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Abstract—A carefully constructed scatterplot can reveal plenty about an underlying data set. However, in most cases visually 
mining and understanding a large multivariate data set requires more finesse, and greater level of interactivity to really grasp the 
full spectrum of the information being presented. We present a paradigm for glyph design and use in the creation of single plots 
presenting multiple variables of information. We center our design on two key concepts. The first concept is that visually it is 
easier to discriminate between completely distinct shapes rather than subtly different ones, specially when partially occluded. The 
second one is that users ingest information in layers, i.e. in an order of visual relevance. Using this paradigm, we present complex 
data as binned into desired and relevant discrete categories. We show results in the areas of high energy physics and security, 
displaying over 6 distinct data variables in each single plot, yielding a clear, highly readable, and effective visualization. 

Index Terms—Multivariable Data, 3D Glyphs, Large Data, Visual exploration.

1 INTRODUCTION 
The effectiveness of a visualization paradigm ultimately depends 

on its ability to enable the particular visual mining goal a researcher 
is trying to accomplish.  

In many real data analysis situations, there may be an unclear 
expectation of the location and form, and even the process needed to 
reach a discovery from visually mining the data. In such cases, 
presenting as much information to the researcher as possible may be 
an advantageous first step. However, in the process of doing so, it is 
important to ensure that the information presented remeains clear, 
readable, and enables well the discovery process. The challenge with 
multivariate data is not just in showing multiple variables at the same 
time, but being capable of showing the relationship between them 
without overwhelming the eye. 

A scatter plot matrix [4] is a very successful paradigm at showing 

how pairs of variables relate. However, in order to correlate one 
single scatter plot – i.e. a pair of variables – to additional variables, 
follows a need for further interactive techniques. Such tools include 
brushing, which allow to cross-reference information visually by 
marking subsets of points across all scatter-plots with a brushed-on 
color.  

Meanwhile, parallel coordinates [3] combined with brushing, 
sub-setting, and other interactive techniques, make it easy to see how 
selected data records map across all plotted variables. However 
parallel coordinates lacks the ability to well depict physical and 
spatial relationships that map well to scatter plots. 

Overall, systems that do tie these analysis tools together 
interactively and offer supplemental statistical analysis mechanisms, 
allow these paradigms to complement each other and can result in a 
powerful data analysis tool. 

However, optimally, a researcher would be shown a single plot 
that by itself conveys valuable information needed to visually 
segment the data, find clusters, find patterns, and find outliers. This 
would be particularly helpful, and needed, given a large number of 
data points (>10,000), with multiple variables per data entry (>6). 
So, as we know already, in order to expose complex data 
relationships, it is necessary to simultaneously correlate as many 
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Fig. 1. (Left) Six unique 3D glyphs used to map the angle between two particle tracks (dphi) from a high energy physics detector 
simulation. Left “arm” features on glyph map energy from one photon (eg1), right “arms map energy from second photon (eg2). 
(middle) Scatterplot mapping two principal components to (x,y) position. Glyph hue represents Higgs Mass. (Right) Close up of 
left branch of scatterplot. Lower-right Dense plot area is easily recognizable as mostly spheres (low angle) but for few tori and 
cylinders. Upper-left area shows mostly cylinders and cones. Few objects show high energy as expected to correlate to mass. 

 



meaningful variables as needed. Thus to show these in one single 
graph it would entail “layering” all additional vital information on 
“top” of a basic plot. 

Our proposition solely focuses on increasing the amount of 
information shown on a single plot, with special attention to 
readability and clarity. We achieve this by binning the data and 
mapping it to discrete visual attributes tailored to exhibit pre-
designed readability order. 

2 CONTRIBUTIONS 
There is a trade-off between clutter and the visual uniqueness and 

amount of information each glyph can represent. For instance, [1] 
faces can represent 6+ variables. However, recognizing patterns or 
clusters from the details of these faces is not an easy task.  

