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Abstract— We study the SIRS (Susceptible-Infected-
Recovered-Susceptible) spreading processes over complex
networks, by considering its exact 3n-state Markov chain model.
The Markov chain model exhibits an interesting connection
with its 2n-state nonlinear “mean-field” approximation and
the latter’s corresponding linear approximation. We show that
under the specific threshold where the disease-free state is a
globally stable fixed point of both the linear and nonlinear
models, the exact underlying Markov chain has an O(logn)
mixing time, which means the epidemic dies out quickly. In
fact, the epidemic eradication condition coincides for all the
three models. Furthermore, when the threshold condition is
violated, which indicates that the linear model is not stable,
we show that there exists a unique second fixed point for the
nonlinear model, which corresponds to the endemic state. We
also investigate the effect of adding immunization to the SIRS
epidemics by introducing two different models, depending
on the efficacy of the vaccine. Our results indicate that
immunization improves the threshold of epidemic eradication.
Furthermore, the common threshold for fast-mixing of the
Markov chain and global stability of the disease-free fixed point
improves by the same factor for the vaccination-dominant
model.

I. INTRODUCTION

Epidemic models have been extensively studied since a
first mathematical formulation was introduced in 1927 by
Kermack and McKendrick [1]. Though initially proposed to
understand the spread of contagious diseases [2], the study
of epidemics applies to many other areas, such as network
security [3], [4], viral advertising [5], [6], and information
propagation [7], [8]. Questions of interest include the exis-
tence of fixed-points, stability (does the epidemic die out),
transient behavior, the cost of an epidemic, how best to
control an epidemic, etc.

We consider the spread of an epidemic over a network
using the SIRS (susceptible-infected-recovered-susceptible)
model where each node can be in one of three states (e.g. as
in [9], but network-based). During each time epoch, nodes
in the susceptible state can be infected by their infected
neighbors according to independent events with probability
β (the infection rate) each. Nodes that are infected, during
each such time epoch can recover with probability δ (the
recovery rate) and, finally, nodes in the recovered state can
randomly transition to the susceptible state with probability
γ. We will also consider a model which allows for random
vaccinations (with probability θ) that permits direct transition
from the susceptible state to the recovered one. In its entirety,
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for a network with n nodes, this yields a Markov chain
with 3n states. Ostensibly, because analyzing this Markov
chain is too complicated, various 2n-dimensional linear and
non-linear approximations have been proposed. The most
common of these are the 2n-dimensional non-linear mean-
field approximation, and its corresponding linearization about
the disease-free fixed point.

Our paper generalizes the analysis of [10], [11], that
was concerned with SIS (susceptible-infected-susceptible)
models, to the more realistic SIRS case. As in [10], [11], we
provide a complete global analysis of the epidemic dynamics
for the nonlinear mean-field model. In particular, we show
that depending on the largest eigenvalue of the underlying
graph adjacency matrix and the ratio of the infection and
recovery rates, the global dynamics takes on one of two
forms: either the epidemic does out, or it converges to
another unique fixed point (the so-called endemic state where
a constant fraction of the nodes remain infected). Finally,
we tie in these results with the “true” underlying Markov
chain model and show that the global stability of the 2n-
dimensional approximate models is related to whether the
Markov chain is “fast-mixing” or not.

Our paper focuses on discrete-time models (Markov chains
and their low-dimensional discrete-time approximations).
Continuous-time-discrete-space models, called continuous-
time Markov chains have been studied by Draief, Ganesh et
al. [12] and Mieghem et al. [13]. Continuous-time mean-field
approximations for such models have been studied in [14],
[15], [16], where using techniques from Lyapunov theory
and the theory of positive systems (and somewhat different
from those used here and in [10], [11]), global stability
results and thresholds are obtained for the disease-free and
endemic states. However, contrary to the current paper, none
of these make an explicit connection to the mixing time of
the underlying Markov process.

II. MODEL DESCRIPTION

A. Exact Markov Chain Model

We start with the exact Markov chain model. For the con-
nected network G with adjacency matrix A, let n represent
the number of nodes, and Ni the set of neighbors of node
i. The state of node i at time t, denoted by ξi(t), can take
one of the following values: 0 for Susceptible (or healthy), 1
for Infected (or Infectious), and 2 for Recovered. i.e. ξi(t) ∈
{0, 1, 2}. Fig. 1 shows the three states and the corresponding
transitions. β is the transmission probability on each link,
δ is the healing probability, and γ is the immunization
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Fig. 1: State diagram of a single node in SIRS model, and the
transition rates. Wavy arrow represents exogenous (network-
based) transition. S is healthy but can get infected, I is
infected, R is healthy but cannot get infected.

loss probability. The state of the whole network can be
represented as:

ξ(t) = (ξi(t), . . . , ξn(t)) ∈ {0, 1, 2}n (1)

Furthermore, let S denote the 3n × 3n state transition
matrix of the Markov chain, with elements of the form:

SX,Y = P {ξ(t+ 1) = Y | ξ(t) = X}

=

n∏
i=1

P {ξi(t+ 1) = Yi | ξ(t) = X} , (2)

due to the independence of the next states given the current
state.

P {ξi(t+ 1) = Yi | ξ(t) = X} =

(1− β)mi , if (Xi, Yi) = (0, 0)

1− (1− β)mi , if (Xi, Yi) = (0, 1)

0, if (Xi, Yi) = (0, 2)

0, if (Xi, Yi) = (1, 0)

1− δ, if (Xi, Yi) = (1, 1)

δ, if (Xi, Yi) = (1, 2)

γ, if (Xi, Yi) = (2, 0)

0, if (Xi, Yi) = (2, 1)

1− γ, if (Xi, Yi) = (2, 2)

, (3)

where mi = |{j ∈ Ni | Xj = 1}| = |Ni ∩ I(t)|. The set
of susceptible, infected, and recovered nodes at time t are
denoted as S(t), I(t), and R(t) respectively.

