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Deformable Kernels for Early Vision 
Pietro Perona 

Abstract-Early vision algorithms often have a first stage of 
linear-filtering that ‘extracts’ from the image information at 
multiple scales of resolution and multiple orientations. A common 
difficulty in the design and implementation of such schemes is 
that one feels compelled to discretize coarsely the space of scales 
and orientations in order to reduce computation and storage 
costs. This discretization produces anisotropies due to a loss of 
translation-, rotation-, and scaling-invariance that makes early 
vision algorithms less precise and more difficult to design. This 
need not be so: one can compute and store efficiently the response 
of families of linear filters defined on a continuum of orientations 
and scales. A technique is presented that allows 1) computing the 
best approximation of a given family using linear combinations of 
a small number of ‘basis’ functions; 2) describing all finite- 
dimensional families, i.e., the families of filters for which a finite 
dimensional representation is possible with no error. The tech- 
nique is based on singular value decomposition and may be ap- 
plied to generating filters in arbitrary dimensions and subject to 
arbitrary deformations; the relevant functional analysis results 
are reviewed and precise conditions for the decomposition to be 
feasible are stated. Experimental results are presented that dem- 
onstrate the applicability of the technique to generating multi- 
orientation multi-scale 2D edge-detection kernels. The implemen- 
tation issues are also discussed. 

Index TermsSteerable filters, wavelets, early vision, mul- 
tiresolution image analysis, multirate filtering, deformable filters, 
scale-space 

I. INTRODUCTION 

OINTS, lines, edges, textures, and motions are present in P almost all images of the everyday world. These elemen- 
tary visual structures often encode a great proportion of the 
information contained in the image, moreover they can be 
characterized using a small set of parameters that are locally 
defined: position, orientation, characteristic size or scale, 
phase, curvature, velocity. It is threrefore reasonable to start 
visual computations with measurements of these parameters. 
The earliest stage of visual processing, common for all the 
classical early vision modules, could consist of a collection of 
operators that calculate one or more dominant orientations, 
curvatures, scales, velocities at each point of the image or, 
alternatively, assign an ‘energy,’ or ‘probability,’ value to 
points of a position-orientation-phase-scale-etc.-space. Ridges 
and local maxima of this energy would mark special interest 
loci such as edges and junctions. The idea that biological vis- 
ual systems might analyze images along dimensions such as 
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orientation and scale dates back to work by Hubel and Wiesel 
[ l] ,  [2] in the 1960s. In the computational vision literature the 
idea of analyzing images along multiple orientations appears at 
the beginning of the seventies with the Binford-Horn linefinder 
[3], [4] and later work by Granlund [ 5 ] .  

A computational framework that may be used to performs 
this proto-visual analysis is the convolution of the image with 
kernels of various shapes, orientations, phases, elongation, and 
scale. This approach is attractive because it is simple to de- 
scribe, implement, and analyze. It has been proposed and 
demonstrated for a variety of early vision tasks [6] - [24]. 
Various ‘general’ computational justifications have been pro- 
posed for basing visual processing on the output of a rich set 
of linear filters: 1) Koenderink has argued that a structure of 
this type is an adequate substrate for local geometrical compu- 
tations [25] on the image brightness, and that it may derived 
from axioms of invariance with respect to rotation, translation 
and scaling [26], [27], [28], 2) Adelson and Bergen [24] have 
derived it from the ‘first principle’ that the visual system com- 
putes derivatives of the image along the dimensions of wave- 
length, parallax, position, time, 3) a third point of view is the 
one of ‘matched filtering’: the kernels are synthesized to match 
the visual events that one looks for. 

The kernels that have been proposed in the computational 
literature have typically been chosen according to one or more 
of three classes of criteria: 1) ‘generic optimality’ (e.g. optimal 
sampling of space-frequency space [29]), 2) ‘task optimality’ 
(e.g., signal to noise ratio, localization of edges [lo]), and 3) 
emulation of biological mechanisms [30], [31], [32]. While 
there is no general consensus in the literature on precise kernel 
shapes, there is convergence on kernels roughly shaped like 
either Gabor functions, or derivatives or differences of either 
round or elongated Gaussian functions-all these functions 
have the advantage that they can be specified and computed 
easily. A good rule of the thumb in the choice of kernels for 
early vision tasks is that they should have good localization in 
space and frequency, and should be roughly tuned to the visual 
events that one wants to analyze. 

