Supporting Information

First-principles Modeling of Ni$_4$M (M= Co, Fe and Mn) Alloys as Solid Oxide Fuel Cell Anode Catalyst for Methane Reforming

Ho-Cheng Tsai,† Sergey I. Morozov,‡ Ted H. Yu,†,§ Boris V. Merinov,*† and William A. Goddard III†

†Materials and Process Simulation Center, California Institute of Technology, 1200 East California Blvd., m/c 139-74, Pasadena, California 91125, USA

‡South Ural State University, 76 Lenin Ave., Chelyabinsk, Russia 454080, Russia

§Department of Chemical Engineering, California State University, 1250 Bellflower Blvd., Long Beach, California 90840, USA
Table S1. Ni$_4$Fe surface segregation energies (eV).

<table>
<thead>
<tr>
<th>Number of Fe atoms in each layera</th>
<th>Position of Fe atoms (see Figure 1)</th>
<th>Relative energyb</th>
</tr>
</thead>
<tbody>
<tr>
<td>40000</td>
<td>1-2-3-4</td>
<td>2.66</td>
</tr>
<tr>
<td>00400</td>
<td>9-10-11-12</td>
<td>1.36</td>
</tr>
<tr>
<td>20002</td>
<td>1-2-19-20</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>2-3-17-20</td>
<td>1.74</td>
</tr>
<tr>
<td>02020</td>
<td>6-7-14-15</td>
<td>0.62</td>
</tr>
<tr>
<td>11110</td>
<td>2-7-10-15</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>2-7-9-13</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>2-8-10-16</td>
<td>0.78</td>
</tr>
<tr>
<td>11101</td>
<td>2-7-9-18</td>
<td>0.90</td>
</tr>
<tr>
<td>11011</td>
<td>1-8-13-20</td>
<td>1.24</td>
</tr>
<tr>
<td>01210</td>
<td>6-10-11-14</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>7-9-12-14</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>7-9-11-14</td>
<td>0.29</td>
</tr>
<tr>
<td>10201</td>
<td>2-9-11-19</td>
<td>1.17</td>
</tr>
<tr>
<td>01120</td>
<td>6-12-13-14</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>8-10-14-16</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>8-10-15-16</td>
<td>0.20</td>
</tr>
<tr>
<td>02110</td>
<td>5-7-12-13</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>5-6-12-13</td>
<td>0.00</td>
</tr>
</tbody>
</table>

aThe numbers in column 1 indicate a tale of Fe atoms from the bottom layer (1st layer) to the top layer (5th layer).

bAll energy values are relative to the 5-6-12-13 surface structure energy.
Table S2. Ni$_4$Co surface segregation energies (eV).

<table>
<thead>
<tr>
<th>Number of Co atoms in each layera</th>
<th>Position of Co atoms (see Figure 1)</th>
<th>Relative energyb</th>
</tr>
</thead>
<tbody>
<tr>
<td>40000</td>
<td>1-2-3-4</td>
<td>0.73</td>
</tr>
<tr>
<td>00400</td>
<td>9-10-11-12</td>
<td>0.32</td>
</tr>
<tr>
<td>20002</td>
<td>1-2-19-20</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>2-3-17-20</td>
<td>0.84</td>
</tr>
<tr>
<td>02020</td>
<td>6-7-14-15</td>
<td>0.03</td>
</tr>
<tr>
<td>11110</td>
<td>2-7-10-15</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>2-7-9-13</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>2-8-10-16</td>
<td>0.26</td>
</tr>
<tr>
<td>11101</td>
<td>2-7-9-18</td>
<td>0.51</td>
</tr>
<tr>
<td>11011</td>
<td>1-8-13-20</td>
<td>0.56</td>
</tr>
<tr>
<td>01210</td>
<td>6-10-11-14</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>7-9-12-14</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>7-9-11-14</td>
<td>0.02</td>
</tr>
<tr>
<td>10201</td>
<td>2-9-11-19</td>
<td>0.74</td>
</tr>
<tr>
<td>01120</td>
<td>6-12-13-14</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>8-10-14-16</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>8-10-15-16</td>
<td>0.02</td>
</tr>
<tr>
<td>02110</td>
<td>5-7-12-13</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>5-6-12-13</td>
<td>0.00</td>
</tr>
</tbody>
</table>

aThe numbers in column 1 indicate a tale of Co atoms from the bottom layer (1st layer) to the top layer (5th layer)

bAll energy values are relative to the 5-6-12-13 surface structure energy.
Table S3. Ni$_4$Mn surface segregation energies (eV).