We state the marginal probability of the nodes as pR,i(t)
and pI,i(t), for the probability that node i is in state R
at time t and the probability that node i is in state I at
time t, respectively. Then pS,i(t) follows immediately as
1−pR,i(t)−pI,i(t). Based on the abovementioned transition
rates, we can calculate these marginal probabilities as:

pS,i(t+ 1) =P {i ∈ S(t+ 1) | i ∈ S(t)} pS,i(t)
+ P {i ∈ S(t+ 1) | i ∈ R(t)} pR,i(t),

(4)

pI,i(t+ 1) =P {i ∈ I(t+ 1) | i ∈ I(t)} pI,i(t)
+ P {i ∈ I(t+ 1) | i ∈ S(t)} pS,i(t),

(5)

pR,i(t+ 1) =P {i ∈ R(t+ 1) | i ∈ R(t)} pR,i(t)
+ P {i ∈ R(t+ 1) | i ∈ I(t)} pI,i(t),

(6)

which yeids:

pR,i(t+ 1) = (1− γ)pR,i(t) + δpI,i(t),

pI,i(t+ 1) = (1− δ)pI,i(t)
+ (1− (1− β)mi)(1− pR,i(t)− pI,i(t)),

(7)

(8)

and

pS,i(t+1) = (1−β)mi(1−pR,i(t)−pI,i(t))+γpR,i(t). (9)

This is consistent with the fact that pS,i(t) + pI,i(t) +
pR,i(t) = 1 for all t.

B. Nonlinear Model

One may consider the mean-field approximation of the
above marginal probabilities, which can be expressed as:

PR,i(t+ 1) = (1− γ)PR,i(t) + δPI,i(t),

P I,i(t+ 1) = (1− δ)PI,i(t)+

(1−
∏
j∈Ni

(1− βPI,j(t)))(1− PR,i(t)− PI,i(t)),

(10)

(11)

and

PS,i(t+ 1) =
∏
j∈Ni

(1− βPI,j(t))(1− PR,i(t)− PI,i(t))

+ γPR,i(t). (12)

We use capital P for the approximated probabilities, to
distinguish them from the exact probabilities of the Markov
chain, p. This approximate model is in fact a nonlinear
mapping with 2n states (rather than 3n states).

C. Linear Model

One step further would be to approximate the preceding
equations by a linear model. Linearizing Eqs. (10) and (11)
around the origin results in the following mapping:

P̃R,i(t+ 1) = (1− γ)P̃R,i(t) + δP̃I,i(t), (13)

P̃I,i(t+ 1) = (1− δ)P̃I,i(t) + β
∑
j∈Ni

P̃I,j . (14)

These equations (for all i) can be expressed in a matrix form:[
P̃R(t+ 1)

P̃I(t+ 1)

]
= M

[
P̃R(t)

P̃I(t)

]
,

where

M =

[
(1− γ)In δIn

0n×n (1− δ)In + βA

]
.

(15)

(16)



III. EPIDEMIC ERADICATION ( βλmax(A)
δ < 1)

A. The Trivial Fixed Point of the Map and Steady State of
the MC

The origin is trivially a fixed point of both the linear (Eq.
15) and nonlinear (Eqs. 10 and 11) mappings. In fact, at this
fixed point we have:

[PR,1(t), . . . , PR,n(t), PI,1(t), . . . , PI,n(t)]T = 02n,

which means all the nodes are susceptible (healthy) with
probability 1, and the system stays there permanently, be-
cause there are no infected nodes anymore.

More importantly, since the graph G is connected, the
Markov chain is irreducible, and it can be seen that its
(unique) stationary distribution is:

π = e0̄,

where eX ∈ R3n denotes the probability vector with
all elements of zero, except the X-th one. This means
that the steady state of the Markov chain model is ξ =
(0, 0, . . . , 0) = 0̄, which coincides with the abovementioned
fixed point of the mappings. However, the main concern
is whether the Markov chain converges to its stationary
distribution within a “reasonable amount of time,” or not.

B. Stability of the Trivial Fixed Point

Clearly, if ‖M‖ < 1, then the origin is globally stable for
the linear model (15) and also locally stable for the nonlinear
model (11, 10). The eigenvalues of M matrix consist of the
eigenvalues of (1− γ)In and the eigenvalues of (1− δ)In +
βA. Noticing that the eigenvalues of (1 − γ)In are always
less than one, it can be concluded that ‖M‖ < 1 if the largest
eigenvalue of (1− δ)In + βA is less than one.

In addition, the linear model (15) is an upperbound on the
nonlinear model (10, 11), i.e.

PI,i(t+ 1) = (1− δ)PI,i(t)

+ (1−
∏
j∈Ni

(1− βPI,j(t)))(1− PR,i(t)− PI,i(t))

≤ (1− δ)PI,i(t) + β
∑
j∈Ni

PI,j , (17)

and consequently

PI(t+ 1) � ((1− δ)In + βA)PI(t), (18)

where � denotes that the inequality holds element-wise for
all the elements. This concludes the following result.

Proposition III.1. If βλmax(A)
δ < 1, then the origin is a

globally stable fixed point for both linear model (15) and
nonlinear model (10, 11).

C. Mixing Time of the MC

We further show that when βλmax(A)
δ < 1, not only are

the linear and nonlinear maps globally stable at the origin,
but also the mixing time of the Markov chain is O(log n),
meaning that the Markov chain mixes fast and the epidemic

dies out. This result has been shown for the simpler case of
SIS model in [11].

Let the row vector µ(t) ∈ R3n be the probability vec-
tor of the Markov chain. The relationship between these
probabilities (µX(t)) and the marginal probabilities (pR,i(t),
pI,i(t)) is in the following forms: pR,i(t) =

∑
Xi=2 µX(t),

pI,i(t) =
∑
Xi=1 µX(t). We express all these terms as well

as p0 =
∑
µX(t) = 1 in the form of a column vector

p(t) = [p0(t), p1(t), . . . , p2n]T . i.e.

p(t) =
[
1, pR,1(t), . . . , pR,n(t), pI,1(t), . . . , pI,n(t)

]T
.

