REAL-TIME ADAPTIVE VIDEO COMPRESSION∗

HAYDEN SCHAEFFER†, YI YANG‡, HONGKAI ZHAO§, AND STANLEY Osher¶

Abstract. Compressive sensing has been widely applied to problems in signal and imaging processing. In this work, we present an algorithm for predicting optimal real-time compression rates for video. The video data we consider is spatially compressed during the acquisition process, unlike in many of the standard methods. Rather than temporally compressing the frames at a fixed rate, our algorithm adaptively predicts the compression rate given the behavior of a few previous compressed frames. The algorithm uses polynomial fitting and simple filters, making it computationally feasible and easy to implement in hardware. Based on numerical simulations of real videos, the algorithm is able to capture object motion and approximate dynamics within the compressed frames. The adaptive video compression improves the quality of the reconstructed video (as compared to an equivalent fixed rate compression scheme) by several dB of peak signal-to-noise ratio without increasing the amount of information stored, as seen in numerical simulations presented here.

Key words. compressive sensing, video compression, adaptive polynomial fitting, extrapolation, optical flow, patch-based methods

AMS subject classifications. 94A08, 65Y99, 94A12

DOI. 10.1137/130937792

1. Introduction. Adaptive temporal compression is at the frontier of applications of compressive sensing (CS) [5], making it possible to acquire a large range of scenes using dynamic compression rates. Compressive systems focus on obtaining and storing the least amount of information while still maintaining a high level of recovery. For videos this means removing spatial and temporal redundancy, i.e., the high variation of physically observed motion, which appears over different time scales commonly found in video data. Simply stated, we wish to accelerate the acquisition process when the video is static and decelerate when the scene contains dynamic components—all in real time.

In terms of hardware, current CS methods use physical techniques to code pixel data in order to compress spatial or spectral information. This is commonly done by coded apertures (typically consisting of mechanical gratings or variable materials) which block incoming light in either a patterned or a random fashion, thereby subsampling the incoming signal. The idea of CS has had many applications to both hardware and data collection, which include but are not limited to the coded aperture snapshot spectral imaging (CASSI) [31, 32], single pixel camera [11, 33], cooperative analog and

∗Submitted to the journal’s Computational Methods in Science and Engineering section September 20, 2013; accepted for publication (in revised form) February 27, 2015; published electronically December 22, 2015.
†Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125 (hschaeffer @ucla.edu). The research of this author was supported by NSF grant 1303892, by the University of California President’s Postdoctoral Fellowship Program, and by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG).
‡Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095 (gyyf11@gmail.com). The research of this author was supported by NSF DMS 0835863, by NSF DMS 0914561, and by ONR N00014-11-0749.
§Department of Mathematics, University of California at Irvine, Irvine, CA 92697-3875 (zhao@math.uci.edu). The research of this author was supported by ONR grant N00014-11-1-0602 and by NSF DMS-1418422.
¶Level Set Systems, Pacific Palisades, CA 90272 (ilevels310@earthlink.net).
REAL-TIME ADAPTIVE VIDEO COMPRESSION

Mathematically speaking, the general forward model for CS can be formulated as follows: if the compression is encoded in a CS matrix A (normally noninvertible), then the relation between the encoded or compressed signal, vector X, and the “original” signal, vector F, is given by $X = AF$, where the assumption is that the data is obtained via linear measurements. For video compressive sensing (VCS) [21, 36, 18, 14, 26, 35], this F contains each frame of the true video, the X denotes the spatially and temporally compressed data, while the A contains the random frame-by-frame masks as well as the temporal compression via a linear combination of frames.

The idea of VCS is vastly different, both mathematically and philosophically, from the classical compression methods. In standard video compression algorithms, the incoming signal is sensed (acquired) in full. The acquired data is then processed, through various transformations and operations, until the data is represented in a sparse way (the compressed video). For example in MPEG-IV, the first frame is compressed in the wavelet basis and stored [21]. Then each incoming frame is stored by compressing the difference between the new frame and the first frame in the wavelet basis. Once the difference exceeds a specific tolerance, the process is reset. In some sense, this type of compression is sensing then compressing.

The problem we consider in this paper is that the incoming data exceeds the storage capacity, so that the data must be compressed during the acquisition process. For this reason, we call this video compressive sensing.

Although there are many works in the literature focusing on the spatial compression of data, the field of variable temporal compression rates is fairly new. There are many potential gains in developing systems and procedures incorporating adaptive temporal compression rates. In terms of memory, variable compression rates lead to optimized storage space without loss of quality as compared to taking a moderate to high fixed rate. In terms of cost, the resource and energy savings outweigh the computational cost of predicting the frame rate, thereby increasing the efficiency of the system. VCS can be readily applied to many of the common big data sets, for example surveillance videos [4, 25] and traffic data.

In this work, we propose a simple and flexible real-time method for predicting frame rates based on adaptive patchwise polynomial fitting. Our method is easy to implement and computationally inexpensive, since it is based on temporal differences and polynomial fitting, as well as robust to different applications and data conditions. The algorithm can be made parallel and can be extended to different imaging modalities. One current application of this method could be to coded aperture compressive temporal image (CACTI) systems [26].

