Measurement of the Top Quark Pair Production Cross Section in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV

V. Khachatryan et al.*, (CMS Collaboration)

(Received 18 October 2015; published 5 February 2016)

The top quark pair production cross section is measured for the first time in proton-proton collisions at $\sqrt{s} = 13$ TeV by the CMS experiment at the CERN LHC, using data corresponding to an integrated luminosity of 43 pb$^{-1}$. The measurement is performed by analyzing events with at least one electron and one muon of opposite charge, and at least two jets. The measured cross section is

$$\sigma = 58(\text{stat}) \pm 53(\text{syst}) \pm 36(\text{lumi}) \text{ pb},$$

in agreement with the expectation from the standard model.

DOI: 10.1103/PhysRevLett.116.052002

The central feature of the CMS detector [21] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections, are located within the solenoid volume. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A two-tier trigger system selects the most interesting pp collisions for offline analysis. A more detailed description of the CMS detector, together with a definition of its coordinate system and kinematic variables, can be found in Ref. [21].

We use several Monte Carlo (MC) generator programs to simulate signal and background processes. The next-to-leading-order (NLO) POWHEG (v2) [22,23] generator is used to generate $\tilde{t}\tilde{t}$ signal events, assuming a top quark mass of $m_t = 172.5$ GeV [24]. We utilize the NNPDF3.0 NLO [25] parton distribution functions (PDF) in the MC calculations. The events are interfaced to PYTHIA (v8.205) [26,27] with the CUETP8M1 tune [28,29] to simulate parton showering, hadronization, and the underlying event. An alternative sample is obtained using the HERWIG++ (v2.7.1) [30] program to model the parton shower. Another sample of $\tilde{t}\tilde{t}$ events is generated using MG5_AMC@NLO (v5_2.2.2) [31] and MADSPIN [32] generators, and again PYTHIA (v8.205) for parton showering, hadronization, and the underlying event. The MC generators have been validated by comparing to unfolded differential distributions of $\tilde{t}\tilde{t}$ production at $\sqrt{s} = 8$ TeV [33].

Background events are simulated by the MG5_AMC@NLO (v5_2.2.2) generator for $W +$ jets production and Drell–Yan (DY) quark-antiquark annihilation into lepton-antilepton pairs through virtual photon or Z boson exchange, with normalization taken from data. Associated top quark and W boson production (tW) is simulated using POWHEG (v1) [34,35] and PYTHIA (v8.205), and is normalized to the approximate next-to-next-to-leading-order (NNLO) cross section [36]. The contributions from WW, WZ and ZZ (referred to as VV) processes are simulated with PYTHIA (v8.205), and normalized to their NLO cross sections [37]. All other backgrounds are estimated from control samples extracted from collision data. The simulated samples include additional interactions per bunch crossing (pileup). On average, about 20 collisions per bunch crossing are present in our data.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The SM prediction for the \(\bar{t}t \) production cross section at \(\sqrt{s} = 13 \text{ TeV} \) is calculated with the \textsc{top++} program [38] at NNLO in perturbative QCD, including soft-gluon resummation at next-to-next-to-leading-log order (NNLL) [39–44], assuming \(m_t = 172.5 \text{ GeV} \). The result is \(\sigma_{\bar{t}t}^{\text{NNLO+NNLL}} = 832^{+20}_{-25}(\text{scale}) \pm 35(\text{PDF} + \alpha_s) \) pb. The expected yields for signal in all figures and tables are normalized to this value. The first uncertainty reflects uncertainties in the factorization and renormalization scales, \(\mu_F \) and \(\mu_R \). The second uncertainty, associated with the PDFs and strong coupling constant \(\alpha_s \), is obtained by following the PDF4LHC prescription [45,46] using the MSTW2008 68\% C.L. NNLO [47,48], CT10 NNLO [49,50], and NNPDF2.3 5f FFN [51] PDF sets.

At the trigger level, events are required to contain one electron and one muon, where the electron has transverse momentum \(p_T > 17 \text{ GeV} \) and the muon has \(p_T > 17 \text{ GeV} \), or the electron has \(p_T > 17 \text{ GeV} \) and the muon has \(p_T > 8 \text{ GeV} \). Offline, particle candidates are reconstructed with the CMS particle-flow (PF) algorithm [52,53]. The PF algorithm reconstructs and identifies each individual particle using an optimized combination of information from the various elements of the CMS detector.