(19)
The matrix B ∈ R3n×(2n+1) which relates the observable
data, p(t), and the hidden complete data, µ(t), can be
expressed as:

BX,k =



1, if k = 0

0, if k ∈ {1, 2, . . . , n} and Xk = 0

0, if k ∈ {1, 2, . . . , n} and Xk = 1

1, if k ∈ {1, 2, . . . , n} and Xk = 2

0, if k ∈ {n+ 1, n+ 2, . . . , 2n} and Xk−n = 0

1, if k ∈ {n+ 1, n+ 2, . . . , 2n} and Xk−n = 1

0, if k ∈ {n+ 1, n+ 2, . . . , 2n} and Xk−n = 2
(20)

Now we are ready to proceed to the main theorem of this
section.

Theorem III.2. If βλmax(A)
δ < 1, the mixing time of the

Markov chain whose transition matrix S is described by Eqs.
(2) and (3) is O(log n).

Proof. First we use a linear programming technique to show
for each i ∈ {n+ 1, n+ 2, . . . , 2n}, we have pi(t + 1) ≤
(1− δ)pi(t)+β

∑
j∈Ni

pj(t). Let fi ∈ R2n+1 represent the ith

unit column vector. For the sake of convenience, let us drop
the time index (t).

max
µB=pT ,µ�0

pi(t+ 1) = max
µB=pT ,µ�0

µSBfi (21)

= max
µ�0

min
λ
µSBfi − (µB − pT )λ

(22)

= min
λ

max
µ�0

µ(SBfi −Bλ) + pTλ,

(23)

where λ ∈ R2n+1 is a column vector. If any ele-
ment of (SBfi − Bλ) is strictly positive, it leads to
maxµ�0 µ(SBfi −Bλ) = +∞. Therefore:

SBfi −Bλ � 0. (24)



Now we proceed with further calculation of SBfi and Bλ.

(SBfi)X = (SB)X,i =
∑

Y ∈{0,1,2}n
SX,YBY,i (25)

=

{
P {Yi = 2 | X} , i ∈ {1, 2, . . . , n}
P {Yi−n = 1 | X} , i ∈ {n+ 1, n+ 2, . . . , 2n}

(26)

=



0, if i ∈ {1, 2, . . . , n} and Xi = 0

δ, if i ∈ {1, 2, . . . , n} and Xi = 1

1− γ, if i ∈ {1, 2, . . . , n} and Xi = 2

1− (1− β)mi−n , if i ∈ {n+ 1, . . . , 2n} and Xi−n = 0

1− δ, if i ∈ {n+ 1, . . . , 2n} and Xi−n = 1

0, if i ∈ {n+ 1, . . . , 2n} and Xi−n = 2

(27)

(Bλ)X = λ0 +

n∑
k=1

BX,kλk +

2n∑
k=n+1

BX,kλk. (28)

As mentioned earlier, we want to evaluate pi(t + 1) only
for i ∈ {n+ 1, n+ 2, . . . , 2n}. Define î ∈ {0, 1, 2}n as the
state where only i is infected, and the rest are susceptible.
Trying several X in (24) using (27) and (28) yields:

X = 0̄, λ0 + 0 + 0 ≥ 0

X = 2̄, λ0 +
n∑
k=1

λk + 0 ≥ 0

X = î, λ0 + 0 + λn+i ≥ 1− δ
X = ĵ, j ∈ Ni, λ0 + 0 + λn+j ≥ β
X = ĵ, j 6∈ Ni, λ0 + 0 + λn+j ≥ 0

(29)

Now we claim that λ∗ = [λ∗0, λ
∗
1, . . . , λ

∗
2n]T defined by the

following values is in the feasible set:

λ∗0 = 0

λ∗1 = · · · = λ∗n = 0

λ∗n+i = 1− δ
λn+j = β for j ∈ Ni
λn+j = 0 for j 6∈ Ni

(30)

We verify the claim for all possible cases as the following.
For Xi = 0, |Ni ∩ I(t)| = m :

P {Yi = 1 | X} = 1− (1− β)m ≤

mβ = λ∗0 +

n∑
k=1

BX,kλ
∗
k +

2n∑
k=n+1

BX,kλ
∗
k. (31)

For Xi = 1, |Ni ∩ I(t)| = m :

P {Yi = 1 | X} = 1− δ ≤

1− δ +mβ = λ∗0 +

n∑
k=1

BX,kλ
∗
k +

2n∑
k=n+1

BX,kλ
∗
k. (32)

For Xi = 2, |Ni ∩ I(t)| = m :

P {Yi = 1 | X} = 0 ≤

mβ = λ∗0 +

n∑
k=1

BX,kλ
∗
k +

2n∑
k=n+1

BX,kλ
∗
k. (33)

It follows that λ∗ is in the feasible set. Back to the Eq. (23)
we have:

max
µB=pT ,µ�0

pi(t+ 1) = min
λ

max
µ�0

µ(SBfi −Bλ) + pTλ

≤ pTλ∗ = (1− δ)pi + β
∑
j∈Ni

pj ,

(34)

which proves:

pI,i(t+ 1) ≤ (1− δ)pI,i(t) + β
∑
j∈Ni

pI,j(t). (35)

Moreover, we already know that pR,i(t + 1) =
(1 − γ)pR,i(t) + δpI,i(t) (Eq. 7), and all the
equations can be expressed in a vector form,
using pR = [pR,1(t), pR,2(t), . . . , pR,n(t)]T and
pI = [pI,1(t), pI,2(t), . . . , pI,n(t)]T :

[
pR
pI

]
(t+ 1) �

[
(1− γ)In δIn

0n (1− δ)In + βA

] [
pR
pI

]
(t)

(36)

= M

[
pR
pI

]
(t).