We sustain there are two corroborating reasons for this. When the 
change between glyphs is too gradual, it is easier to loose the ability 
to detect clusters, patterns, or outliers through unclear glyph features. 
This is a well-known phenomenon that presents itself often in 
medical image analysis, when using color transfer functions with 
only smooth low frequency changes. One solution is to increase the 
complexity of the color transfer function, by adding higher changes 
in color and intensity. The other alternative is to mine the data and 
figure out where the significant changes occur, and then map those to 
a correspondingly adjusted color transfer function. Notice that in the 
first choice, we rely on the user visual perception skills to understand 
the resulting images; assuming the generated function is able to pick 
up the important details. The second choice, while seemingly more 
comprehensive, is much harder to implement, is more compute 
intensive, and may ultimately still miss details, that a trained human 
can still easily recognize. 

The second reason we support that complex glyphs like Chernoff 
faces have not succeeded, relates more to the visual design and 
geometry of glyph itself. Most importantly missing, is “reading 
order”. It is well understood that when there is lack of a clear 
hierarchy of the visual importance of elements [9] of an image, a 
viewer’s eyes try to distribute attention between the competing 
elements, which leads to eye tiredness. This simply translates to a 
feeling of clutter and confusion. The solution is to have a clear 
layering, or order of visual importance of the information. In such 
way they viewer’s first glance is clear, and then can choose to 
visually dive (i.e. focus) into the second and following layers of 
information as needed. 

3 PREVIOUS WORK 
The ability to present multiple variables of data simultaneously 

on a single image, and accurately portray the relationships between 
the variables is one of the core challenges in scientific visualization. 
Given a good grasp on the meaning of the data and its intra-
relationships, and with a strong sense of design, visualizations can be 
extremely successful, as those often quoted by artists, designers, and 
scientists, the likes of the work of Richard Tufte [15]. However, 
when trying to construct a more general tool, our best option is to 
present the maximum amount of data. While doing so, we need to 
preserve the same successful visual design attributes that will present 
the information in the most understandable and meaningful fashion. 

The 1973 work of Herman Chernoff [1] introduced the use of 
faces as glyphs, where the attributes of the faces (head eccentricity, 
eye eccentricity, pupil size, eyebrow slant, nose size, mouth shape, 
eye spacing, eye size, mouth length, and degree of mouth opening) 
were used to encode data. The assumption was that the human eye is 
well trained in face recognition and is quite keen on recognizing 
facial expressions. While it is possible that with more modern 3D 
rendering techniques we could re-test its proposition on realistic 

looking faces, overall it has been tested that Chernoff faces are not 
particularly perceptually efficient [12]. Furthermore, [7] showed that 
when plotting multivariate data, subtle glyph differences are hard to 
detect or evaluate. 

The work of [6] presents tensor data as oriented ellipsoids. 
Orientation as well as ellipsoids radiuses present the 6 variables of 
the reduced tensor. Meanwhile, their spatial arrangement on a 2D 
grid (as based on the underlying scanned images) creates a sense of 
texture, similar to that of art, such as the work of the late 19th 
century impressionist master, Vincent Van Gogh. However, this 
work does not translate well to unstructured data, as possible overlap 
between the glyphs would be confusing. 

It is in fact this same issue with complex glyphs such as Chernoff 
faces that we can argue about the use of most complex glyphs, 
including radar plots (whisker stars) and even 3D glyphs based on 
superquadrics [13]. While unique, and given enough time to analyze 
one glyph does convey all the n-variable information for each data 
record, it is mostly the large eccentricities that are perceived on 
complex plots. But most importantly, when overlaying each other, 
regular radar graphs can create clutter or be altogether 
undistinguishable. 

Truly unique icons were proposed in [8] for file browsers. Their 
central proposition was that content-meaningful icons are not as 
valuable as easily recognizable icons solely in the task of facilitating 
users to find their documents. They developed a mechanism to 
generate unique icons, purely based on the filename. Files with 
similar filename, would have similar, but still different, icons. Their 
icon generation was based on hash-function based recursive calls to 
basic shape generators. Their icons were mostly line illustration 
based, though were most aesthetically pleasing, when engulfed in 
glass like bubbles, better defining the icon boundary and engulfing 
the created shape. Through repeated use, users became familiar with 
each individual icon, regardless of its innate visual content. This 
work however cannot be translated to a visualization plotting system, 
as these complex constructions are not amiable to be overlapped 
while remaining discernable from each other. 