This paper is organized as follows. Section 1.1 details the data acquired via video compressive sensing. A derivation of our patch-based motion estimator is provided in section 2, with theoretical connections to classical methods. Section 3 details the algorithm and also provides some connections between our model and the underlying physical behavior captured in the video. In section 4, numerical simulations on real data are provided, which demonstrate the improvement in quality of the reconstructed video given our compression scheme. This section also discusses the robustness of our algorithm on the data acquisition process and the manner in which our algorithm adapts to the data. We conclude with some final remarks in section 5.
1.1. Description of the incoming data. In VCS each compressed frame $X_j \in \mathbb{R}^{N \times M}$ is a coded linear combination of several true frames $F_{i|j} \in \mathbb{R}^{N \times M}$ with $0 < i \leq T_j$ (where $i|j$ is the ith frame in the jth sequence and where T_j is the frame rate for the jth encoded sequence); i.e.,

$$X_j := \sum_{i=1}^{T_j} A_{i|j} F_{i|j}, \quad (1.1)$$

where $A_{i|j} \in \mathbb{R}^{N \times M}$ is a random binary spatial mask and we take the product above to be elementwise. Although other spatial compression operators can be used, we consider only binary spatial masks. In practice, either each mask $A_{i|j}$ is independently generated or only the first mask $A_{1|1}$ is randomly generated and each subsequential mask is a fixed translation of the previous one [26]. In this way, X_j has both missing data and motion blur.

The main methodology of adaptive temporal compression is to give an estimate to the most restrictive motion present in the most recent coded frames, and to use this velocity to determine the potential frame rate. In an ideal case, the motion of objects in a video, i.e., the optical velocity V between frames, can be calculated using the classical methods of optical flow [19, 6, 1]. From the optical velocity, it is clear that an optimal compression rate T can be determined by the relationship $T \sim \frac{1}{V}$. Due to the corruption, direct application of optical flow or block-matching techniques [14, 20, 12] to estimate V is possible only after reconstructing each frame $F_{i|j}$. However, this drastically increases the computational cost, thus limiting the method’s use in real-time video capturing. Parallel work [35] applies block matching directly on the raw data X_j to get a rough estimate of the fast moving blocks.

1.2. Contribution of our work. The main contribution of this work is the construction of an algorithm which uses only patch-based information and simple extrapolation tools. It is necessary to use easy-to-implement tools in order to allow the algorithm to be incorporated into hardware and to be used in real time. Our main observation is that as objects enter or leave a given patch, the mean value of the patch changes by an amount related to their speed. In fact, we can show that the speed of the means of the patches is directly related to the optical velocity by the following relationship:

$$|\partial_t \mu_P(X(t))| \approx \frac{|V|}{|P|} \|X\|_{TV(P)}, \quad (1.2)$$

where $|P|$ is the size of the patch and $\|X\|_{TV(P)} := \int_P |\nabla X|$ is the total variation (TV) seminorm of the patch in space (note that this quantity is time dependent). The proof of this relationship is provided in section 2 and is important to our proposed algorithm.

1.3. Notation. There are several important variables and functions; for quick reference we provide a list of them here:

- P is a rectangular patch of fixed size $p_1 \times p_2$.
- V is the velocity of the associated patch P.
- T is the temporal compression rate.
- $\mu_P(X(t))$ is the mean of a frame X in the patch P at time t; the spatial dependence of X is suppressed.
- $\mu_L^P(t)$ and $\mu_Q^P(t)$ are the linear and quadratic approximates (respectively) as a function of time associated with patch P.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
2. Mean patch dynamics. In this section, we will formally derive the relationship between the mean patch dynamics, $\partial_t \mu$, and the velocity of objects moving between each frame in a sequence, V. Standard optical flow algorithms estimate V directly by comparing pixels or patches within a given window; those algorithms can be thought of as a Lagrangian method, tracing out the motion path. Our model can be considered as an Eulerian-based method, since the algorithm fixes the patch location and observes objects flowing through the patch via $\partial_t \mu$.

In the ideal case, we can define $\mu^P(t)$ to be the mean of frame f over patch P at a given time t (not the compressed frame). We assume that, at a given frame, future frames can be locally approximated as smoothly generated displacements. Formally we have the following definition.

Definition 2.1. We say that a set of frames are temporally consistent if they can be generated by a smooth displacement of the initial frame. More precisely, the sequence is generated by two functions $(f(x,0), D(x,t)) \in C^1 \times C^1([0,T]; BV)$, where future frames are related by $f(x,t) = f(D(x,t), 0)$.

This formulation is motivated mathematically and physically. The definition above is mainly used as a local approximation to the temporal behavior of the frames. In particular, if we start with a frame f (setting it to $f(x,0)$), the next frame, over some time dt, will be given by $f(x,dt) := f(D(x,dt), 0)$, where $D(x,dt)$ is the deformation of the pixels between the two frames over the small time interval. The rest configuration of the deformation is assumed to be the identity. We will also assume $D \in BV$ and $f \in C^1$, which is true for our algorithm since we consider smooth frames with patchwise (possibly discontinuous) motion.

Definition 2.2. A temporal displacement function $D(x,t)$ is velocity dominated if its acceleration is smaller than the velocity, in particular $||\partial^2_t D(x,t)|| \ll ||\partial_t D(x,t)||$. On the other hand, if the first and second time derivatives are on the same order, then we say $D(x,t)$ is accelerated driven.

We assume that typically observed motion is well-approximated by these two behaviors. From a mathematical perspective, these conditions reduce the local dynamics and provide sufficient conditions for polynomial approximations. From the physical perspective, the underlying assumption is that the observed motion is regular, which is common for people, cars, natural objects, etc. In the ideal case, though, the velocity of the foreground is restricted to locally constant motion, which we make formal in the following definition.

Definition 2.3. A temporal displacement function $D(x,t)$ is piecewise rigid if, for any t, we have $\nabla \partial_t D(x,t) \equiv 0$ over each patch. Specifically, we consider $\partial_t D(x,-)$ to be in the patchwise constant (a subset of BV).