The definition of the mixing time [17] is:

tmix(ε) = min

{
t : sup

µ
‖µSt − π‖TV ≤ ε

}
. (37)

More specifically we have:

‖µSt − π‖TV =
1

2

∑
X

|(µSt)X − πX | (38)

=
1

2

∑
X

|(µSt)X − (e0̄)X | (39)

=
1

2

(
1− (µSt)0̄

)
+

1

2

∑
X 6=0̄

(µSt)X (40)

=
1

2

(
1− (µSt)0̄

)
+

1

2

(
1− (µSt)0̄

)
(41)

= 1− (µSt)0̄ (42)

= 1− µSteT0̄ (43)

≤ 1− e1̄S
teT0̄ . (44)



Hence, for any t < tmix(ε):

ε < 1− P
{

all nodes are susceptible at time t|
all nodes were infected at time 0

}
(45)

= P
{

some nodes are infected or recovered at time t|
all nodes were infected at time 0

}
(46)

≤
n∑
i=1

(pI,i(t) + pR,i(t)) = 1T2n

[
pR
pI

]
(t) (47)

≤ 1T2nM
t

[
pR
pI

]
(0) (48)

≤ 1T2nM
t12n (49)

≤ ‖12n‖2‖M‖t (50)
= 2n‖M‖t. (51)

‖M‖ < 1 leads to the fact that t < log 2n
ε

− log ‖M‖ for all t <

tmix(ε). Therefore tmix(ε) ≤ log 2n
ε

− log ‖M‖ , which means the
mixing time is O(log n).

IV. EPIDEMIC SPREAD ( βλmax(A)
δ > 1)

A. Existence and Uniqueness of Nontrivial Fixed Point

The trivial fixed point of the mappings, the origin, is not
stable if (1− δ) + βλmax(A) > 1. Moreover, it is not clear
in general whether there exists any other fixed point, or how
many fixed points exist if so. However, it has been proved in
[10] that for SIS model indeed there exists a unique nontrivial
fixed point when (1−δ)+βλmax(A) > 1. In this section we
extend this result to the more general case of SIRS model.

By rearranging Eq. (11), we can rewrite the system equa-
tions as:

PR,i(t+ 1) =(1− γ)PR,i(t) + δPI,i(t)

PI,i(t+ 1) =PI,i(t) + (1− PR,i(t)− PI,i(t))
·
(
Ξi(PI(t))− ω(PR,i(t), PI,i(t))

)
,

(52)

(53)

where Ξi : [0, 1]n → [0, 1] and ω : [0, 1]2 → R+ are the
following maps associated with network G:

Ξi(PI(t)) = 1−
∏
j∈Ni

(1− βPI,j(t)), (54)

ω(PR,i(t), PI,i(t)) =
δPI,i(t)

1− PR,i(t)− PI,i(t)
. (55)

It can be verified that the maps defined above, enjoy the
following properties:
(a) Ξi(0n) = 0

∂Ξi(PI)
∂PI,j

∣∣∣∣
0n

= βAi,j

(b)

{
∂Ξi(PI)
∂PI,j

> 0 if i ∈ Nj
∂Ξi(PI)
∂PI,j

= 0 if i 6∈ Nj
(c) ∂2Ξi(PI)

∂PI,j∂PI,k
≤ 0 ∀i, j, k ∈ {1, . . . , n}

(d) ω(0, 0) = 0
∂ω(PR,i,PI,i)

∂PI,i

∣∣∣∣
(0,0)

= δ

(e) ∂ω(PR,i,PI,i)
∂PI,i

> 0 ∀PI,i ∈ (0, 1)

(f) ω(PR,i,PI,i)
PI,i

is an increasing function of both PR,i and

PI,i. More specifically: ω(s1,t1)
s1

< ω(s2,t2)
s2

if s1 < s2

and t1 < t2.
The main result of this section is as follows.

Theorem IV.1. If βλmax(A)
δ > 1, the nonlinear map (10, 11),

or equivalently (52, 53), has a unique nontrivial fixed point.

Proof. Let’s define the map Ψ: [0, 1]2n → Rn as Ψ =
[Ψ1, . . . ,Ψn]> with

Ψi(P (t)) = Ξi(PI(t))− ω(PR,i(t), PI,i(t)). (56)

Note that zeros of Ψ correspond to fixed points of the
nonlinear map (Eq. 53).

Now we define sets Ui and U as follows:

Ui = {xI ∈ [0, 1]n : Ψi(

[
xR
xI

]
) ≥ 0, 0n � xR � 1n − xI},

(57)

U =

n⋂
i=1

Ui. (58)

In plain words, U is the set of “infection situations” from
which the system becomes “more infected” or remains there.

From Lemma 3.1 in [10], λmax((1 − δ)In + βA) > 1
implies that there exists v � 0n such that (βA−δIn)v � 0n.
On the other hand Ψ(02n) = 0n and the Jacobian of Ψ at the
origin is equal to

[
0n×n βA− δIn

]
n×2n

. As a result, there

exists a small ε > 0 such that Ψ(

[
εu
εv

]
) = (βA − δIn)vε,

which is � 0n, and indicates that εv ∈ U .
We claim that if x, y ∈ U , then max(x, y) ,

(max(x1, y1), . . . ,max(xn, yn)) ∈ U . For all i ∈
{1, . . . , n}, ∃ ai ∈ [0, 1 − xi] s.t. Ξi(x) − ω(ai, xi) ≥ 0,
and ∃ bi ∈ [0, 1− yi] s.t. Ξi(y)− ω(bi, yi) ≥ 0.

Ψi(

[
c

max(x, y)

]
) = Ξi(max(x, y))− ω(ci,max(xi, yi)).

(59)

Without loss of generality assume max(xi, yi) = xi, then if
we pick ci = ai, it follows that:

Ψi(

[
c

max(x, y)

]
) = Ξi(max(x, y))− ω(ai, xi) (60)

≥ Ξi(x)− ω(ai, xi) ≥ 0. (61)

Inequality (61) comes from Property (b). Now max(x, y) ∈
Ui, and we can use the same argument for all i. Hence
max(x, y) ∈ U , and the claim is true.

It follows that there exists a unique maximal point x∗ ∈ U
such that x∗ � x for all x ∈ U . Moreover, since εv ∈ U , we
can conclude that x∗ � 0n (all elements of x∗ are positive).

