels of organic material than the Antarctic pole cap [Kawamura et al., 2001; Petit et al., 1999], surplus CO is a more direct expression of the chemical transformations undergone by organic precursors in glacial environments. The fact that many ice core sections are acidic and contain carbonates, generic organic material and oxidizing agents in close proximity after hundreds of years reveals that mere reagent availability is an insufficient condition for reaction. Impurities only react upon encounter, an infrequent event controlled by the exceedingly small concentration gradients and molecular mobilities prevalent in microcrystalline ice matrices. In contrast, photochemical transformations are unimolecular processes not subject to substrate distribution or temperature effects. The photochemically active organic matter present in snow and deep ice is chemically similar to [Calace et al., 2001], or derives from the colored organic matter globally found in atmospheric aerosol [Bales and Wolff, 1995; Fuzzi et al., 2001], rivers [Gao and Zepp, 1998], lakes [Zuo and Jones, 1997] and oceans [Mopper et al., 1991], which is known to release CO upon illumination [Johannessen and Miller, 2001; Miller et al., 2002; Morán and Zepp, 1997; Valentine and Zepp, 1993]. However, the possibility of photochemistry in deep ice has been discounted, due to the high reflectivity of the snow cover to ultraviolet sunlight [Gerland et al., 1999; Glendinning and Morris, 1999], and the lack of a conceivable source of in situ actinic radiation. Still, “even the highly improbable must be considered over the long timescales involved in ice core chemistry. Organic acids and other C-containing species present in sufficient quantities have the potential to influence CO and CO\(_2\) values, if a reasonable mechanism were proposed” [Wolff, 1996]. Here, we show that photochemistry driven by the Čerenkov radiation continuously emitted within deep ice cores by relativistic muons of cosmic origin is the “reasonable mechanism” underlying excessive CO in Greenland ice air bubbles.

2. Background

[4] About \(F = 0.01\) energetic (kinetic energy \(T > 0.1\) GeV) muons cm\(^{-2}\) s\(^{-1}\) continuously hit the Earth’s surface [Thompson, 1973]. Relativistic charged particles, such as muons, moving at speeds \(v\) larger than the speed of light in ice \(v\) induce a macroscopic polarization field about a plane perpendicular to their trajectory, because the perturbed medium cannot maintain instantaneous electroneutrality. Relaxation of the transient polarization behind the muon leads to the emission of continuous Čerenkov radiation. For
ice, having a refractive index of $n \sim 1.32$ over most of the UV spectral region: $v_i = c/n = 0.756 \, c$. Since:

$$v/c = \beta = \sqrt{1 - \frac{1}{1 + (T/m \cdot c^2)^2}}$$

(1)

muons with $m \cdot c^2 = 105 \text{ MeV}$, $T > 0.1 \text{ GeV}$, have speeds $v > 1.32 \, v_i$, and are, therefore, Čerenkov-active. The fundamental equation of the Čerenkov effect [Jelley, 1958]:

$$\frac{dN}{d\lambda} = -2\pi \sigma \left(1 + \frac{1}{3 \beta^2} \right) \frac{1}{\lambda}$$

(2)

(where $\sigma = \beta^2 = c = 1/137$) yields the number of photons dN emitted by each muon between $[\lambda \pm d\lambda]$ per cm of their tracks. An integral flux of $F = 0.01$ muons cm$^{-2}$ s$^{-1}$ will therefore generate $dR_{\text{Čerenkov}} = 1930 \, \lambda^{-2} d\lambda \text{ photons cm}^{-3} \text{ s}^{-1} \text{ nm}^{-1}$ (λ in nm throughout) across ice cores. The weakly attenuated muons will travel hundreds of meters in ice before their kinetic energies drop below the Čerenkov threshold. This mechanism represents a perennial source of short-wavelength photons at all depths, in contrast with solar radiation at sea level whose spectrum is strongly skewed to the red and vanishes below 300 nm.

In the photodegradation rates of ice dopants depend not only on their light absorption and photochemical properties but also, as we will see, on their concentration and the transparency of the surrounding ice. The optical properties of deep ice in the UV-visible range are now available from the AMANDA project, which involves the detection of Čerenkov radiation emitted by energetic neutrinos $\sim 2 \text{ km}$ under the South Pole [Andres et al., 2001]. Intrinsic absorption and scattering coefficients of ice were derived from the analysis of photon arrival-time distributions at detectors positioned at various distances from a pulsed, diffuse, monochromatic source [Askebjer et al., 1997]. Scattering is dominated by residual air bubbles, while absorption is due in part to ice itself and, in part, to ice impurities. Photons experience random walks, bouncing specularly at each ice-bubble interface, while being absorbed along their paths. Photon absorption by ice in the near-UV is caused by excitation of H$_2$O intra- and inter-molecular vibrational overtones. Since the probability of multiphoton processes decays exponentially with their multiplicity, absorption coefficients become negligible below 500 nm. On the other hand, the tail of H$_2$O electronic transitions in the far ultraviolet, the so-called Urbach tail, drops steeply above 200 nm. Photons in the intervening spectral region travel long distances, largely attenuated by the evenly dispersed dust impurities, before reaching localized layers of strongly chromophoric sinks. The following expression encodes the spectral dependence of the absorption coefficient of glacial ice $\alpha(\lambda)$ [Miočinović et al., 2001]:

$$\alpha(\lambda) = A \exp(-0.482 \lambda) + B \exp(-6700/\lambda) + C \lambda^{-1.1}$$