Events are selected to contain one electron [54] and one muon [55] of opposite charge, both of which are required to have \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.4 \) (but excluding electrons within a small region of \(|\eta| \) between the barrel and endcap sections of the ECAL). The electron and muon candidates are required to be sufficiently isolated from nearby jet activity as follows. For each electron and muon candidate, a cone of \(\Delta R = 0.3 \) and \(\Delta R = 0.4 \), respectively, is constructed around the direction of the track at the event vertex, where \(\Delta R \) is defined as \(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \), and \(\Delta \eta \) and \(\Delta \phi \) are the distances in pseudorapidity and azimuthal angle. Excluding the contribution from the lepton candidate, the scalar sum of the \(p_T \) of all particle candidates that are inside \(\Delta R \) and are consistent with arising from the chosen primary event vertex is calculated to define a relative isolation discriminant, \(I_{\text{rel}} \), through the ratio of this sum to the \(p_T \) of the lepton candidate. The neutral-particle contribution to \(I_{\text{rel}} \) is corrected for pileup based on the average energy density deposited by neutral particles in the event. This corresponds to an average \(p_T \) from pileup determined event-by-event that is subtracted from the summed scalar \(p_T \) in the isolation cone. An electron and muon candidate is selected if they have respective values of \(I_{\text{rel}} < 0.11 \) and \(I_{\text{rel}} < 0.12 \).

In events with more than one pair of leptons passing the above selection, the two leptons of opposite charge and different flavor with the largest \(p_T \) are selected for further study. Events with \(t \) leptons contribute to the measurement only if they decay to electrons or muons that satisfy the selection requirements, and are included in the MC simulations.

The efficiency of the lepton selection is measured using a “tag-and-probe” method in same-flavor dilepton events enriched in \(Z \) boson candidates, as described in Refs. [19,56]. Differences in the event topology with respect to \(\bar{t}t \) production are accounted for as a systematic uncertainty. In the current data set, the measured values for the combined identification and isolation efficiencies are typically 92\% for muons and 77\% for electrons. Based on a comparison of lepton selection efficiencies in data and simulation, the event yield in simulation is corrected using \(p_T \) and \(\eta \)-dependent data-to-simulation scale factors (SF) to provide consistency with data. They have average values of 1.00 for muons and 0.96 for electrons.

Candidate events with dilepton invariant masses of \(m_{e\mu} < 20 \text{ GeV} \) are removed to suppress backgrounds, mainly from low-mass DY processes. Jets are reconstructed from the PF particle candidates using the anti-\(k_T \) clustering algorithm [57] with a distance parameter of 0.4, optimized for the running conditions at higher center-of-mass energy. The jet energy is corrected for pileup in a manner similar to that used to find the energy within the lepton isolation cone. Jet energy corrections are also applied as a function of jet \(p_T \) and \(\eta \) [58] to data and simulation. Events are required to have at least two reconstructed jets with \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.4 \).

Backgrounds in this analysis arise primarily from \(tW \), \(DY \), and \(VV \) events in which at least two leptons are produced. Background yields from \(tW \) and \(VV \) events are estimated from simulation. The \(e^+\mu^- \) DY background normalization is estimated from data using the “\(R_{\text{out/in}} \)” method [19,59,60], where events with \(e^+e^- \) and \(\mu^+\mu^- \) final states are explored as follows. A data-to-simulation normalization factor is estimated from the number of events within the \(Z \) boson mass window in data, and extrapolated to the number of events outside the \(Z \) mass window with corrections based on control regions in data enriched in DY events. This factor is found to be 1.04 \(\pm 0.16 \) (stat).

Other background sources, such as \(\bar{t}t \) or \(W + \text{jets} \) events with decays into one lepton and jets, can contaminate the signal sample if a jet is incorrectly reconstructed as a lepton, or an event contains a lepton from the decay of bottom or charm hadrons. These are grouped into the nonprompt-lepton category, together with contributions that can arise, for example, from the decays of mesons, photon conversions to \(e^+e^- \) pairs in the material of the detector, or effects from detector resolution. The nonprompt-lepton background is estimated from an extrapolation of a control region of same-sign (SS) dilepton events to the signal region of opposite-sign (OS) dileptons. The SS control region is defined using the same criteria as used for the nominal signal region, except requiring \(e\mu \) pairs of the same charge. The SS dilepton events predominantly contain at least one misidentified lepton. Other SM processes, such as \(DY \), \(tW \), \(VV \) and \(\bar{t}t \) dilepton production have significantly smaller contributions, and are estimated using
simulation. The scaling from the SS control region in data to the signal region is performed using an extrapolation factor, extracted from MC simulation, given by the ratio of the number of OS events with misidentified leptons to the number of SS events with misidentified leptons. From the eight same-sign events observed in data, the expected contamination of \(\frac{1.7}{C_6} \) events due to DY, \(tW \), \(VV \) and \(t \bar{t} \) dilepton production is subtracted, and the result is multiplied by the OS to SS ratio of \(\frac{1.4}{C_6} \) to obtain an estimate of \(8.5 \pm 4.4 \) nonprompt lepton events contaminating the signal, including statistical and systematic uncertainties. This agrees with predictions from MC simulations of semileptonic \(t \bar{t} \) and \(W + \text{jets} \) events.

