Supplementary material

Calcium signaling during convergent extension in *Xenopus*
John B. Wallingford, Andrew J. Ewald, Richard M. Harland
and Scott E. Fraser
Current Biology 1 May 2001, 11:652–661

Supplementary movies

Movie 1

See Figure 2. This movie shows the patterns of calcium release in a DMZ explant labeled on the left side with calcium green dextran; the right side is unlabeled and is black, though cells are present in the field of view. In this and all DMZ movies, the dorsal lip of the blastopore is at the bottom of the screen, and the dorsal midline runs vertically through the middle of the screen. The mediolateral axis is horizontal. As the movie begins, several small flashes of calcium release can be observed throughout the explant (described in Figure 4b). About halfway through the movie, a small intercellular calcium wave arises near the midline of the explant, followed closely by another, much larger calcium wave. Still frames depicting the large wave in this movie are presented in Figure 1a.

Movie 2

See Figure 2. This movie shows a DMZ explant in which all the cells are labeled with calcium green dextran. This explant undergoes a small wave, then a larger wave, then another small wave. These waves are less dramatic than those in Movie 1, possibly due to less effective calcium green dextran loading.

Movie 3

This movie shows the wave from Figure 3a.

Movie 4

This movie shows the wave from Figure 3b.

Movie 5

This movie shows the cells in Figure 4a.

Movie 6

This movie shows the calcium flash in Figure 4b.

Movie 7

This movie shows a representative time-lapse of an animal cap explant labeled with calcium green dextran. Small calcium flashes can be seen, but no calcium waves arise.

Movie 8

This movie shows a representative DMZ treated with thapsigargin; no calcium waves are observed.