<table>
<thead>
<tr>
<th>Number of Mn atoms in each layera</th>
<th>Position of Mn atoms (see Figure 1)</th>
<th>Relative energyb</th>
</tr>
</thead>
<tbody>
<tr>
<td>40000</td>
<td>1-2-3-4</td>
<td>3.88</td>
</tr>
<tr>
<td>00400</td>
<td>9-10-11-12</td>
<td>2.90</td>
</tr>
<tr>
<td>20002</td>
<td>1-2-19-20</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>2-3-17-20</td>
<td>1.89</td>
</tr>
<tr>
<td>02020</td>
<td>6-7-14-15</td>
<td>0.57</td>
</tr>
<tr>
<td>01111</td>
<td>2-7-10-15</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>2-7-9-13</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>2-8-10-16</td>
<td>0.49</td>
</tr>
<tr>
<td>11101</td>
<td>2-7-9-18</td>
<td>0.59</td>
</tr>
<tr>
<td>11011</td>
<td>1-8-13-20</td>
<td>0.76</td>
</tr>
<tr>
<td>01210</td>
<td>6-10-11-14</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>7-9-12-14</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>7-9-11-14</td>
<td>0.63</td>
</tr>
<tr>
<td>10201</td>
<td>2-9-11-19</td>
<td>0.99</td>
</tr>
<tr>
<td>01120</td>
<td>6-12-13-14</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>8-10-14-16</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>8-10-15-16</td>
<td>0.13</td>
</tr>
<tr>
<td>02110</td>
<td>5-7-12-13</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>5-6-12-13</td>
<td>0.00</td>
</tr>
</tbody>
</table>

aThe numbers in column 1 indicate a tale of Mn atoms from the bottom layer (1st layer) to the top layer (5th layer)

bAll energy values are relative to the 5-6-12-13 surface structure energy.
Table S4. CH$_3$ binding energies on Ni and Ni$_4$Fe surfaces.

<table>
<thead>
<tr>
<th>Site</th>
<th>Ni$_4$Fe</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Ni</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t$_1$</td>
<td>35.2</td>
<td>22.25</td>
<td>0.63</td>
<td>3.07</td>
<td></td>
<td>T</td>
<td>37.2</td>
<td>12</td>
<td>11.80</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>t$_2$</td>
<td>36.2</td>
<td>22.35</td>
<td>0.63</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t$_3$</td>
<td>35.6</td>
<td>22.25</td>
<td>0.63</td>
<td>3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b$_1$</td>
<td>37.7</td>
<td>22.31</td>
<td>0.63</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b$_2$</td>
<td>unstable, CH$_3$ moves to the h$_1$ site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b$_3$</td>
<td>36.0</td>
<td>22.36</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td>B</td>
<td>39.3</td>
<td>12</td>
<td>11.69</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>b$_4$</td>
<td>34.5</td>
<td>22.34</td>
<td>0.63</td>
<td>3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b$_5$</td>
<td>35.9</td>
<td>22.26</td>
<td>0.63</td>
<td>3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b$_6$</td>
<td>37.3</td>
<td>22.31</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b$_7$</td>
<td>34.5</td>
<td>22.26</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f$_1$</td>
<td>37.3</td>
<td>22.29</td>
<td>0.63</td>
<td>3.06</td>
<td></td>
<td>F</td>
<td>42.7</td>
<td>12</td>
<td>11.54</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>f$_2$</td>
<td>41.4</td>
<td>22.25</td>
<td>0.62</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f$_3$</td>
<td>40.4</td>
<td>22.24</td>
<td>0.62</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h$_1$</td>
<td>40.5</td>
<td>22.32</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td>H</td>
<td>42.3</td>
<td>12</td>
<td>11.60</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>h$_2$</td>
<td>40.0</td>
<td>22.34</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h$_3$</td>
<td>37.9</td>
<td>22.17</td>
<td>0.62</td>
<td>3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S5. CH$_2$ binding energies on Ni and Ni$_4$Fe surfaces.