Figure 1 (top) shows the multiplicity of jets and (bottom) the scalar \(p_T \) sum of all jets (\(H_T \)) for events passing the dilepton criteria. Agreement is observed between data and the predictions for signal and background.

After requiring at least two jets, we obtain the plots presented in Fig. 2, where (top) shows the distribution in the invariant dilepton mass \(m_{\mu\mu} \), which is sensitive to the existence of a new heavy object decaying into a \(t \bar{t} \) pair. Figure 2 (bottom) shows the difference in azimuthal angle between the two leptons, \(\Delta \phi (e, \mu) \), and explores the correlation between the \(t \) and \(\bar{t} \) spins [61–66]. For both distributions, data are in agreement with the SM expectations.

The dominant uncertainty is due to the preliminary integrated luminosity, which is estimated from \(x-y \) beam-beam scans performed in July 2015 utilizing the methods of Ref. [67]. The resulting uncertainty in the integrated luminosity is 4.8%.

Smaller uncertainties arise from the measured trigger efficiency, and the lepton identification and isolation efficiencies. After the offline dilepton selection, the trigger efficiency is measured in data to be \((91 \pm 4)\% \) using triggers based on the \(p_T \) imbalance in the event. This efficiency is applied to the MC simulations and the uncertainty is taken as a global uncertainty. The uncertainties on the electron and muon identification and isolation
efficiencies are estimated by changing the p_T- and η-dependent SF values by one standard deviation ($\pm 1\sigma$). The modeling of lepton energy scales is studied using $Z \rightarrow \mu\mu$ and $\mu \mu$ events in data and in simulation, yielding an uncertainty in the electron energy scale of 1%, and in the muon energy scale of 0.5%. The impact of the uncertainty in the jet energy scale (JES) is estimated by changing p_T—and η-dependent JES SF by $\pm 1\sigma$, and the uncertainty in jet energy resolution (JER) uncertainty is estimated through similar η-dependent $\pm 1\sigma$ changes in the JER SF. The maximum of each of the deviations is taken as the uncertainty.

The distribution of the number of vertices per beam crossing is compared between data and simulation. The results indicate agreement of the total pp inelastic cross section within 10%. The result of varying this cross section by $\pm 10\%$ for all MC samples is used to obtain the systematic uncertainty due to pileup.

Theory uncertainties on $t\bar{t}$ production involve the systematic bias related to the missing higher-order diagrams in POWHEG, and is estimated through studies of the signal acceptance by changing the renormalization and factorization scales in POWHEG simultaneously within the range $[\mu_R/2, 2\mu] (\mu = \mu_R = \mu_F)$. In addition, the predictions of the NLO generators MG5_AMC@NLO (v5.2.2.2) and POWHEG are compared for $t\bar{t}$ production, where both use PYTHIA (v8.205) for hadronization, parton showering, and simulation of the underlying event. The uncertainty arising from the hadronization model mainly affects the JES and the fragmentation of jets. The uncertainty in the JES already contains a contribution from the uncertainty in the hadronization. The hadronization uncertainty is also determined by comparing samples of events generated with POWHEG, where the hadronization is either modeled with PYTHIA (v8.205) or HERWIG++ (v2.7.1). This also includes differences in parton showering, and the underlying event, and is called $t\bar{t}$ modeling uncertainty. All theory uncertainties on $t\bar{t}$ production are taken as the maximum difference found in the results. The uncertainty from the choice of PDF is determined by reweighting the sample of simulated $t\bar{t}$ events according to the 26 CT10 NLO [49,50] and the 100 NNPDF3.0 sets [25] of PDF uncertainties.

An uncertainty of 30% in cross sections for tW and VV backgrounds are taken from measurements [68–76]. For DY production, a global cross section uncertainty of 15% is applied, which is derived from the variation of the SF for events passing the dilepton criteria and events passing all selection cuts. The systematic uncertainty in the estimated nonprompt lepton background is given mainly by the systematic uncertainty in the ratio of OS to SS events with misidentified leptons in the MC simulations. We checked how well the simulation models the production of misidentified leptons by examining additional control regions, with the observed discrepancy used to assign an uncertainty of 23% to the method.