(3)

with $A = 8 \times 10^{-37} \text{ cm}^{-1}$, $B = 81 \text{ cm}^{-1}$. C is proportional to the dust concentration, and has a value of 0.0347 cm^{-1} for the cleanest Antarctic ice.

[6] The organic matter found in ice cores is related to that carried by atmospheric aerosol. The dissolved organic matter (DOM) in fog water is acidic and polyfunctional, absorbs light in the 200–450 nm range, and comprises dialkyl ketones and diketones, alkanedioic acids, hydroxalkanoic acids, and macromolecular polycarboxylic acids such as fulvic acid, which are analogous to the species recently detected in Antarctic snow and ice [Calace et al., 2001; Fuzzi et al., 2001]. More specifically, a series of homologous ω-dicarboxylic acids, ketocids, and dicarbonyls were characterized in Greenland ice core samples (206 m deep, 450 years old) [Kawamura et al., 2001]. However, they amount to only about 5% of the total organic carbon content of ice: $[\text{TOC}] = (1.8 \pm 1.0) \mu \text{ g TOC g}^{-1} \text{ ice} = (1.7 \pm 0.9) \mu \text{ g C cm}^{-3} \text{ ice}$ (ice density $\delta = 0.916 \text{ g cm}^{-3}$). The remainder is deemed to consist of the DOM found in natural aquatic environments, and in soil. However, TOC levels varied considerably over the last millennium. A high-resolution study of the organic matter collected at Summit in central Greenland since 1193 AD reveals the occurrence of sharp spikes in formate and oxalate levels, indicative of episodic events supplying TOC. Lacking simultaneous CO and TOC records, we adopted the scaled envelope of such registers, encoded as the index of fire over 1200–1950 AD, as a proxy for TOC (Figure 1) [Savarino and Legrand, 1998]. Much less organic material is found in Antarctic ice from the Holocene [Petit et al., 1999]. The absorption cross section ε (base 10) [cm2 g$^{-1}$ DOM] of representative DOM at $\lambda \geq 200$ nm was fitted by a gaussian:

$$\varepsilon = 1.39 \times 10^4 \exp\left(-0.5[(\lambda - 153.5)/115.3]^2\right)$$

(4)

and increases steeply at shorter wavelengths [Zuo and Jones, 1997].
3. Rates of Dissolved Organic Matter Photodecarbonylation

The rate of absorption of Čerenkov ultraviolet radiation by thin layers of chromophoric impurities embedded in bubbly, dusty ice cores can be estimated with reference to Figure 2 [Askebjer et al., 1997]. Photon trajectories correspond to random walks having scattering, Γ_s, and absorption, Γ_a, lengths. At depths of about 500 m, $\Gamma_a \sim 10$ cm, and the associated diffusion coefficient: $D = v_l \frac{\Gamma_a}{3} = 8 \times 10^{10}$ cm2 s$^{-1}$. For a diffusive process involving attenuation, as in the present case, the average path l travelled by a photon between two points separated by a distance z is given by:

$$l = \frac{\sqrt{3}}{2} \sqrt{\frac{\Gamma_a}{\Gamma_s}}$$

i.e., l and z are both proportional to t, rather than to t and $l^{1/2}$, respectively, for as diffusion in a transparent medium ($\Gamma_s \to \infty$). Accordingly, photon attenuation, which is proportional to $\exp(-l/\Gamma_a)$, takes place over a scale $\Gamma_a = 2 (\Gamma_s \Gamma_a / 3)^{1/2}$. For undoped ice: $\Gamma_a = 1/\alpha(\lambda) \sim 2 \times 10^5$ cm, $\Gamma_eff,ice = 516$ cm at 350 nm. Far away from the absorbing layer (see Figure 2), the average photon lifetime is $\tau = \Gamma_a / \Gamma_eff$, leading to a spectral photon density $dU_{ice}/d\lambda = (\Gamma_a / \Gamma_eff) dR_{\text{C}er\text{e}n\text{k}ov} = 1930 (\Gamma_a / \Gamma_eff) \lambda^{-2}$ photons cm$^{-3}$ nm$^{-1}$ cm$^{-2}$.