The definitions above are related to the standard assumptions in optical flow [19, 6, 1] as well as image registration [27, 8, 22, 34, 24]. In fact, we can show that in some limit, our model recovers the first-order optical flow equation,

$$\partial_t f - \nabla f \cdot V = 0,$$

for the ideal sequence $f(x,t)$.

Theorem 2.4. Let $f(x,t)$ be a temporally consistent sequence of frames generated by a velocity dominated displacement. Then the following hold:

1. If $\theta(x)$ is the angle between ∇f and $\partial_t D(x,t)$ at $t = 0$ in patch P and the
angle is bounded by $||\theta||_{L^\infty(P)} < \epsilon$, then

\begin{equation}
|\partial_t \mu^p(t)| = \frac{1}{|P|} \int_P |\nabla f(D(x, dt), 0)| \ |V(x)| \ dx + O(dt) + O(\epsilon).
\end{equation}

2. If $D(x, t)$ is also patchwise rigid, then

\begin{equation}
|\partial_t \mu^p(t)| = \frac{|V(P)|}{|P|} \ |f(x, dt)|_{TV(P)} + O(dt) + O(\epsilon),
\end{equation}

where $V(P)$ is the patch velocity.

3. As $|P| \to 0$, we recover the first-order optical flow equation.

\begin{proof}
To show point 1, we differentiate the mean of the frame $f(x, t)$ at time dt. First, let $|P|$ be the area of the patch; then by [3, 2] we have

\[
\partial_t \mu^p(t) = \frac{1}{|P|} \int_P \partial_t f(x, dt) \ dx
\]

evaluated at time dt. Next, we use the assumption that $D(x, t)$ is velocity dominated to expand the time derivative of the displacement $\partial_t D(x, dt) = \partial_t D(x, 0) + O(dt)$. Using this Taylor expansion and the fact that $f \in C^1$ (specifically, the fact that f has bounded derivatives), we have

\begin{equation}
\partial_t \mu^p(t) = \frac{1}{|P|} \int_P \nabla f(D(x, dt), 0) \cdot V(x) \ dx + O(dt),
\end{equation}

where we define $V(x) := \partial_t D(x, 0)$ for simplicity. Next, from the assumption on the angle between the image gradients and the velocity, we have

\begin{equation}
\partial_t \mu^p(t) = \frac{1}{|P|} \int_P |\nabla f(D(x, dt), 0)| \ |V(x)| \ cos(\theta(x)) \ dx + O(dt).
\end{equation}

Last, (2.1) is achieved via the small angle approximation, $cos(\theta(x)) = 1 - O(\theta(x)^2)$.

For point 2, we can easily see that if $D(x, t)$ is patchwise rigid, then

\[
\partial_t \mu(f, P) = \frac{1}{|P|} \int_P |\nabla f(D(x, dt), 0)| \ |V(x)| \ dx + O(dt) + O(\epsilon)
\]

\[
= \frac{|V(P)|}{|P|} \ |f(x, dt)|_{TV(P)} + O(dt) + O(\epsilon),
\]

where $V(P)$ is the patch velocity. And finally, for point 3, to show that the model recovers the optical flow equation recall

\begin{equation}
\frac{1}{|P|} \int_P f(x, dt) \ dx = \frac{1}{|P|} \int_P \nabla f(D(x, dt), 0) \cdot V(x) \ dx + O(dt).
\end{equation}

At $dt = 0$, we can differentiate under the integral since f is smooth:

\begin{equation}
\frac{1}{|P|} \int_P \partial_t f(x, 0) \ dx = \frac{1}{|P|} \int_P \nabla f(0, 0) \cdot V(x) \ dx;
\end{equation}

\end{proof}
therefore we have

\begin{equation}
\frac{1}{|P|} \int_P (\partial_t f(x, 0) - \nabla f(x, 0) \cdot V(x)) \, dx = 0.
\end{equation}

By the Lebesgue differentiation theorem, as $|P| \to 0$ the integrand goes to zero, and thus $\partial_t f(x, 0) = \nabla f(x, 0) \cdot V(x)$ a.e., which is the first-order optical flow equation at $t = 0$. \hfill \blacksquare

Remark 2.5. Note that the patchwise rigid restriction in Theorem 2.4 can be relaxed to having $||\nabla V(x, 0)||_{L^p}$ small (by the Poincaré–Wirtinger inequality).

Theorem 2.4 provides the mathematical connection between the ideas presented in this work with the classical optical flow and block matching. The assumptions in the theorem are also related to the physical motion of objects in the frame. For example, the assumption on the angle $\theta(x)$ is equivalent to assuming that the velocity field is applied nearly parallel to the gradients of the dynamic objects in the video.

For the quadratic approximation, second-order time derivatives of the patch mean must be considered. The following theorem provides the relationship between the $\partial_t^2 \mu_P^P(t)$ and image characteristics.

Proposition 2.6. Let $f(x, t)$ be a temporally consistent sequence of images generated by a acceleration-driven displacement; then

\[\partial_t^2 \mu_P^P(t) = \frac{1}{|P|} \int_P \nabla^2 f(D(x, dt)) V(x) + \nabla f(D(x, dt)) \cdot a(x) \, dx + \mathcal{O}(dt). \]