4 3D GLYPHS 
Figure 2 shows a unique small set of glyphs that have been 

crafted to be recognizable even in highly dense plots. Our goal is for 
these glyphs or icons to encode several variables of information for 
each data record they represent, while still being easily visually 
differentiable. We propose to encode each additional layer of 
information as corresponding additional features on the glyph with a 
decreasing level of visual importance. 

In order achieve our clarity goals we set forth the following 
requirements. 

• Dimensions: We use three-dimensional glyphs so as to allow 
partial occlusion and partial extrusion specially when glyphs 
resting on the same plane.  

• Size: We set all glyphs to be the same perceived size. 

• Shape: We choose glyphs that when partially occluded are 
still mostly distinct from the other glyphs 

• Orientation: We set glyphs to always be facing the same 
direction. 

4.1 On Dimensions 
The use of 3D glyphs is crucial, particularly for 2D scatter plots, 

where all icons rest on the same plane. The use of 3D glyphs allows 

Fig. 2. 3D Glyphs, with full left side and full right side data features. 

 



OCCLUDING SHAPES 

 

for several icons to be in extremely close proximity while some 
characteristic regions of the shape to protrude --assuming good glyph 
design. 

When flat 2D glyphs, as used on classical plotting systems, are 
overlapped the resulting image varies depending on the rendering 
order. Rendering order becomes unimportant for overlapping (non-
coincident) data points when 3D glyphs are used. 

Because the requirements we impose on size and orientation, 3D 
rendering even of large number of glyphs can be easily managed. 
“Pre-backed” renderings of (colorless) glyphs can be made with all 
permutations of the different discrete additional characteristics. 
These can be then stored as sprites with depth (i.e. z-buffer), and 
then used to quickly render highly complex scenes. This technique is 
particularly useful in systems with limited graphic processing 
capabilities, which includes most compute clusters. 

4.2 On Size 
In order for glyphs to appear to be the same size, we make glyphs 

with a curved profile slightly larger than those with flat profiles. This 
is a well-known visual effect that is commonly addresses in 
typography in the same fashion. See figure 2. 

We extend this approach to sharp objects, like the cone. We take 
similar considerations of the sides of the glyph, so as to appear of 
similar width; as well as protrusions from the front face of the object 
(towards the viewer) that will aid in the object being recognizable. 
We address all this issues manually upon design of the glyphs, and 
use visual inspection. 

4.3 On Shape 
The construction of these glyphs was done with several criteria in 

mind: front profile, top profile, protrusions, and corners versus 
curved regions. 

For the front profile, we started with most basic shapes that are 
common to 2D plots. These include circles, triangles, stars, boxes, 
pluses and exes. We proceeded to derive 3D shapes with these listed 
front profiles. Circles translate to spheres and tori. Triangles translate 
to pyramids (or tetrahedral) and cones. Boxes translate to cubes and 
cylinders. While exes and pluses could be made intro 3D glyph in a 
similar fashion, each branch of the glyph has a potential to extrude 
beyond an occluding object and be confused for a different type of 
glyph or a feature in a simpler glyph. Same difficulty as can be 
encountered with star plot based 3D icons. It should be possible to 
very carefully construct a 3D icon from these that is unique and does 
not lead to these possible visual confusing situations. We believe the 
number of glyphs presented in this work is sufficient to be efficient 
yet perceptually manageable. 

These chosen basic shapes demonstrate a variety of top and 
bottom profiles: circle, square, point, triangle, and ellipse. So, while 
some glyphs do share same front profile, particularly the cylinder 
and cube, the number of protruding corners (or lack there off) and 
top profiles allow them to remain recognizable even on densely 
populated plot regions. Furthermore, the lighting exacerbates the 
visual distinction between shapes, aiding in the ability to 
differentiate between them. Similarly, the cone and pyramid, 
depending on orientation, can exhibit same front profiles, i.e. a 
triangle. We thus chose the cone to point upward, while the pyramid 

was set to have one horizontal edge at the top, while pointing 
outwards. 