<table>
<thead>
<tr>
<th>Site</th>
<th>Ni$_4$Fe</th>
<th></th>
<th></th>
<th>Ni</th>
<th>Sites</th>
<th>E$_{bond}$ (kcal/mol)</th>
<th>Calc. spin</th>
<th>Opt. spin</th>
<th>Ni ave. spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>t$_1$</td>
<td>62.6</td>
<td>22.62</td>
<td>0.64</td>
<td>3.07</td>
<td>T</td>
<td>66.0</td>
<td>12</td>
<td>11.62</td>
<td>0.77</td>
</tr>
<tr>
<td>t$_2$</td>
<td>64.5</td>
<td>22.72</td>
<td>0.64</td>
<td>3.08</td>
<td></td>
<td>B</td>
<td>83.9</td>
<td>12</td>
<td>11.04</td>
</tr>
<tr>
<td>t$_3$</td>
<td>unstable, CH$_2$ moves to the f$_2$ site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>89.3</td>
<td>11</td>
<td>10.88</td>
</tr>
<tr>
<td>b$_1$</td>
<td>unstable, CH$_2$ moves to the f$_3$ site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b$_2$</td>
<td>unstable, CH$_2$ moves to the h$_1$ site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b$_3$</td>
<td>82.8</td>
<td>21.90</td>
<td>0.60</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b$_4$</td>
<td>unstable, CH$_2$ moves to the h$_2$ site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b$_5$</td>
<td>unstable, CH$_2$ moves to the f$_2$ site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b$_6$</td>
<td>82.5</td>
<td>21.91</td>
<td>0.60</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b$_7$</td>
<td>79.5</td>
<td>21.90</td>
<td>0.60</td>
<td>3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f$_1$</td>
<td>78.3</td>
<td>22.09</td>
<td>0.61</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f$_2$</td>
<td>84.1</td>
<td>22.00</td>
<td>0.61</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f$_3$</td>
<td>85.7</td>
<td>21.99</td>
<td>0.60</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h$_1$</td>
<td>84.3</td>
<td>21.91</td>
<td>0.60</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h$_2$</td>
<td>81.2</td>
<td>21.94</td>
<td>0.60</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h$_3$</td>
<td>79.1</td>
<td>21.88</td>
<td>0.60</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S6. CH binding energies on Ni and Ni$_4$Fe surfaces.

<table>
<thead>
<tr>
<th>Site</th>
<th>Ni4Fe $E{\text{bond}}$ (kcal/mol)</th>
<th>Opt. spin</th>
<th>Ni ave. spin</th>
<th>Fe ave. spin</th>
<th>Ni</th>
<th>E_{bond} (kcal/mol)</th>
<th>Calc. spin</th>
<th>Opt. spin</th>
<th>Ni ave. spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>unstable, CH moves to the h$_3$ site</td>
<td>129.9</td>
<td>21.79</td>
<td>0.58</td>
<td>3.11</td>
<td>F</td>
<td>148.0</td>
<td>10</td>
<td>10.24</td>
</tr>
<tr>
<td>t_2</td>
<td>unstable, CH moves to the f$_3$ site</td>
<td>138.9</td>
<td>21.34</td>
<td>0.57</td>
<td>3.09</td>
<td>F</td>
<td>148.0</td>
<td>10</td>
<td>10.24</td>
</tr>
<tr>
<td>t_3</td>
<td>unstable, CH moves to the h$_1$ site</td>
<td>139.0</td>
<td>21.43</td>
<td>0.57</td>
<td>3.09</td>
<td>F</td>
<td>148.0</td>
<td>10</td>
<td>10.06</td>
</tr>
<tr>
<td>h_1</td>
<td>139.3</td>
<td>21.22</td>
<td>0.56</td>
<td>3.09</td>
<td>H</td>
<td>148.9</td>
<td>10</td>
<td>10.06</td>
<td>0.65</td>
</tr>
<tr>
<td>h_2</td>
<td>138.8</td>
<td>21.25</td>
<td>0.56</td>
<td>3.08</td>
<td>H</td>
<td>148.9</td>
<td>10</td>
<td>10.06</td>
<td>0.65</td>
</tr>
<tr>
<td>h_3</td>
<td>133.6</td>
<td>21.16</td>
<td>0.55</td>
<td>3.10</td>
<td>H</td>
<td>148.9</td>
<td>10</td>
<td>10.06</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Table S7. C binding energies on Ni and Ni$_4$Fe surfaces.