Proof. The proof is very similar to that of Theorem 2.4, but instead of taking a first-order approximation $D(x, dt)$ in time we take a second-order approximation: $D(x, dt) = x + \partial_t D(x, 0) dt + \partial_t^2 D(x, 0) \frac{dt^2}{2} + \mathcal{O}(dt^3)$. Once again, differentiating and expanding yields

\[\partial_t^2 \mu_P^P(t) = \partial_t \left(\frac{1}{|P|} \int_P \nabla f(D(x, dt)) \cdot \partial_t D(x, dt) \, dx \right) \]

\[= \frac{1}{|P|} \int_P \partial_t^2 D(x, dt) \cdot \nabla^2 f(D(x, dt)) \cdot \partial_t D(x, dt) \, dx \]

\[+ \nabla f(D(x, dt)) \cdot \partial_{tt} D(x, dt) \, dx \]

\[= \frac{1}{|P|} \int_P \nabla^2 f(D(x, dt)) V(x) \]

\[+ \nabla f(D(x, dt)) \cdot a(x) \, dx + \mathcal{O}(dt), \]

which provides another relationship between the image gradients, physical characteristics, and algorithmic terms. \hfill \blacksquare

Using these approximations, we can see that first- and second-order temporal approximations relate to different types of physical motion present in video data. The first-order approximation gives an estimation of the dynamics,

\begin{equation}
\mu_P^P(t) = \mu_0 + \partial_t \mu t,
\end{equation}

while the second-order approximation yields

\begin{equation}
\mu_Q^P(t) = \mu_0 + \partial_t \mu t + \frac{\partial_t^2 \mu}{2} t^2.
\end{equation}
In the linear case, the expansion estimates objects which move with velocity dominated motion, i.e., $|a| \ll |V|$. On the other hand, the second-order approximation gives information on both the average tangential acceleration of objects in the patch and the twisting, stretching, and bending forces created by the velocity field. The additional knowledge can give a more appropriate approximation when the objects' movement is governed by higher-order effects. These assumptions are appropriate for surveillance, tracking, traffic, etc.

3. Compression algorithm. In section 3.1, we provide details on our compression model for VCS, which relies on (1.2). We provide some further remarks on the proposed algorithm in section 3.2. And finally, to validate our compression results, we will also provide an adaptation of a well-known method for video restoration in section 3.3, although this is not the focus of our work.

3.1. Our adaptive polynomial fitting. The compression algorithm involves several steps which we summarize below:

1. First we divide each smoothed frame into nonoverlapping patches of size $p_1 \times p_2$ in order to capture the local movements, where locality is related to the patch size. The nonoverlapping nature breaks the computations down to a decoupled system of small subproblems of the patch sequences (in time), also making parallel computing possible.

2. (Optional) Each of the compressed frames patches is processed by applying an averaging filter with small support. (For simplicity we maintain the same notation for the smoothed frame.) This removes the anomalies caused by missing data, while preserving the general structures.

3. For a given patch sequence, the mean of each element (denoted by $\mu^P(X)$ for each smoothed frame X and patch P) is calculated.

4. Using the sequence of patch means, we make an estimate of the optical velocity V via (1.2) and determine whether we compress at the extremal ratios or perform adaptive polynomial fitting to estimate the intermediate cases.

The essence of the algorithm is to use $\partial_t \mu^P(X(t))$ as a motion estimator for the optical velocity V instead of directly obtaining V using a classical method. This is necessary since we are only able to view the running sum of compressed frames rather than each individual frame in the original video; therefore we cannot derive V via the standard optical flow methodology.

To estimate the compression rates in the extremal cases, we can directly use (1.2). If the approximated patch velocity V is very large (small), then the lowest (highest) compression rate is chosen. The approximation of V in (1.2) is a robust estimation of the large and small changes in the patch. In addition to theoretical motivations, we can also see from (1.2) that the TV term helps to mitigate the influences of noisy patches.

In the nonextremal cases, using (1.2) requires specific thresholds relating the optical velocity V to the compression rate T, which is usually much more difficult than deciding the extremal thresholds. In practice, relating V directly to a compression rate requires learning on training data [35]. Seeking a more self-contained estimator, we provide an adaptive approximation of $\mu^P(X(t))$ directly. Since a threshold on the maximum allowable tolerance of the changes in the mean is related to the image intensity and the size of the patch, it provides a less sensitive measure than directly thresholding V. For example, while we can set the tolerance of the change to be a fraction of the maximum image intensity (known data), the tolerance on the velocity must be related to the range of object speeds present in the image (approximated or
unknown data).

To adaptively approximate \(\mu^P(X(t)) \), we use a predictor-corrector–like algorithm over a small number of previous frames. For the sake of simplicity, we will restrict the length of the patch sequence to be 4, although the following argument and methodology does not depend on this value. The given data is now the patch means \(\{ \mu^P(X(t_{j-3}), \ldots, \mu^P(X(t_j)) \} \) and their associated time points \(\{ t_{j-3}, \ldots, t_j \} \), which are the frame numbers in the true video data. The first three data points of the sequence act as the fitting data, where both a least squares linear fit \(\mu^L(t) \) and quadratic interpolation \(\mu^Q(t) \) are calculated (i.e., the predictor step). Then, using the fourth data point, we compare the values \(\mu^L(t_j) \) and \(\mu^Q(t_j) \) to the known value \(\mu^P(X(t_j)) \), obtaining an intrinsic way to learn which polynomial fit to use (i.e., the corrector step). Once a fit is chosen, that optimal polynomial \(\mu_{\text{opt}}^P(t) \) is used to estimate the maximum compression rate \(T \) such that \(|\mu^P(t_j + T) - \mu_{\text{opt}}^P(X_j)| \) is within a given tolerance. In the experiments presented in this work, we fix the tolerance to be 0.15 \(\times \) 255, although multiples ranging from 0.1 to 0.2 seem to result in visually comparable results.

In applications, the compression rate is usually restricted to a set of fixed values, for example, all the even numbers up to 16. Here we define \(T_{\text{range}} \) as an increasing sequence of length \(L \) storing all the compression rate candidates. We then arrive at the procedure given in Algorithm 1 for calculating the compression rate \(T \) at time point \(t_j \).