Now we further claim that Ψi(

[
a
x∗

]
) = 0 for some 0n �

a � 1n − x∗ and ∀i ∈ {1, . . . , n}. Assume, by the way of

contradiction, that Ψi(

[
a
x∗

]
) 6= 0 for all 0n � a � 1n − x∗,

which means Ψi(

[
a
x∗

]
) > 0. Since Ψi(

[
a
x∗

]
) = Ξi(x

∗) −



ω(ai, x
∗
i ) > 0 and ω(ai, x

∗
i ) < ω(ai, zi) for any zi > x∗i

(Property (e)), there exists zi > x∗i such that

Ξi(x
∗)− ω(ai, zi) ≥ 0. (62)

Now define z = [z1, . . . , zn]> with zj = xj ∀j 6= i. For
every k ∈ {1, . . . , n} we have

Ψk(

[
a
z

]
) = Ξk(z)− ω(ak, zk) ≥ Ξk(x∗)− ω(ak, zk) ≥ 0,

for some 0n � a � 1n − z. The first inequality holds by
Property (b). The second inequality holds by (62) for k = i,
and by definition for k 6= i. It implies that z ∈ U . Since
zi > x∗i , this contradicts the fact that x∗ is the maximal point

is U . Hence Ψi(

[
a
x∗

]
) = 0 for some 0n � a � 1n−x∗, and

this is true for all i ∈ {1, . . . , n}. Thus far we have proved
that there exists a nontrivial zero for Ψ.

We note that in order for a point
[
p∗R
p∗I

]
to be a fixed point

of the nonlinear map, it should satisfy Eq. (52), i.e.

p∗R,i = (1− γ)p∗R,i + δp∗I,i =⇒ p∗R,i =
δ

γ
p∗I,i. (63)

For proving the uniqueness of nontrivial zero of Ψ, as-
sume by contradiction that in addition to x∗, y∗ is another

nontrivial zero. Therefore y∗ ∈ U , and Ψ(

[
b
y∗

]
) = 0n for

some 0n � b � 1n − y∗.
We claim that y∗ is all-positive. Let us define K0 = {1 ≤

i ≤ n : y∗i = 0} and K+ = {1 ≤ i ≤ n : y∗i > 0}.
K0 ∪K+ = {1, . . . , n}. Assume that K0 is not empty and
k ∈ K0. Since G is connected, there exists j ∈ K+ such
that j is a neighbor of a k.

Ψk(

[
b
y∗

]
) = Ξk(y∗)− ω(bk, y

∗
k) = Ξk(y∗) > 0. (64)

The second equality holds by Property (d) and due to bk =
y∗k = 0 (from Eq. 63). The inequality comes from Property

(b) (k ∈ Nj) and y∗j > 0. This contradicts Ψ(

[
b
y∗

]
) = 0n,

and implies that K0 = ∅, and therefore every element of y∗

is positive.
By Property (c), and from Lemma 2.1 in [10], we know

for s ≤ 1

Ξi(u+ sv)− Ξi(u)

s
≥ Ξi(u+ v)− Ξi(u)

1
.

By setting u = 0n and v = x∗, and using Property (a), it
follows that

Ξi(sx
∗)

s
≥ Ξi(x

∗). (65)

For x∗ and y∗ there exists α ∈ (0, 1) such that y∗ � αx∗

and y∗j = αx∗j for some j ∈ {1, . . . , n}.

Ψj(

[
b
y∗

]
) = Ξj(y

∗)− ω(bj , αx
∗
j ) (66)

≥ Ξj(αx
∗)− ω(bj , αx

∗
j ) (67)

≥ αΞj(x
∗)− ω(bj , αx

∗
j ) (68)

> αΞj(x
∗)− αω(

bj
α
, x∗j ) (69)

= α
(
Ξj(x

∗)− ω(aj , x
∗
j )
)

= 0. (70)

Inequality (67) holds by Property (b), (68) follows from (65),
(69) holds by Property (f), and finally (70) comes from (63).

This contradicts that Ψi(

[
b
y∗

]
) = 0 for all i.

It concludes that
[
a
x∗

]
is the unique nontrivial zero of Ψ,

and hence the unique nontrivial fixed point of the system.

B. Stability of the Nontrivial Fixed Point

Since the trivial fixed point was globally stable when
βλmax(A)

δ < 1, the existence of a second unique fixed point
at βλmax(A)

δ > 1 raises the question of whether it is also
stable. However, it turns out that this is not true in general.
In fact, same as immune-admitting SIS model in [10], we
can find simple examples in which the system converges to
a cycle rather than the unique second fixed point.

Nevertheless, in the immune-admitting SIS, this fixed
point has shown to be stable with high probability for Erdős-
Rényi graphs [10]. Furthermore, in a variation of SIS model
[18], the second fixed point is indeed globally stable.

V. VACCINATION

In this section we consider the effect of vaccination by
incorporating direct immunization into the model studied in
the previous sections. In other words, the transition from
S to R is also permitted now (See Fig. 2). This class of
processes are sometimes referred to as SIV (Susceptible-
Infected-Vaccinated) epidemics, although the term is often
used for population-based estimated models. Depending on
the value of γ, this model can represent temporary (γ 6= 0)
or permanent (γ = 0) immunization.

Fig. 2: State diagram of a single node in the SIRS-with-
Vaccination model, and the transition rates. Wavy arrow rep-
resents exogenous (network-based) transition. θ represents
the probability of direct immunization.



A. Infection-Dominant Model

In this case, assuming that the infection is dominant
(meaning that if a susceptible node receives both infection
and vaccine at the same time, it gets infected), the elements
of state transition matrix are

SX,Y = P {ξ(t+ 1) = Y | ξ(t) = X}

=

n∏
i=1

P {ξi(t+ 1) = Yi | ξ(t) = X} , (71)

where

P {ξi(t+ 1) = Yi | ξ(t) = X} =

(1− β)mi(1− θ), if (Xi, Yi) = (0, 0)

1− (1− β)mi , if (Xi, Yi) = (0, 1)

(1− β)miθ, if (Xi, Yi) = (0, 2)

0, if (Xi, Yi) = (1, 0)

1− δ, if (Xi, Yi) = (1, 1)

δ, if (Xi, Yi) = (1, 2)

γ, if (Xi, Yi) = (2, 0)

0, if (Xi, Yi) = (2, 1)

1− γ, if (Xi, Yi) = (2, 2)

, (72)

and as before mi = |{j ∈ Ni | Xj = 1}| = |Ni ∩ I(t)|. As
can be noticed, the first and the third element in Eq. (72)
have changed, and for θ = 0 the model reduces to the non-
vaccinating one.