Enhanced photon absorption by the impurified stratum creates a depletion layer in its vicinity. $\Gamma_a,layer$ is given by $l(\sqrt{z/\Lambda})$ [DOC] that, for the Greenland ice sections, has an average value of $\Gamma_a,layer \sim 190$ cm at 350 nm, leading to $\Gamma_eff,layer = 50$ cm, $\tau = 50$ ns and, in general, to $dU_{layer}/d\lambda = (\Gamma_a,layer / \Gamma_eff,layer) dR_{\text{C}er\text{e}n\text{e}k\text{ov}} = 1930 (\Gamma_a,layer / \Gamma_eff,layer) \lambda^{-2}$ photons cm$^{-3}$ nm$^{-1}$ $\ll dU_{ice}$. The spectral photon flux J_λ diffusing from bulk ice into the impurified stratum through twin depletion layers of thickness $\Gamma_eff,layer$ can be evaluated from:

$$J_\lambda d\lambda = \frac{2D dU_{ice} - dU_{layer}}{\Gamma_eff,layer}$$

The overall rate of CO production (molecules cm$^{-3}$ ice year$^{-1}$) is given by the product $J_\lambda \phi(\lambda) d\lambda$ integrated over $[\lambda_1, \lambda_2]$:

$$\frac{d[CO]}{dt} = 4.32 \times 10^{11} \int_{\lambda_1}^{\lambda_2} \frac{\phi(\lambda)}{\lambda^2} \left(\frac{\Gamma_a,ice - \Gamma_a,layer}{\Gamma_eff,layer} \right) d\lambda$$

The integrand in equation 8 typically peaks at ~ 210 nm and falls quasi-exponentially with λ, vanishing above 400 nm. It should be emphasized that the chromophoric material is photochemically processed not only by locally generated photons, but also from those created elsewhere and collected onto the absorbing layer after diffusing through the fairly transparent ice matrix. A strongly absorbing sink acts as an antenna whose collection efficiency is proportional to the ratio $(\Gamma_a,ice / \Gamma_eff,layer)$ and, therefore, depends on dust levels via equation 3, as well as on the chromophore concentration and absorptivity.

The experimental CO mixing ratios in air bubbles from the Eurocore Greenland site antedating 1580 AD were cast as excess CO [Haan and Raynaud, 1998], $\Delta[CO]$, relative to the constant value of 89.4 ppbv for the period 1640–1870 AD. $\Delta[CO]$’s are plotted vs. age in Figure 1 after converting them into [molecule cm$^{-3}$ ice] units by assuming that the air content of ice is 90 cm3 kg$^{-1}$ ice. Despite the apparent dispersion—due to the intrinsic heterogeneity of the deposits, the analytical difficulties associated with ice sampling and transport, and the variability of TOC levels—there is a significant positive correlation between $\Delta[CO]$ and time over a 500 year period. A linear regression of the experimental data $\Delta[CO]$ vs. time leads to a slope (not shown in Figure 1) of $(1.51 \pm 0.8) \times$
10^8 CO molecules cm^{-3} ice year^{-1}. The result of our calculations, based on equation 8 for the combination: \{[DOC] = 1.7 \mu g C cm^{-3} ice; C = 0.0347 cm^{-1}\} is shown as a dashed line in Figure 1. In Figure 1 we also show the scaled record of the fire index reported by Savarino and Legrand [Savarino and Legrand, 1998], which is assumed to represent a proxy for the emission of organic material by biomass burning. Two features deserve comment: the enhanced emissions during the Medieval Warm Period (1200 to 1350 AD), and the dearth of fires during the Little Ice Age (1400 to 1850 AD), with the exception of a cluster of burning episodes about 1450 AD. The high levels of formate, which absorbs weakly in the ultraviolet, in Summit ice from about 120,000 years ago argue against dark reaction pathways as a significant mechanism for ice core record degradation.

[13] It has been proposed that psychrophilic bacteria could possibly metabolise organic material and generate carbon oxides within the interconnected liquid veins of the ice dome above Lake Vostok at depths > 3500 m [Price, 2000]. However, since all known microbial communities become dormant below \(-18^\circ C\) [Rothschild and Mancinelli, 2001], these bacteria are expected to be inactive at the lower temperatures (< \(-35^\circ C\)) typical of shallower ice core deposits [Fukazawa et al., 1999].

4. Summary

[14] The remarkable agreement between estimated and average excess CO data in Figure 1 makes the photo-decarboxylation of dissolved organic matter by Čerenkov radiation of cosmic origin the likely source of the anomalous CO levels found in Greenland ice core air bubbles dating from the 2nd millennium AD. The proposed mechanism accounts for the anomaly on the basis of well established phenomena and actual data, without invoking adjustable parameters. The variability superimposed on the secular trend of excess CO apparently tracks boreal biomass burning. The induction of other chemical transformations in deep ice by Čerenkov radiation over geological timeframes remains an intriguing possibility.

References

A. J. Colussi and M. R. Hoffman, W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA 91125, USA. (ajcoluss@its.caltech.edu)