In terms of the cost of the algorithm, we consider both parallel and nonparallel implementations. In any individual patch, the complexity is dominated by the averaging filter and patch mean, which is \(O(p_1 p_2) \). If the algorithm is run in a parallel environment over \(K \) arrays, then the \(\frac{MN}{p_1 p_2 K} \) number of patches can be distributed to \(\frac{MN}{p_1 p_2 K} \) patches per array with a total complexity of \(O(\frac{MN}{K}) \). Thus our algorithm’s complexity is linear in the number of pixels.

A short visual description of the algorithm is detailed in Figure 1. An example of a compressed frame using a frame rate of 4 is shown in Figure 1(a), and its corresponding smoothed version is shown in Figure 1(b). The smoothed version is blurry due to the temporal averaging (frame compression) and the spatial averaging filter. The predicted frame rates for each patch are given in Figure 1(c). In Figure 1(d), the region of predicted motion is highlighted: it contains the car and shadow as well as a few patches from its previous location.

3.2. Further remarks on our algorithm.

Depending on the data acquisition method, the correction step in the adaptive polynomial fitting can vary. In this paper we consider using the compressed frame \(X(t_j) \); however, we can also consider using \(A(t_j + 1)F(t_j + 1) \), the first frame in the uncompressed sequence with spatial mask. Since this method can be run in real time, we can acquire this frame without calculating the next \(T \). Hence the input data for the fitting can also be chosen as

\[
\{ X(t_{j-2}), X(t_{j-1}), X(t_j), A(t_j + 1)F(t_j + 1) \}
\]

and

\[
\{ t_{j-2}, t_{j-1}, t_j, t_j + 1 \}.
\]

We can also vary the way in which we define the compression rate \(T \). Defining \(T \) as the minimum of all the \(T_k \) (the predicted compression rate from the \(k \)th patch sequence) can be restrictive, allowing outlier values of \(T_k \) to dominate in the estimate of \(T \). To avoid this issue, two possible methods can be used. The first is to sort
Algorithm 1 Our adaptive temporal compression method.

Input: $X(t_{j-3}),\ldots,X(t_j), t_{j-3},\ldots,t_j, p_1, p_2, T_{\text{range}}, V_{\text{min}}, V_{\text{max}}, \text{threshold}$.

Initialization: (optional) Process each X with averaging filter.

Divide each frame into nonoverlapping $p_1 \times p_2$ patches. Set $k = 1$.

while $k \leq \frac{MN}{p_1p_2}$ do

Compute $\{\mu(X(t_{j-3})),\ldots,\mu(X(t_j))\}$ in the kth patch sequence.

Determine the current V from (1.2) with $\mu(X(t_{j-1})), \mu(X(t_j)), p_1, p_2$ and the most recent patch in this sequence.

if $V \leq V_{\text{min}}$ then

$T_k = T_{\text{range}}(L)$. Break.

else if $V \geq V_{\text{max}}$ then

$k = T_{\text{range}}(1)$. Break.

end if

Calculate $\mu^L_p(t)$ and $\mu^Q_p(t)$ with $\mu(X(t_{j-4})),\ldots,\mu(X(t_{j-1}))$ and t_{j-4},\ldots,t_{j-1}.

Decide the fit $\mu^P_{op}(X(t))$ by comparing the values of $|\mu^L_p(t_{j-1}) - \mu^P(X(t_j))|$ and $|\mu^Q_p(t_{j-1}) - \mu^P(X(t_j))|$.

$k = T_{\text{range}}(1)$. $i = 1$.

while $i < L$ do

if $|\mu^P_{op}(t_{j} + T_k) - \mu^P(X(t_j))| > \text{threshold}$ then

Break.

else

$k = T_{\text{range}}(i+1)$. Set $i = i + 1$.

end if

end while

$k = k + 1$.

end while

return $T = \min_k T_k$.

the set $\{T_k\}_k$ and use the ordered data to determine the value T. For example, we could pick the smallest or an average of the pth smallest values. This can be costly, since it may encourage conservative values due to outliers, so instead we introduce another parameter T_{thresh} to relax this minimum. When the ratio of the minimum value over $\frac{MN}{p_1p_2}$ (the cardinality of the T_k set) is smaller than T_{thresh}, we define T as the next compression level in T_{range}, essentially taking the minimum value over a more effective set. By doing so we remove outliers in the data, but we only move up one compression level in order to prevent overestimation. In general, this can be seen as an ordered weighted average (a weighted average on the sorted data set), in which the weights are determined adaptively based on the support of the smallest blockwise compression rate.

3.3. A restoration algorithm. In order to verify the success of the forward model, we must also have a way of recovering the compressed frame. Inspired by the reconstruction models from [7, 23], we adapt those previously proposed models to recover the compressed video. Our adapted model for VCS reconstruction is as follows:

$$
(3.1) \quad \min_{F_t} \sum_{i=1}^{T} |DF_i| + \lambda \sum_{i=1}^{T-1} |F_{i+1} - F_i| \quad \text{s.t.} \sum_{i=1}^{T} A_t F_t = X,
$$
where D is the forward spatial derivatives. Both regularizers in this model are of L^1 type; therefore the minimization can be efficiently solved via the split Bregman method [15].