<table>
<thead>
<tr>
<th>Site</th>
<th>Ni$_4$Fe</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Ni</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>unstable, C moves to the h$_3$ site</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>103.6</td>
<td>11</td>
<td>10.96</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_2</td>
<td>unstable, C moves to the f$_3$ site</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>143.1</td>
<td>10</td>
<td>10.04</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_3</td>
<td>unstable, C moves to the h$_3$ site</td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td>unstable, C moves to the h$_1$ site</td>
<td></td>
</tr>
<tr>
<td>b_2</td>
<td>unstable, C moves to the h$_1$ site</td>
<td></td>
</tr>
<tr>
<td>b_3</td>
<td>unstable, C moves to the h$_1$ site</td>
<td></td>
</tr>
<tr>
<td>b_4</td>
<td>unstable, C moves to the h$_2$ site</td>
<td></td>
</tr>
<tr>
<td>b_5</td>
<td>unstable, C moves to the f$_2$ site</td>
<td></td>
</tr>
<tr>
<td>b_6</td>
<td>unstable, C moves to the h$_2$ site</td>
<td></td>
</tr>
<tr>
<td>b_7</td>
<td>unstable, C moves to the f$_3$ site</td>
<td></td>
</tr>
<tr>
<td>f_1</td>
<td>137.0</td>
<td>20.59</td>
<td>0.52</td>
<td>3.08</td>
<td></td>
<td>F</td>
<td>153.2</td>
<td>10</td>
<td>9.87</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td>141.7</td>
<td>20.50</td>
<td>0.51</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_3</td>
<td>141.5</td>
<td>20.51</td>
<td>0.51</td>
<td>3.08</td>
<td></td>
<td>H</td>
<td>154.8</td>
<td>10</td>
<td>9.82</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>h_1</td>
<td>142.9</td>
<td>20.35</td>
<td>0.51</td>
<td>3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_2</td>
<td>141.8</td>
<td>20.32</td>
<td>0.51</td>
<td>3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_3</td>
<td>140.0</td>
<td>20.34</td>
<td>0.50</td>
<td>3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S8. H binding energies on Ni and Ni\textsubscript{4}Fe surfaces.

<table>
<thead>
<tr>
<th>Site</th>
<th>E\textsubscript{bond} (kcal/mol)</th>
<th>Opt. spin</th>
<th>Ni ave. spin</th>
<th>Fe ave. spin</th>
<th>Sites</th>
<th>E\textsubscript{bond} (kcal/mol)</th>
<th>Calc. spin</th>
<th>Opt. spin</th>
<th>Ni ave. spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>t\textsubscript{1}</td>
<td>unstable, H moves to the h\textsubscript{3} site</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>52.7</td>
<td>12</td>
<td>11.93</td>
<td>0.79</td>
</tr>
<tr>
<td>t\textsubscript{2}</td>
<td>53.9</td>
<td>22.52</td>
<td>0.64</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{3}</td>
<td>51.9</td>
<td>22.42</td>
<td>0.64</td>
<td>3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b\textsubscript{1}</td>
<td>unstable, H moves to the f\textsubscript{3} site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b\textsubscript{2}</td>
<td>unstable, H moves to the h\textsubscript{1} site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b\textsubscript{3}</td>
<td>58.0</td>
<td>22.30</td>
<td>0.63</td>
<td>3.08</td>
<td>B</td>
<td>62.6</td>
<td>12</td>
<td>11.79</td>
<td>0.79</td>
</tr>
<tr>
<td>b\textsubscript{4}</td>
<td>unstable, H moves to the h\textsubscript{2} site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b\textsubscript{5}</td>
<td>unstable, H moves to the f\textsubscript{2} site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b\textsubscript{6}</td>
<td>unstable, H moves to the f\textsubscript{3} site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b\textsubscript{7}</td>
<td>unstable, H moves to the f\textsubscript{3} site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f\textsubscript{1}</td>
<td>58.1</td>
<td>22.40</td>
<td>0.64</td>
<td>3.07</td>
<td>F</td>
<td>65.7</td>
<td>12</td>
<td>11.77</td>
<td>0.79</td>
</tr>
<tr>
<td>f\textsubscript{2}</td>
<td>60.4</td>
<td>22.33</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f\textsubscript{3}</td>
<td>59.2</td>
<td>22.24</td>
<td>0.63</td>
<td>3.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h\textsubscript{1}</td>
<td>60.2</td>
<td>22.35</td>
<td>0.63</td>
<td>3.08</td>
<td>H</td>
<td>65.4</td>
<td>12</td>
<td>11.78</td>
<td>0.79</td>
</tr>
<tr>
<td>h\textsubscript{2}</td>
<td>59.6</td>
<td>22.35</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h\textsubscript{3}</td>
<td>58.1</td>
<td>22.27</td>
<td>0.63</td>
<td>3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S9. Binding energies (kcal/mol) of the reaction intermediates at f and h sites of Ni₄M alloys.