In this infection-dominant model the marginal probabili-
ties are:

pR,i(t+ 1) = (1− γ)pR,i(t) + δpI,i(t)

+ (1− β)miθ(1− pR,i(t)− pI,i(t)),
pI,i(t+ 1) = (1− δ)pI,i(t)

+ (1− (1− β)mi)(1− pR,i(t)− pI,i(t)),

(73)

(74)

and

pS,i(t+1) = (1−β)mi(1−θ)(1−pR,i(t)−pI,i(t))+γpR,i(t),
(75)

which is again consistent with the fact that pS,i(t)+pI,i(t)+
pR,i(t) = 1 for all t.

The steady state behavior in the presence of immunization
is rather different from the non-vaccinating case, in which
all the node became susceptible. In this model, once there is
no node in the infected state, the Markov chain reduces to
a simpler Markov chain, where the nodes are all decoupled.
In fact from that time on, each node has an independent
transition probability between S and R. The stationary
distribution of each single node is then P ∗S = γ

γ+θ and
P ∗R = θ

γ+θ (Fig. 3). In order for this MC to converge, we
should have γθ 6= 1. The stationary distribution of each state
X is then:

πX =

n∏
i=1

(
γ

γ + θ
)I(Xi=0) · 0I(Xi=1) · ( θ

γ + θ
)I(Xi=2)

Fig. 3: Reduced Markov chain of a single node in the steady
state.

Now the nonlinear map (mean-field approximation of the
Markov chain model) can is obtained as:

PR,i(t+ 1) = (1− γ)PR,i(t) + δPI,i(t)

+
∏
j∈Ni

(1− βPI,j(t))θ(1− PR,i(t)− PI,i(t)),

P I,i(t+ 1) = (1− δ)PI,i(t)+

(1−
∏
j∈Ni

(1− βPI,j(t)))(1− PR,i(t)− PI,i(t)),

(76)

(77)

and

PS,i(t+ 1) = γPR,i(t)+∏
j∈Ni

(1− βPI,j(t))(1− θ)(1− PR,i(t)− PI,i(t)). (78)

It can be easily verified that one fixed point of this
nonlinear map occurs at PR,i(t) = P ∗R and PI,i(t) = 0,
i.e. [

PR(t)
PI(t)

]
=

[
θ

γ+θ1n
0n

]
,

which is nicely consistent with the steady state of the Markov
chain.

By expanding the above model around its fixed point, up
to the first order, and doing some algebra, the linear model
can be obtained as:

P̃R,i(t+ 1) =P ∗R + (1− γ − θ)(P̃R,i(t)− P ∗R)

+ (δ − θ)P̃I,i(t)− θP ∗Sβ
∑
j∈Ni

P̃I,j , (79)

P̃I,i(t+ 1) =(1− δ)P̃I,i(t) + β
∑
j∈Ni

P̃I,j(1− P ∗R), (80)

and the matrix form of:[
P̃R(t+ 1)

P̃I(t+ 1)

]
=

[
P ∗R1n

0n

]
+M ′

[
P̃R(t)− P ∗R1n
P̃I(t)− 0n

]
,

where

M ′ =

[
(1− γ − θ)In (δ − θ)In − θP ∗SβA

0n×n (1− δ)In + P ∗SβA

]
.

(81)

(82)



1) Stability of the Fixed Point: The following result
summarizes the stability of the (disease-free) fixed point.

Proposition V.1. The main fixed point of the nonlinear map
(76, 77) is

a) locally stable, if γ
γ+θ

β
δ λmax(A) < 1, and

b) globally stable, if β
δ λmax(A) < 1 .

Proof. M ′ is in fact the Jacobian matrix of the nonlinear
map, and its largest eigenvalue is less than 1 if the largest
eigenvalue of (1 − δ)In + P ∗SβA) is less than 1. It follows
that the fixed point is locally stable under this condition, and
the statement a is true.

Eq. (77) can be upperbounded as:

P I,i(t+ 1) = (1− δ)PI,i(t)+

(1−
∏
j∈Ni

(1− βPI,j(t)))(1− PR,i(t)− PI,i(t))

≤ (1− δ)PI,i(t) + (β
∑
j∈Ni

PI,j)(1− PR,i(t)− PI,i(t))

(83)

≤ (1− δ)PI,i(t) + β
∑
j∈Ni

PI,j , (84)

which implies the statement b.

Note that from (83) to (84) it is not possible to show an
upperbound of (1−δ)PI,i(t)+(β

∑
j∈Ni

PI,j)(1−P ∗R) instead;

as it requires PR,i(t) + PI,i(t) ≥ P ∗R, which is equivalent
to PS,i(t) ≤ P ∗S , that is not true in general. The authors of
[19] have shown the same condition for the local stability,
but they do not provide any result on the global stability.

2) Mixing Time of MC: We show that the mixing time of
the infection-dominant Markov chain is also O(log n), when
β
δ λmax(A) < 1. Vectors µ(t), p(t) and the matrix B are
defined as before.

Theorem V.2. If βλmax(A)
δ < 1, the mixing time of the

Markov chain whose transition matrix S is described by Eqs.
(71) and (72) is O(log n).