We first introduce two auxiliary variables, G_i for $i = 1, \ldots, T$ and d_i for $i = 1, \ldots, T - 1$, and the Bregman variables (constraint enforcing) X^k, B^k, and b^k are the Bregman variables so that (3.1) becomes

\begin{equation}
(3.2) \quad \min_{F,G,d} \sum_{i=1}^{T} |G_i|_1 + \lambda \sum_{i=1}^{T-1} |d_i|_1
\end{equation}

\begin{align*}
\text{s.t. } & G_i = DF_i, \quad d_i = F_{i+1} - F_i, \quad \sum_{i=1}^{T} A_i F_i = X.
\end{align*}

The constraints are incorporated into the energy as follows:
\[(F_k^k, G_k^k, d_k^k) = \arg\min_{F_k, G_k, d_k} \sum_{i=1}^{T} |G_i|_1 + \lambda \sum_{i=1}^{T-1} |d_i|_1 \]

\[+ \frac{\mu_1}{2} \left\| \sum_{i=1}^{T} A_i F_i - X + X_k^{k-1} \right\|^2 \]

\[+ \frac{\mu_2}{2} \sum_{i=1}^{T} \left\| G_i - D F_i + B_i^{k-1} \right\|^2 \]

\[+ \frac{\mu_3}{2} \sum_{i=1}^{T-1} \left\| d_i - F_i + 1 - F_i + b_i^{k-1} \right\|^2, \]

\[X_k = \sum_{i=1}^{T} A_i F_i^k - X + X_k^{k-1}, \]

\[B_i^k = G_i^k - D F_i^k + B_i^{k-1}, \]

\[b_i^k = d_i^k - F_i + 1 + F_i + b_i^{k-1}. \]

The minimizers for \(G_k^k\) and \(d_k^k\) are explicit:

\[G_i^k = \text{shrink} \left(D F_i^{k-1} - B_i^{k-1}, \frac{1}{\mu_2} \right), \]

\[d_i^k = \text{shrink} \left(F_i^{k+1} - F_i^{k-1} - b_i^{k-1}, \frac{\lambda}{\mu_3} \right), \]

where the shrink function is defined for vectors by

\[\text{shrink}(\cdot, \tau) := \max(\|\cdot\| - \tau, 0) \frac{\|\cdot\|}{\|\cdot\|.} \]

For the \(F\) variable update, the minimizing equation is the following linear system:

\[\begin{align*}
(\mu_1 A^T A + \mu_2 D^T D + \mu_3 D_3^T D_3) F \\
= \mu_1 A^T (X - X_k^{k-1}) + \mu_2 D^T (G_k^k + B_k^{k-1}) + \mu_3 D_3^T (d_k^k + b_k^k),
\end{align*} \]

where \(D_3\) is the forward difference with respect to the frame (not to be confused with the spatial differences).

Altogether, we alternate the shrinkage steps with a few iterations of the conjugate gradient method to solve (3.3) in order to find \(F\). The convergence of this algorithm to the correct minimizer is guaranteed; for example, see [10].

For the results here, we use the following parameters:

\[\lambda(T) = \begin{cases}
2.67 & \text{if } T = 4, \\
8.33 & \text{if } T = 8, \\
25 & \text{if } T = 12, \\
25 & \text{if } T = 16,
\end{cases} \]

\[\mu_1(T) = \begin{cases}
0.67 & \text{if } T = 4, \\
0.33 & \text{if } T = 8, \\
1 & \text{if } T = 12, \\
1 & \text{if } T = 16,
\end{cases} \]
\[
\mu_2(T) = \begin{cases}
0.167 & \text{if } T = 4, \\
0.133 & \text{if } T = 8, \\
0.05 & \text{if } T = 12, \\
0.1 & \text{if } T = 16,
\end{cases}
\]

\[
\mu_3(T) = \begin{cases}
0.67 & \text{if } T = 4, \\
1.33 & \text{if } T = 8, \\
3 & \text{if } T = 12, \\
5 & \text{if } T = 16,
\end{cases}
\]

The PSNR (peak signal-to-noise ratio) of the results is not very sensitive to these parameters, in the sense that a 10% change will not dramatically change the value of the PSNR. To choose the parameters for the reconstruction, we first fit them to a few frames and use the fitted parameters for the entire video sequence.

This restoration method is constructed using similar regularizers that can be found in other compressive sensing reconstruction algorithms. The restoration method is used to give a basis of comparison between our compression scheme and the standard fixed rate compression scheme. Our compression scheme is not optimized for a particular reconstruction model and can be recovered well using other algorithms such as those found in [7, 23].

4. Experimental results. In this section we use numerical experiments to demonstrate the robustness and effectiveness of our algorithm. As shown in [26], the shifted masks will give reconstruction results comparable to those obtained using completely random masks. Hence in most of our tests we first generate a random binary mask with 50% zeros, and keep shifting it in one direction to get subsequent masks. Other types of masks will also be considered in a later test. In our tests, four different compression rates are considered, 4, 8, 12, and 16.

The experimental results are divided into smaller sections as follows. In section 4.1, we show the advantage of using variable compression rates depending on the sequence dynamics. In section 4.2, we demonstrate the gain in using adaptive polynomial fitting rather than only using one type of polynomial. We present some results for the dependence of the algorithm on the patch size in section 4.3. We also show the gains over using a fixed rate compression algorithm in section 4.4. And lastly, we apply our algorithm to another type of binary mask generation in section 4.5.

4.1. Video dynamics and compression. Figure 2 displays some selected frames compressed using different compression rates. In Figure 2(a), since so few frames are averaged, the effective spatial mask appears to be random, while in Figure 2(b)–(d), as the frame rate increases so does the clarity. However, although the resolution increases with the frame rate, the trade-off is that the image becomes blurred. In essence, this is the balance in adaptive compressive video sensing.