4.4 On Rotation and Orientation 
If we were to design a glyph where its faces were parallel to the 

front plane, then when overlapped with same others, they would 
create a large plane, rather than a more complex surface we desire. 
Likewise, if the top and bottom profile were aligned with the floor, 
when using an orthographic projection --as we mostly do-- the top 
and bottom profile would be hidden. We therefore rotated all icons 
the same amount both horizontally and vertically. The resulting 
rotation is equivalent to a 30-degree rotation around an axis 30-
degrees west of north (i.e. 30 degrees right of screen up vector). As 
we will discuss later, the addition of extra features on the side of the 
object will also benefit from the horizontal rotation component, in 
order to give more visual importance (via proximity) to one side over 
the other. 

Meanwhile, as pointed out repeatedly, the glyphs are carefully 
crafted to have unique appearances, especially when highly 
occluded. Thus, when extending the use of these glyphs to a 3D 
space, as 3D graph, having the glyphs preserve their initial 
orientation both enforces their appearance and their designed ability 
to be recognized when overlapping. 

 
 

 balls boxes tets cones tori cans 

ball 5% 48% 92% 91% 42% 53% 

box 47% 4% 86% 92% 58% 38% 

tet 25% 27% 6% 69% 44% 18% 

cone 22% 12% 66% 8% 28% 10% 

torus 65% 19% 93% 83% 8% 49% 

Can 44% 51% 92% 87% 57% 5% 

4.5 Glyph Shape Evaluation 
The foremost evaluation that has to take place is a visual 

inspection of the shapes resulting from each glyph when it is 
partially occluded. We do so by constructing a grid of each glyph 
overlapped on two sides by each of the other glyphs, as presented 
through an occlusion matrix as in figure 5. Purely from visual 
evaluation it is easy to pick out glyphs that may violate any of the 
premises we have established. 

Beyond visual evaluation, we designed an empirical occlusion 
test that evaluates the number of pixels visible for a glyph as 
partially occluded by other two. We perform these tests at a range of 
different overlapping distances. The results helped in validating our 
design premises. For all shown glyphs, when bounding boxes 
overlapped on 90% of the center region of the test object by both 
“occluding” objects, and 5% on each side of the test object by just 
one occluding object; on average 54% of possible pixels were still 
visible. This excludes same shape comparisons between occluder and 
test object. When the occluding shape was the same as the shape 
being tested, the average of theses cases was 6% of possible pixels 
visible, with the box being the worst case at 4%, and cone the best at 
8%. As can be see in table 1, the box glyph is the worst (i.e. most 
efficient) occluder, while the sphere glyph is the best at protruding 
from occluders. 

Overall, the reason for these high results is due to the careful 
design of the shapes. If the shapes were not given the slight rotation 
then the boxes may completely occlude all other objects. Similarly, 
setting the objects to be visually equivalent in size, means that 
objects like the cone and pyramid have extrusions that stick out of 
even highly occluding objects like the cylinder and the box. 

Fig. 3. Classic example of 
typographic design, where 
curved shapes (letters) 
are drawn beyond the 
guide lines (base line and 
x-height overhang) to 
allow letters to seem 
visually equivalent in 
height. Shown font is 
Adobeʼs Garamond. 
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Table. 1. Occlusion tests results for 90% overlap between test object 
and 2 occluders on each side. Measured in percent of visible pixels. 

 

 



In the end, it is not only necessary for the glyphs to be capable of 
being visible when highly occluded, but it is the uniqueness and 
quality of what pixels are visible that will dictate good glyph design. 
Notice that similar physical qualities between a sphere and a 
dodecahedron, or between a cone and a regular tetrahedron oriented 
exactly the same, make them bad candidates to be both used on the 
same plot. Ultimately, the way to determine this is through thorough 
visual inspection. 

