CaltechAUTHORS
  A Caltech Library Service

Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells

Zhu, Huayang and Kee, Robert J. and Janardhanan, Vinod M. and Deutschmann, Olaf and Goodwin, David G. (2005) Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells. Journal of the Electrochemical Society, 152 (12). A2427-A2440. ISSN 0013-4651. http://resolver.caltech.edu/CaltechAUTHORS:ZHUjes05

[img]
Preview
PDF
See Usage Policy.

809Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:ZHUjes05

Abstract

This paper presents a new computational framework for modeling chemically reacting flow in anode-supported solid-oxide fuel cells (SOFC). Depending on materials and operating conditions, SOFC anodes afford a possibility for internal reforming or catalytic partial oxidation of hydrocarbon fuels. An important new element of the model is the capability to represent elementary heterogeneous chemical kinetics in the form of multistep reaction mechanisms. Porous-media transport in the electrodes is represented with a dusty-gas model. Charge-transfer chemistry is represented in a modified Butler-Volmer setting that is derived from elementary reactions, but assuming a single rate-limiting step. The model is discussed in terms of systems with defined flow channels and planar membrane-electrode assemblies. However, the underlying theory is independent of the particular geometry. Examples are given to illustrate the model.


Item Type:Article
Additional Information:©2005 The Electrochemical Society (Received 4 May 2005; revised 8 August 2005; published 4 November 2005) This work was supported by the DoD Multidisciplinary University Research Initiative (MURI) program administered by the Office of Naval Research under grant N00014-02-1-0665. We gratefully acknowledge many insightful discussions with Professor Greg Jackson (University of Maryland) and Professor Tony Dean (Colorado School of Mines). We are especially grateful to Renate Schwiedernoch, Benjamin Schädel, and Luba Maier (all of University of Karlsruhe) for sharing their work on the Ni reaction mechanism prior to its publication.
Subject Keywords:solid oxide fuel cells; electrochemical electrodes; oxidation
Record Number:CaltechAUTHORS:ZHUjes05
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:ZHUjes05
Alternative URL:http://dx.doi.org/10.1149/1.2116607
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:6401
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:07 Dec 2006
Last Modified:26 Dec 2012 09:20

Repository Staff Only: item control page