Proof. First we show that for each i ∈
{n+ 1, n+ 2, . . . , 2n}, we have pi(t + 1) ≤
(1 − δ)pi(t) + β

∑
j∈Ni

pj(t). fi ∈ R2n+1 represents

the ith unit column vector, as before. For the sake of
convenience, let us drop the time index (t) again.

max
µB=pT ,µ�0

pi(t+ 1) = max
µB=pT ,µ�0

µSBfi (85)

= max
µ�0

min
λ
µSBfi − (µB − pT )λ

(86)

= min
λ

max
µ�0

µ(SBfi −Bλ) + pTλ,

(87)

where λ ∈ R2n+1 is the column vector of Lagrange mul-
tipliers. By the same argument as in the proof of Theorem
III.2

SBfi −Bλ � 0, (88)

and for the elements of SBfi and Bλ we have:

(SBfi)X = (SB)X,i =
∑

Y ∈{0,1,2}n
SX,YBY,i (89)

=

{
P {Yi = 2 | X} , i ∈ {1, 2, . . . , n}
P {Yi−n = 1 | X} , i ∈ {n+ 1, n+ 2, . . . , 2n}

(90)

=



(1− β)miθ, if i ∈ {1, 2, . . . , n} and Xi = 0

δ, if i ∈ {1, 2, . . . , n} and Xi = 1

1− γ, if i ∈ {1, 2, . . . , n} and Xi = 2

1− (1− β)mi−n , if i ∈ {n+ 1, . . . , 2n} and Xi−n = 0

1− δ, if i ∈ {n+ 1, . . . , 2n} and Xi−n = 1

0, if i ∈ {n+ 1, . . . , 2n} and Xi−n = 2

(91)

(Bλ)X = λ0 +

n∑
k=1

BX,kλk +

2n∑
k=n+1

BX,kλk. (92)

As mentioned before, we are interested to evaluate pi(t+ 1)
only for i ∈ {n+ 1, n+ 2, . . . , 2n}. Since the corresponding
terms in (91) (the lower three) do not depend on θ, the
equations for optimal Lagrange multipliers are the same as
in Theorem III.2, which lead to

pI,i(t+ 1) ≤ (1− δ)pI,i(t) + β
∑
j∈Ni

pI,j(t). (93)

and consequently

pI(t+ 1) � ((1− δ)In + βA)pI(t). (94)

Now for any t < tmix(ε):

ε < P
{

some nodes are infected at time t|
all nodes were infected at time 0

}
(95)

≤
n∑
i=1

pI,i(t) = 1TnpI(t) (96)

≤ 1Tn ((1− δ)In + βA)tpI(0) (97)

≤ 1Tn ((1− δ)In + βA)t1n (98)

≤ ‖1n‖2‖(1− δ)In + βA‖t (99)
= n‖(1− δ)In + βA‖t. (100)

‖(1 − δ)In + βA‖ < 1 leads to the fact that t <
log n

ε

− log ‖(1−δ)In+βA‖ for all t < tmix(ε). Therefore tmix(ε) ≤
log n

ε

− log ‖(1−δ)In+βA‖ , which means the mixing time is
O(log n).

B. Vaccination-Dominant Model

In this variation of the model the assumption is if a sus-
ceptible node receives both infection and vaccine at the same
time, it becomes vaccinated. The transition probabilities of
the Markov chain are again

SX,Y = P {ξ(t+ 1) = Y | ξ(t) = X}

=

n∏
i=1

P {ξi(t+ 1) = Yi | ξ(t) = X} , (101)



with the change that

P {ξi(t+ 1) = Yi | ξ(t) = X} =

(1− β)mi(1− θ), if (Xi, Yi) = (0, 0)

(1− (1− β)mi)(1− θ), if (Xi, Yi) = (0, 1)

θ, if (Xi, Yi) = (0, 2)

0, if (Xi, Yi) = (1, 0)

1− δ, if (Xi, Yi) = (1, 1)

δ, if (Xi, Yi) = (1, 2)

γ, if (Xi, Yi) = (2, 0)

0, if (Xi, Yi) = (2, 1)

1− γ, if (Xi, Yi) = (2, 2)

, (102)

and mi = |{j ∈ Ni | Xj = 1}| = |Ni ∩ I(t)| as before.
In this case the marginal probabilities are:

pR,i(t+ 1) = (1− γ)pR,i(t) + δpI,i(t)+

θ(1− pR,i(t)− pI,i(t)),
pI,i(t+ 1) = (1− δ)pI,i(t)+

(1− θ)(1− (1− β)mi)(1− pR,i(t)− pI,i(t))

(103)

(104)

The nonlinear map, or the mean-field approximation, can
be stated as:

PR,i(t+ 1) = (1− γ)PR,i(t) + δPI,i(t)

+ θ(1− PR,i(t)− PI,i(t)),
PI,i(t+ 1) = (1− δ)PI,i(t) + (1− θ)

· (1−
∏
j∈Ni

(1− βPI,j(t)))(1− PR,i(t)− PI,i(t))

(105)

(106)

As a result, the first order (linear) model is:

P̃R,i(t+ 1) =P ∗R + (1− γ − θ)(P̃R,i(t)− P ∗R)

+ (δ − θ)P̃I,i(t)− θP ∗Sβ
∑
j∈Ni

P̃I,j , (107)

P̃I,i(t+ 1) =(1− δ)P̃I,i(t) + (1− θ)P ∗Sβ
∑
j∈Ni

P̃I,j ,

(108)

or the following matrix form:[
P̃R(t+ 1)

P̃I(t+ 1)

]
=

[
P ∗R1n

0n

]
+M ′′

[
P̃R(t)− P ∗R1n
P̃I(t)− 0n

]
,

where

M ′′ =

[
(1− γ − θ)In (δ − θ)In − θP ∗SβA

0n×n (1− δ)In + (1− θ)P ∗SβA

]
.

(109)

(110)

We should note that for the vaccination-dominant model,
the steady state of the Markov chain and the main fixed
point of the mapping are exactly the same as in the
infection-dominant model. However, as we may expect, the
vaccination-dominant model is more stable.

1) Stability of The Fixed Point: The stability of the
vaccination-dominant model can be summarized in the fol-
lowing theorem.

Proposition V.3. The main fixed point of the nonlinear map
(105, 106) is

a) locally stable, if (1− θ) γ
γ+θ

β
δ λmax(A) < 1, and

b) globally stable, if (1− θ)βδ λmax(A) < 1 .

Proof. The statement a is again clear since if the largest
eigenvalue of (1−δ)In+(1−θ)P ∗SβA is less than one, then
the largest eigenvalue of M ′′ is less than 1, which means the
norm of the Jacobian matrix is less than 1.