5 DATA LAYERING 
When encountering a scatter data-plot, the first visual impression 

is that of the overall spatial data distribution. Upon further inspection 
the visual qualities of the data points become relevant. From color 
research [4] we know that luminosity is more important visually than 
hue. Our use of 3D glyphs results in an image where the shapes of 
the objects are mostly encoded across the luminosity channel due to 
the standard lighting model and basic scene environment setup. 
Thus, color (i.e. hue) will be subordinate to shape. 

Given our choice for standardized size glyphs with piecewise 
smooth shapes, we can encode further information as additional 
shape features, or “arms”. We define arms as geometric protrusions, 
orthogonal to the surface, constructed by smaller versions of the 
original glyph, and in the same color. We limit the number of arms to 
three, to each the left and right side of the glyph. In order to establish 
a difference between encode binned variables on each side, we 
enforce a slight tilt of the object towards the right. This forces the 
arms on the left side to appear more prominently than the arms on 
the right side. Each variable is binned into four buckets, from which 
they are mapped into 0 to 3 arms. While we could have device a 
binary permutation scheme to increase the number of buckets 
encoded, it would have unnecessarily increase the glyphs 
complexity. 

Finally, we use straight binning of the data by dividing the 
variable’s domain into even intervals. If the data is mostly 
concentrated into one bin, that is something that will become easily 
apparent through our paradigm. However, we do offer three 
alternatives to this situation. First, we can iterate a desired number of 
times, re-dividing overly populated bins, in order to achieve better 
load balance. Second alternative is to offer interactive sliders to 
allow for varying limits of each of the bins. Finally, we can also do a 
simple analysis of each bin, and define a new variable for the 
distribution in each bin, which can be mapped to a different attribute. 
This is somewhat equivalent to separating a signals low frequencies 
from the high ones, and visualizing them separately. 

6 RESULTS AND CONCLUSION 
We present two sample utilizations of our proposed 3D glyphs. 

We collaborated with experts in both fields to ensure that the results 
were both accurate, useful, and offered novel insight into their data. 

We believe that our results are quite successful, and can be 
coupled into modern data exploration systems, to offer greater power 
for researchers to do visual data analysis. We offer a set of glyphs 

that can be empirically tested for their ability to be perceivable even 
on highly dense plots, and show how to visually test their 
effectiveness through uniqueness. We also present a way to layer 
data, and we show how having an a priori goal for the way the layers 
of information are perceived can help achieve meaningful 
multivariate plots. Finally we show highly dense plots, where not 
only it is still possible to recognize glyphs even quite occluded; but 
the resulting image of these regions can be read as a bump map, or as 
a texture encoding patterns of the data represented. 

6.1 Visualizing High Energy Physics Events 
Current research in High Energy Physics has lead to 

groundbreaking and awe inspiring scientific projects such as 
CERN’s Large Hadron Collider (LHC) detector. The amount of data 
that can be gathered from such a tool and how to analyze it is an 
open research goal scientists are trying to figure out. Scientists are 
currently generating simulations that mimic the data coming from the 
LHC, which have already been pre-classified as meaningful signal 
events versus background events. This distinction is something 
researchers will have to do from the actual data as it is gathered. As 
researchers dive into the current simulated data, they start by visually 
mining it in order to find patterns, possible way to cluster the events, 
ultimately classify them as signals or background events, and 
specially trying to understand outliers and their meaningfulness. 

We begin our study by mapping the pre-classification between 
signal and background noise into a separate variable, and then doing 
principal component analysis (PCA) on the data (without the 
classification variable). We construct a correlation table to better 
understand how the created PCA components map to the original 
variables. We further create an outlier evaluation that creates a rank 
variable. For all of this we use a combination of Mondrian [11] (R 
based [14]) and Mollegro’s Data Modeler [10]. 

From this analysis we learn that the energy for each pair of 
photos is fairly independent of other variables, as is the Higgs mass. 
Furthermore, the Higgs mass highly correlates to the outlier rank. 
We create a plot, where we map two principal components to the 
Cartesian coordinates, the delta Phi (angle between particle paths) 
we bin into 6 buckets corresponding to each shape, the Higgs mass 
we map to color, and each photon’s energy we bin into four buckets 
and map it to arms on left and right respectively. See figure 1. 