<table>
<thead>
<tr>
<th>Ni₄M alloy</th>
<th>Site</th>
<th>CH₃</th>
<th>CH₂</th>
<th>CH</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₄Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f₁</td>
<td>37.3</td>
<td>78.3</td>
<td>129.9</td>
<td>137.0</td>
<td>58.1</td>
</tr>
<tr>
<td></td>
<td>f₂</td>
<td>41.4</td>
<td>84.1</td>
<td>138.9</td>
<td>141.7</td>
<td>60.4</td>
</tr>
<tr>
<td></td>
<td>f₃</td>
<td>40.4</td>
<td>85.7</td>
<td>139.0</td>
<td>141.5</td>
<td>59.2</td>
</tr>
<tr>
<td></td>
<td>h₁</td>
<td>40.5</td>
<td>84.3</td>
<td>139.3</td>
<td>142.9</td>
<td>60.2</td>
</tr>
<tr>
<td></td>
<td>h₂</td>
<td>40.0</td>
<td>81.2</td>
<td>138.8</td>
<td>141.8</td>
<td>59.6</td>
</tr>
<tr>
<td></td>
<td>h₃</td>
<td>37.9</td>
<td>79.1</td>
<td>133.6</td>
<td>140.0</td>
<td>58.1</td>
</tr>
<tr>
<td>Ni₄Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f₁</td>
<td>39.5</td>
<td>81.1</td>
<td>135.3</td>
<td>135.7</td>
<td>59.8</td>
</tr>
<tr>
<td></td>
<td>f₂</td>
<td>42.9</td>
<td>86.3</td>
<td>143.1</td>
<td>140.3</td>
<td>61.9</td>
</tr>
<tr>
<td></td>
<td>f₃</td>
<td>40.5</td>
<td>86.1</td>
<td>143.4</td>
<td>140.2</td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td>h₁</td>
<td>41.1</td>
<td>84.2</td>
<td>141.1</td>
<td>142.7</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td>h₂</td>
<td>40.1</td>
<td>81.2</td>
<td>140.4</td>
<td>143.0</td>
<td>60.3</td>
</tr>
<tr>
<td></td>
<td>h₃</td>
<td>41.1</td>
<td>81.3</td>
<td>137.8</td>
<td>137.8</td>
<td>59.6</td>
</tr>
<tr>
<td>Ni₄Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f₁</td>
<td>39.2</td>
<td>79.4</td>
<td>133.6</td>
<td>138.4</td>
<td>60.6</td>
</tr>
<tr>
<td></td>
<td>f₂</td>
<td>42.9</td>
<td>81.4</td>
<td>136.4</td>
<td>138.5</td>
<td>61.8</td>
</tr>
<tr>
<td></td>
<td>f₃</td>
<td>42.3</td>
<td>84.0</td>
<td>138.2</td>
<td>138.0</td>
<td>61.9</td>
</tr>
<tr>
<td></td>
<td>h₁</td>
<td>43.5</td>
<td>82.8</td>
<td>140.8</td>
<td>144.1</td>
<td>62.1</td>
</tr>
<tr>
<td></td>
<td>h₂</td>
<td>42.2</td>
<td>79.3</td>
<td>136.2</td>
<td>143.4</td>
<td>62.0</td>
</tr>
<tr>
<td></td>
<td>h₃</td>
<td>35.9</td>
<td>76.0</td>
<td>133.9</td>
<td>140.2</td>
<td>58.5</td>
</tr>
</tbody>
</table>