Before we show the performance of our algorithm, we would like to highlight the importance of adaptiveness in video compression through some experiments. Let us first look at how \(T \) influences the reconstruction results of different types of video data. Here in each test, \(T \) frames are compressed into one according to (1.1), then we apply a TV-based video reconstruction algorithm on this compressed data to recover the original frame sequence, and the average PSNR of the reconstructed sequence is recorded.
Fig. 2. In (a)–(d), various compressed frames are shown. Each scene is compressed with a different rate, and a frame from the scene is displayed in (e)–(h). The hierarchy shows that the scene with the car suddenly entering in (a) and (e) has the smallest compression rate, while the one with pedestrian motion has the highest rate. The medium compression rates, as seen in (b) and (f) or (c) and (g), are related to the car entering in the top left quadrant and the movement of the second pedestrian, respectively.

Table 1
Mean PSNR comparison for different types of video data.

<table>
<thead>
<tr>
<th></th>
<th>Moving frames</th>
<th>Frozen frames</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T = 4)</td>
<td>(T = 16)</td>
</tr>
<tr>
<td>Test 1</td>
<td>33.7849</td>
<td>28.2370</td>
</tr>
<tr>
<td>Test 2</td>
<td>37.7345</td>
<td>34.9292</td>
</tr>
</tbody>
</table>

Two types of video data are considered in the test, moving frames and frozen frames, where moving frames mean all the \(T \) frames are different from each other, while frozen frames stand for the case with \(T \) identical frames. The results are recorded in Table 1. We can see from the table that when we have stationary video data, a larger \(T \) value usually leads to better reconstruction results with higher PSNR values. On the other hand, when there are a lot of movements in the video, a smaller \(T \) is often more desirable.

Based on the above observation, we then use numerical tests to check the advantage of adaptive compression over fixed rate compression. In the first setting, we generate a video of 32 frames, where the first 16 frames contain a lot of movements while the rest are identical. We then manually compress the video into 5 frames, where \(T_1 = \cdots = T_4 = 4 \) and \(T_5 = 16 \). According to our assumption on \(T_{\text{range}} \), this is the optimal method of adaptive compression for this particular video. We also define another compression by setting \(T_1 = 8 \) and \(T_2 = \cdots = T_5 = 6 \), and this is close to the fixed rate compression. For each case, the above reconstruction algorithm (3.1) is applied on these compressed frames to recover each original frame sequence separately, and the average PSNR of each sequence is recorded.

In the second setting, the same two compression strategies are used on the video with 32 moving frames. The mean PSNRs are displayed in Table 2. Similar tests
Table 2

<table>
<thead>
<tr>
<th>Setting 1</th>
<th>Setting 2</th>
<th>Setting 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adaptive</td>
<td>Fixed</td>
</tr>
<tr>
<td>Test 1</td>
<td>53.1740</td>
<td>40.6072</td>
</tr>
<tr>
<td>Test 2</td>
<td>55.9060</td>
<td>43.0610</td>
</tr>
</tbody>
</table>

are also conducted on videos where the first 16 frames are identical while the rest are moving frames.

We can see from the PSNR values in setting 1 that adaptive compression leads to much better reconstruction results. The results in settings 2 and 3 show that the compression must match the behavior within the frames. In particular, we see that the results of the reconstruction algorithm can support the choice of compression rate as long as there is a significant gain in the PSNR.

4.2. Behavior of adaptive polynomial fitting. In Figure 3, the temporal compression rates are plotted for each frame in two real data sets. The red (vertical) markers indicate changes in the video sequence, for example an object entering or leaving the field of view, while the blue dots stand for the compression rate for each frame. To investigate the effect of our algorithm’s adaptive polynomial fitting step, we compare our method to the case when we restrict the approximating polynomial to be either linear or quadratic only. In Figure 3(a), the algorithm is applied to parking lot surveillance data, containing a static background with moving people and vehicles. The spatial compression rate is taken to be 50%. The first 12 frames are assigned a compression rate of 4 in order to generate input data to our algorithm. The initial computed compression rate is 16 since there is no movement, and decreases to 8 and 4 as the car enters (the first two red markers, where the car starts to enter at the first marker, and fully enters at the second marker). The second two markers are at the frame location when the car gradually stops and people enter the field of view. Since the dynamic component of the video is slowing down, the compression rate should increase, coinciding with our algorithm’s performance. At the end of the sequence the moving people become obscure (effectively exiting the field of view) and reappear, which creates a jump in the compression rate. In this case, the adaptive fitting prefers the least squares linear fit, since most of the motion is locally constant.

In Figure 3(b), the algorithm is applied to traffic data. Prior to the first marker, the main moving component consists of nonuniform pedestrian movement; therefore a medium-level compression rate is favored. This can be seen visually and agrees with our algorithm’s performance. The first two markers show the occurrence of a vehicle entering the field at various speeds with varying visibility. Therefore, we expect the compression rate to drop. This is exhibited by both the adaptive compression algorithm and the quadratic approximation. The next two markers bound the interval in which the frames are still. And the last signifies a fast moving car entering the video. In this case, the adaptive algorithm incorporates information from the quadratic fitting while also capturing information (near frame 35) that is overlooked using one polynomial exclusively.

In general, the linear fit favors consistent motion, since it approximates one velocity over several compressed frames. The quadratic fit captures more subtle dynamics, shown through its ability to adjust to gradual changes; however, at times this result chooses the more prudent compression rate. Since the approximations are done patch
Fig. 3. Comparison between adaptive polynomial fitting and fixing the degree of the polynomial. Using different data, (a) and (b) show that the adaptive polynomial fit may favor one polynomial or use a combination of both.

by patch, one interesting observation is that the adaptive compression rate does not necessarily give you either the linear or the quadratic fitting result at any given frame. Instead, it balances the contributions from both approximations.