We analyzed the resulting visualization with a High Energy 
Physics field expert, and right away there were features of the overall 
plot that were quite meaningful. Few outliers, due to their spatial 
location were easy to detect. Due to the additional layered 
information it was also easy to learn more about the specifics of 
these data points, which was quite meaningful to the researcher. 
Notice in for instance the event represented by a green cylinder at the 
bottom, which was of particular interest to our expert. Both the color 
and the number of arms corresponded to a high energy, and high 
mass event, which he would have expected would be true, and was 
able to confirm. Finally, we created an alternative plot, where pre-
classified signals were mapped closer in depth versus background 
noise events, creating a seven variable plot, which we can use to 
verify hypothesis gathered from the unclassified version. 

6.2 Other Results 
Figure 7 shows a subset of the 2008 VAST challenge dataset, as 

graph created by applying Eigen state reduction. We encode 
connections in the graphs with semi-transparent lines, to set them at 
less visual importance than the position and shape of the data points. 
The width of the line is maps to bins for call length. Thus this one 
plot presents nine meaningful variables. 

7 FUTURE WORK 
This paper focuses on the design of unique glyphs that meet our 

criteria for clear display of multivariate data in high density plots. 
We believe some further work is warranted both in layering extra 

Fig. 4. (Left) Desired visual importance order goal design. Includes 
possible future extensions (Right) Left side, and right side features. 

 



information into our paradigm, as well as aiding in the exploration of 
this complex plots. 

We are currently experimenting with adding subtle motion (jitter 
or twist) to the glyphs. We believe, that in keeping with our 
experience, binning an extra data variable, and mapping it to four 
different rates of motion/vibration (none, mild, medium, and fast) 
allow us to layer additional information, without compromising our 
goal of clarity. We however have not reached a conclusion as to how 
such motion is still acceptable or simply distracting, and whether 
layering extra motion on different axis is possible (or yaw, pitch, and 
roll), and differentiable from one another. 

Additionally, while dense plots can create visual textures that 
encode valuable information, we complemented our work with the 
ability to explore these dense areas, and probe individual glyphs. We 
use an interactive localized magnification algorithm, to expand 
glyphs within a small area., as can be see in figure 6. 
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Fig. 5. Occlusion test matrix. Rows: test glyphs, Columns: occluders. 

 

Fig. 6. Sample 
magnifying lens 
exploration of dense 
plot. Left image 
shows a highly 
dense plot region of 
HEP data set. Right 
shows how a simple 
transform, can 
expand the space 
between glyphs in 
region of interest, to 
better explore 
contents. 

 



Fig. 8. Small Stars 
and Galaxy data set. 
After principal 
component analysis, 
components 2 and 1 
mapped to x,y. Hue 
mapped to “gmag”. 
Shape mapped to 
“zmag”. Left arms 
mapped to “umag”, 
right branches to 
“rmag”. On left flat 
plot, on right plot 
classification with 
galaxies separated 
from stars by depth. 

 
Fig. 9. Expanded view of High 
Energy Pysics Data set. Data 
set over 10,000 data records. 
Notice that up close, the overlap 
of the glyphs create a distinct 
texture, in which it is still 
possible to recognize individual 
shapes. Notice as well the 
outliers, and how even on quick 
inspection it is possible to 
recognize shape, hue, and 
added features (arms), which all 
map to specific data properties. 
On bottom left hint at 
classification between signals 
and background events, 
classification which researchers 
are striving for. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 7. VAST 2008 competition data, call connectivity subset. 3D graph was generated using Eigen state reduction from created adjacency sparse matrix. Line width 
signifies length of call between connected glyphs. Glyph color marks total number of minutes called by. Left arms indicate number of incoming calls. Right arms show 
outgoing calls. Notice set of spheres and two cubes in zoomed region in center, that have many connections, have lots of minute usage, but mostly receive calls. 

 