Table I summarizes the magnitude of the statistical and systematic uncertainties from different sources contributing to the $t\bar{t}$ production cross section. All sources of uncertainties are added in quadrature.

Table II shows the total number of events observed in data, together with the total number of background events expected from simulation or estimated from data. The mean acceptance multiplied by the selection efficiency and the branching fraction, as estimated from simulation or estimated from data. The mean acceptance multiplied by the selection efficiency and the branching fraction, as estimated from simulation or estimated from data. The mean acceptance multiplied by the selection efficiency and the branching fraction, as estimated from simulation or estimated from data. The mean acceptance multiplied by the selection efficiency and the branching fraction, as estimated from simulation or estimated from data. The mean acceptance multiplied by the selection efficiency and the branching fraction, as estimated from simulation or estimated from data.
cross section is measured to be $\sigma_{t\bar{t}} = 746 \pm 58\text{(stat)} \pm 53\text{(syst)} \pm 36\text{(lumi)}$ pb.

A linear parametrization of the acceptance dependence on m_t in the range 169.5–175.5 GeV results in a cross section reduction of $\approx 0.7\%$ at $m_t = 173.34$ GeV, the current world average of the top quark mass [24].

In an alternative analysis, the selected sample is split into events with 0, 1, 2, and > 2 b quark jets, and 0, 1, 2, and > 2 additional light-flavor or gluon jets (i.e., not identified as b quark jets). Jets are identified as b quark jets using the combined secondary vertex (CSV) algorithm [77]. A maximum likelihood fit of the yields in different input samples is performed to extract simultaneously $\sigma_{t\bar{t}}$ and the b tagging efficiency. Systematic uncertainties are implemented through nuisance parameters [78]. This result is within 1% of the nominal analysis.

Figure 1 in the Supplemental Material [79] presents a summary of results for $\sigma_{t\bar{t}}$ from the combination of the Tevatron measurements at 1.96 TeV [80], from CMS measurements at $\sqrt{s} = 7$ and 8 TeV [14,19], and from the measurement presented here at $\sqrt{s} = 13$ TeV, compared to the NNLO + NNLL predictions as a function of \sqrt{s} for $p\bar{p}$ and pp collisions [44].

In summary, the first measurement of the $t\bar{t}$ production cross section in proton-proton collisions at $\sqrt{s} = 13$ TeV is presented for events containing an electron-muon pair and at least two jets. The measurement is obtained through an event-counting analysis based on a data sample corresponding to an integrated luminosity of 43 pb$^{-1}$. The result is $\sigma_{t\bar{t}} = 746 \pm 58\text{(stat)} \pm 53\text{(syst)} \pm 36\text{(lumi)}$ pb, with a total relative uncertainty of 12%. This measurement is consistent with the SM prediction of $\sigma_{t\bar{t}}^{\text{NNLO+NNLL}} = 832^{+40}_{-46}$ pb for a top quark mass of 172.5 GeV.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[4] ATLAS Collaboration, Simultaneous measurements of the $t\bar{t}$, and $Z/\gamma^{*} \rightarrow \tau\tau$ production cross sections in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Phys. Rev. D 91, 052005 (2015).

[16] CMS Collaboration, Measurement of the $t\bar{t}$ production cross section in the $t+\bar{t}$ channel in pp collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C 73, 239 (2013).

[20] CMS Collaboration, Measurement of the $t\bar{t}$ production cross section in pp collisions at $\sqrt{s} = 7$ TeV in dilepton final states containing a τ, Phys. Rev. D 85, 112007 (2012).

[33] CMS Collaboration, Measurement of $t\bar{t}$ production with additional jet activity, including b quark jets, in the dilepton channel using pp collisions at $\sqrt{s} = 8$ TeV, arXiv:1510.03072.

[41] P. Baernreuther, Michal Czakon, and Alexander Mitov, Percent-Level-Precision Physics at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to $q\bar{q} \rightarrow t\bar{t} + X$, Phys. Rev. Lett. 109, 132001 (2012).

[59] CMS Collaboration, Measurement of the $t\bar{t}$ production cross section and the top quark mass in the dilepton channel in pp collisions at $\sqrt{s} = 7$ TeV, J. High Energy Phys. 07 (2011) 049.
[65] ATLAS Collaboration, Observation of Spin Correlation in $t\bar{t}$ Events from pp Collisions at $\sqrt{s} = 7$ TeV using the ATLAS Detector, Phys. Rev. Lett. 108, 212001 (2012).