4.3. Comparison of patch size. In Figure 4, we provide a comparison between different patch sizes. To measure optimality of the patch size, we look at the qualitative behavior of the compression results and the quantitative results (compression rate and PSNR). The optimal patch size for the parking lot data set is 16 by 8 (with an average PSNR of 45.45), and for this reason it is the patch configuration used in the other sections here. Figure 4 displays the result for patch configurations of 8 by
Fig. 4. Comparison of compression results for various patch sizes using our algorithm.

8 (average PSNR of 41.37), 8 by 16 (average PSNR of 44.96), and 16 by 16 (average PSNR of 45.15).
The patch size of 8 by 16 gives similar results; however, it neglects the motion of the pedestrians. The small square patch of size 8 by 8 is more sensitive to small changes between frames. The larger square patch of size 16 by 16 is less sensitive to small objects. The 16 by 16 patch size has issues reconstructing the final part of the video data, where the small scale motion is dominant. The 8 by 8 patch size consistently gives too low of a compression rate, since it is sensitive to outliers, thus making it ineffective as a data reduction tool.

From this we can conclude that the patch size is determined by two factors: the scale of motion and its directionality. For consistent velocity V over a sampling time of Δt, one could argue that the diameter of the patch should satisfy the relationship $\text{diam}(P) = V\Delta t$ to capture the correct scale. To correctly resolve directionality, the patch should be shorter in the direction of fast motion and long in the direction of slow motion. For the data set tested here, the patch size of 16 by 8 corresponds to the correct size given this analysis as well. This also shows that since 8 by 16 gives similar results while 8 by 8 gives worse results, scale plays a more important role than directionality.

4.4. Comparison with fixed rate compression. As seen in the tables, reconstruction algorithms for VCS provide satisfactory results when (and only when) many frames are averaged over low motion scenes or when few frames are averaged during high motion scenes. Therefore, since our algorithm takes advantage of this principle, we would expect that it should yield a better recovered video than using a fixed rate compression. In Figures 5 and 6, the compression rate versus frame rate is plotted along with the PSNRs of each frame after applying the reconstruction algorithm. For the results displayed in Figure 5, the mean PSNR is 45.43 dB, compared to a mean of 40.56 dB when applying a fixed rate compression with the same number of compressed frames (i.e., identical mean compression rates). The maximum and minimum
PSNRs of our algorithm are 77.90 dB and 30.97 dB, respectively, while the fixed rate compression yields 55.07 dB and 28.82 dB, respectively. For the results in Figure 6, our mean PSNR is 49.58 dB, and the fixed rate compression has an average PSNR of 42.92 dB. The maximum and minimum PSNRs of our method are 77.20 dB and 30.95 dB, while the fixed rate compression yields 52.67 dB and 28.31 dB, respectively. In both cases, our compression method provides significant gains in the average PSNR of the reconstructed image.

In Figure 7, six reconstructed frames (Frames 93 to 98) from the video used in Figure 5 are displayed. In Figure 8, the same six frames are shown, reconstructed from data compressed with a fixed rate. The results using our algorithm are of higher quality in the regions containing fast motion than that of a fixed rate. Also, since the temporal compression averages consecutive frames, motion elements in some frames can pollute both the compression and reconstruction of neighboring frames, as seen by the errors incurred around the car in Figure 6. In these figures, it is clear that the adaptive compression method yields fewer motion and compression artifacts than does the fixed rate compression, thus resulting in better overall visual quality of the reconstructed video.

4.5. Robustness to the compressive sensing matrix. Lastly, we apply our algorithm to the case when the spatial compressive sensing mask is randomly generated for each frame (retaining 45% of the pixels for any given frame). In Figure 9, the mean PSNR is 44.63 dB (39.97 dB for a fixed rate compression) with a maximum and minimum PSNR of 74.98 dB and 30.82 dB, respectively (53.77 dB and 28.89 dB for a fixed rate compression). This is comparable with the results from Figure 5, since the algorithm does not depend explicitly on the manner in which the mask is generated. Since the compression algorithm considers average patch information, a particular mask realization should not alter the patch means significantly. This shows the potential of incorporating our algorithm into various video compression applications.
Fig. 7. The reconstruction results of six consecutive frames compressed by our algorithm. The PSNRs for the first row starting from the left are 33.7896, 35.7451, 36.1793, and the PSNRs for the second row starting from the left are 33.7118, 32.6931, 34.7961.

Fig. 8. The reconstruction results of six consecutive frames compressed using a fixed rate, chosen to match the average compression rate of our algorithm. The PSNRs for the first row starting from the left are 32.5228, 33.9217, 34.5397, and the PSNRs for the second row starting from the left are 33.9049, 32.0122, 29.9630.
Fig. 9. The compression rates (in blue) and the corresponding PSNRs (in green) of the reconstruction method applied to the results generated by our algorithm for the data that is acquired via a random CS mask. Notice the qualitative and quantitative similarity to Figure 5.

5. Conclusion. We present an adaptive algorithm for predicting compression rates in real time. The underlying idea is simple: compress more when the video contains little motion, and compress less during dynamic scenes. Using this idea, we build an efficient and compact way to estimate the motion of a sequence of compressed and subsampled frames using patch means. By considering the patch means, we reduce the size of the problem and decouple each task. Also, by using each individual patch’s history to predict its own compression rate, we accelerate the time it takes to compute the predicted frame rate. Our adaptive model is shown to improve the PSNR of the reconstructed video by several dB as well as the visual quality of the images.

Acknowledgments. The authors would like to thank Wotao Yin and Tom Goldstein for their useful discussions. The authors would also like to thank Lawrence Carin, Guillermo Sapiro, David Brady, Giang Tran, Jianbo Yang, Xin Yuan, and the anonymous reviewers for their helpful discussions and comments.

REFERENCES

REAL-TIME ADAPTIVE VIDEO COMPRESSION