The statement b also follows from upperbounding Eq.
(106) as

PI,i(t+ 1) ≤ (1− δ)PI,i(t) + (1− θ)β
∑
j∈Ni

PI,j . (111)

2) Mixing Time of MC: As shown above, the stability
condition of the main fixed point (epidemic eradication) is
relaxed by a factor of (1 − θ) in the vaccination-dominant
model. In this part, we show that the condition for the fast
mixing time of the Markov chain is also relieved by the same
factor.

Theorem V.4. If (1 − θ)βλmax(A)
δ < 1, the mixing time of

the Markov chain whose transition matrix S is described by
Eqs. (101) and (102) is O(log n).

Proof. We use the same linear programming argument as
in the proofs of Theorems III.2 and V.2, and show that for
each i ∈ {n+ 1, n+ 2, . . . , 2n}, we have pi(t+ 1) ≤ (1−
δ)pi(t) + (1− θ)β

∑
j∈Ni

pj(t).

(SBfi)X =

{
P {Yi = 2 | X} , i ∈ {1, 2, . . . , n}
P {Yi−n = 1 | X} , i ∈ {n+ 1, . . . , 2n}

=

θ, if i ∈ {1, 2, . . . , n} and Xi = 0

δ, if i ∈ {1, 2, . . . , n} and Xi = 1

1− γ, if i ∈ {1, 2, . . . , n} and Xi = 2

(1− θ)(1− (1
−β)mi−n),

if i ∈ {n+ 1, . . . , 2n} and Xi−n = 0

1− δ, if i ∈ {n+ 1, . . . , 2n} and Xi−n = 1

0, if i ∈ {n+ 1, . . . , 2n} and Xi−n = 2

(112)

(Bλ)X = λ0 +

n∑
k=1

BX,kλk +

2n∑
k=n+1

BX,kλk. (113)

We claim that the Lagrange multiplier vector λ∗ =
[λ∗0, λ

∗
1, . . . , λ

∗
2n]T with the following values is in the feasible

set: 

λ∗0 = 0

λ∗1 = · · · = λ∗n = 0

λ∗n+i = 1− δ
λn+j = β(1− θ) for j ∈ Ni
λn+j = 0 for j 6∈ Ni

(114)



0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

1000

Time Step

N
um

be
r 

of
 In

fe
ct

ed
 N

od
es

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

700

800

900

1000

Time Step

N
um

be
r 

of
 In

fe
ct

ed
 N

od
es

Fig. 4: The evolution of SIRS/SIV epidemics over an Erdős-Rényi graph with n = 2000 nodes and the same initial states.
a) γ

γ+θ
β‖A‖
δ < 1: Fast eradication of the epidemic. b) γ

γ+θ
β‖A‖
δ > 1: Epidemic spread around the nontrivial fixed point

(convergence is not observed.)

Verification of the claim for all possible cases is as follows.
For Xi = 0, |Ni ∩ I(t)| = m :

P {Yi = 1 | X} = (1− θ)(1− (1− β)m) ≤

mβ(1− θ) = λ∗0 +

n∑
k=1

BX,kλ
∗
k +

2n∑
k=n+1

BX,kλ
∗
k. (115)

For Xi = 1, |Ni ∩ I(t)| = m :

P {Yi = 1 | X} = 1− δ ≤ 1− δ +mβ(1− θ)

= λ∗0 +

n∑
k=1

BX,kλ
∗
k +

2n∑
k=n+1

BX,kλ
∗
k. (116)

For Xi = 2, |Ni ∩ I(t)| = m :

P {Yi = 1 | X} = 0 ≤

mβ(1− θ) = λ∗0 +

n∑
k=1

BX,kλ
∗
k +

2n∑
k=n+1

BX,kλ
∗
k. (117)

It follows that

max
µB=pT ,µ�0

pi(t+ 1) = min
λ

max
µ�0

µ(SBfi −Bλ) + pTλ

≤ pTλ∗ = (1− δ)pi + β(1− θ)
∑
j∈Ni

pj , (118)

which proves

pI(t+ 1) � ((1− δ)In + β(1− θ)A)pI(t). (119)

Under the condition that β(1−θ)λmax(A)
δ < 1, by the same

argument as in the proof of Theorem V.2, tmix(ε) ≤
log n

ε

− log ‖(1−δ)In+β(1−θ)A‖ .

VI. EXPERIMENTAL RESULTS

We show the simulation results on Erdős-Rényi graphs,
for the epidemic thresholds below and above 1, and they
confirm the theorems proved in the paper. As it can be seen
in Fig. 4a, for SIRS epidemics (θ = 0), when the condition

β‖A‖
δ < 1 is satisfied the epidemic decays exponentially, and

dies out quickly. In contrast when β‖A‖
δ > 1, the epidemic

does not exhibit convergence to the disease-free state in
any observable time. Fig. 4b illustrates this phenomenon,
and indicates that the epidemic keeps spreading around its
nontrivial fixed point.

For the first SIV model (infection-dominant), we observe
the same exponential decay (Fig. 4a), when γ

γ+θ
β‖A‖
δ < 1,

which means the vaccination indeed makes the system more
stable. Furthermore, for the vaccination-dominant model,
under (1 − θ) γ

γ+θ
β‖A‖
δ < 1, we observe the fast conver-

gence again, which confirms that the system is even more
stable in this case. As might have been speculated, for
γ
γ+θ

β
δ λmax(A) > 1 in the infection-dominant and (1 −

θ) γ
γ+θ

β
δ λmax(A) > 1 in the vaccination-dominant, we are

not able to see epidemic eradication in any reasonable time,
and we obtain similar plots as Fig. 4b.

VII. CONCLUSIONS

We studied the exact network-based Markov chain Model
for the SIRS/SIV epidemics, and their celebrated mean-
field approximation. We showed that the threshold condi-
tions coincide for fast-mixing of the exact Markov chain
and the stability of the mean-field approximation at the
disease-free fixed point. Furthermore, we showed for above-
threshold epidemics, that there exists a unique nontrivial
fixed point corresponding to the endemic state. Interestingly,
the simulations suggest that in the latter case, the underlying
Markov chain model should also have an exponentially slow
mixing time, which leads to the conjecture that the threshold
condition is indeed tight.
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