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 E. Asilar,2 T. Bergauer,2 J. Brandstetter,2 E. Brondolin,2 M. Dragicevic,2 J. Erö,2 M. Flechl,2 M. Friedl,2 R. Frühwirth,2b V. M. Ghete,2 C. Hartl,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2b V. Knünz,2 A. König,2 M. Krämer,2b I. Krätschmer,2 D. Liko,2 T. Matsushita,2 I. Mikulec,2 D. Rabady,2c B. Rahbaran,2 H. Rohringer,2 J. Schieck,2b R. Schöfbeck,2 J. Strauss,2 W. Treberer-Treberspurg,2 W. Waltenberger,2

052002-7

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Unidade Federal do ABC, Santo Andre, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19University of Split, Faculty of Science, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, GIF-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33Georgian Technical University, Tbilisi, Georgia
34Tbilisi State University, Tbilisi, Georgia
35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
38Deutsches Elektronen-Synchrotron, Hamburg, Germany
39University of Hamburg, Hamburg, Germany
40Institut für Experimentelle Kernphysik, Karlsruhe, Germany
41Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
42University of Athens, Athens, Greece
43University of Ioánnina, Ioánnina, Greece
44Wigner Research Centre for Physics, Budapest, Hungary
45Institute of Nuclear ResearchATOMKI, Debrecen, Hungary
46University of Debrecen, Debrecen, Hungary
47National Institute of Science Education and Research, Bhubaneswar, India
48Panjab University, Chandigarh, India
49University of Delhi, Delhi, India
50Saha Institute of Nuclear Physics, Kolkata, India
51Bhabha Atomic Research Centre, Mumbai, India
52Tata Institute of Fundamental Research, Mumbai, India
53Indian Institute of Science Education and Research (IISER), Pune, India
54Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
55University College Dublin, Dublin, Ireland
56a INFN Sezione di Bari, Bari, Italy
56b Università di Bari, Bari, Italy
56c Politecnico di Bari, Bari, Italy
57a INFN Sezione di Bologna, Bologna, Italy
57b Università di Bologna, Bologna, Italy
58a INFN Sezione di Catania, Catania, Italy
58b Università di Catania, Catania, Italy
59a INFN Sezione di Firenze, Firenze, Italy
59b Università di Firenze, Firenze, Italy
60 INFN Laboratori Nazionali di Frascati, Frascati, Italy
61a INFN Sezione di Genova, Genova, Italy
61b Università di Genova, Genova, Italy
62a INFN Sezione di Milano-Bicocca, Milano, Italy
62b Università di Milano-Bicocca, Milano, Italy
63a INFN Sezione di Napoli, Roma, Italy
63b Università di Napoli ’Federico II’, Roma, Italy
63cUniversità della Basilicata, Roma, Italy
63d Università G. Marconi, Roma, Italy
64a INFN Sezione di Padova, Trento, Italy
64b Università di Padova, Trento, Italy
64c Università di Trento, Trento, Italy
64d INFN Sezione di Pavia, Pavia, Italy
64e Università di Pavia, Pavia, Italy
65a INFN Sezione di Perugia, Perugia, Italy
65b Università di Perugia, Perugia, Italy
65c INFN Sezione di Pisa, Pisa, Italy
65d Università di Pisa, Pisa, Italy
66a Scuola Normale Superiore di Pisa, Pisa, Italy
66b INFN Sezione di Roma, Italy
66c Università di Roma, Italy
66d INFN Sezione di Torino, Torino, Italy
66e Università di Torino, Torino, Italy
66f Università del Piemonte Orientale, Novara, Italy
67a INFN Sezione di Trieste, Trieste, Italy
67b Università di Trieste, Trieste, Italy
71 Kangwon National University, Chunchon, Korea
72 Kyungpook National University, Daegu, Korea
73 Chonbuk National University, Jeonju, Korea
74 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
75 Korea University, Seoul, Korea
76 Seoul National University, Seoul, Korea
77 University of Seoul, Seoul, Korea
78 Sungkyunkwan University, Suwon, Korea
79 Vilnius University, Vilnius, Lithuania
80 National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
81 Centro de Investigacion y de Estudios Avanzados del IIPN, Mexico City, Mexico
82 Universidad Iberoamericana, Mexico City, Mexico
83 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
84 Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
85 University of Auckland, Auckland, New Zealand
86 University of Canterbury, Christchurch, New Zealand
87 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
88 National Centre for Nuclear Research, Swierk, Poland