Since points, edges, lines, textures, and motions can exist at 
all possible positions, orientations, scales of resolution, and 
curvatures one would like to be able to use families of filters 
that are tuned to all orientations, scales, and positions. There- 
fore, once a particular convolution kernel has been chosen, one 
would like to convolve the image with deformations (rotations, 
scalings, stretchings, bendings, etc.) of this ‘template.’ In real- 
ity one can afford only a finite (and small) number of filtering 
operations, hence the common practice of ‘sampling’ the set of 
orientations, scales, positions, curvatures, and phases: 

Motion flow computation using spatiotemporal filters 
has been proposed by Adelson and Bergen [9] as a model 
of human vision and has been demonstrated by Heeger 
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[ 113 (his implementation had 12 discrete spatio-temporal 
orientations and three scales of resolution). 
Texture analysis algorithms with multiple-resolution 
multiple-orientation kernels are due to Knuttson and 
Granlund [6] (four scales, four orientations, two phases), 
Turner [ 121 (four scales, four orientations, two phases), 
Fogel and Sagi [16] (four scales, four orientations, two 
phases), Malik and Perona [ 171 (1 1 scales, six orienta- 
tions, one phase) and Bovik et al. [ 181 (n scales, m orien- 
tations, one phase). 
Stereo algorithms by Kass [7] (12 filters, scales, orienta- 
tions, and phases unspecified) and Jones and Malik [33], 
[34] (six scales, two to six orientations, two phases). 
Curved line grouping algorithms by Parent and Zucker 
[15] (one scale, eight orientations, one phase) and Malik 
and Gigus [35] (nine curvatures, one scale, 18 orienta- 
tions, two phases). 
Brightness boundary detection work by Binford and 
Horn [3], [4] (24 orientations), Canny [lo] (one to two 
scales, --six orientations, one phase), Morrone, Owens, 
and Burr [13], [14] (one to three scales, two to four ori- 
entations, - phases), work on edge and illusory contour 
detection by Heitger, Rosenthaler, Kiibler, and von der 
Heydt [36], [37] (six orientations, one scale, two phases). 

0 Image compression work by Daugman [38] (four scales, 
six orientations, two phases) and by Zhong and Mallat 
[ 191 (four scales, two orientations, one phase). 

Discretization has the strong drawback of introducing ani- 
sotropies and algorithmic difficulties in the computational im- 
plementations. It would be preferable to keep thinking in terms 
of a continuum, of angles for example, and be able to localize 
the orientation of an edge with the maximum accuracy allowed 
by the filter one has chosen. 

This aim may sometimes be achieved by means of interpo- 
lation: One convolves the image with a small set of kernels, 
say at a number of discrete orientations, and obtains the result 
of the convolution at any orientation by taking linear combi- 
nations of the results. Since convolution is a linear operation 
the interpolation problem may be formulated in terms of the 
kernels (for the sake of simplicity the case of rotations in the 
plane is discussed here): Given a kernel F: R2 -+ C2, define 

the family of ‘rotated’ copies of F as: F, = F o Re, 8 E S ’ ,  

where S’ is the circle and R ,  is a rotation. Sometimes it is pos- 

sible to express F, as 
n 

F,(x) = C a ( q i c i ( X )  vo E s’, vx E R~ (1) 
r=l 

afinite linear combination of functions G,: R2 -+ C’. It must 
be noted that, at least for positions and phases, the mechanism 
for realizing this in a systematic way is well understood: in the 
case of positions the sampling theorem gives conditions and an 
interpolation technique for calculating the value of the filtered 
image at any point in a continuum; in the case of phases a pair 
of filters in quadrature can be used for calculating the response 
at any phase [9], [39]. Rotation, scalings, and other deforma- 
tions are less well understood (schemes for estimating preva- 

lent orientation in a continuum have been proposed [40], [41], 
[ W ) .  

An example of ‘rotating’ families of kernels that have a fi- 
nite representation is well known: the first derivative along an 
arbitrary direction of a round (ox = 0,) Gaussian may be ob- 
tained by linear combination of the X- and Y-derivatives of the 
same (this property is of course common to all rotationally- 
simmetric functions). Most implementations of the Canny edge 
detector [ 101 are based on this principle. Unfortunately, the 
kernel obtained this way has poor orientation selectivity and 
therefore it is not suitable for edge detection if one wants to 
recover edge-junctions. Freeman and Adelson have first pro- 
posed [43] that it would be desirable to construct orientation- 
selective kernels that can be exactly rotated by interpolation 
(they call this property “steerability” and the term will be used 
in this paper) and have shown that higher order derivatives of 
round Gaussians, indeed all polynomials multiplied by a ra- 
dially symmetric function are steerable (they have a more gen- 
eral class of functions [44]-it is described in the comments to 
Theorem 1). For high polynomial orders these functions may 
be designed to have higher orientation selectivity and can be 
used for contour detection and signal processing [22], [45]. 
This line of work has been extended to scale by Simoncelli et 
al. in [48]. However, one must be aware of the fact that for 
most kernels F of interest a finite decomposition of Fe as in (1) 
cannot be found. For example the elongated kernels used in 
edge detection by [46], [23], [47] do not have a finite decom- 
position as in (1). 

Lenz [27] has independently proposed using group- 
theoretical methods for steering a given filter; his analysis and 
technique are optimal and applicable whenever the underlying 
deformations have group structure ,(i.e., rotations). As will be 
discussed later, some deformations (e.g., scale) do not have 
group structure and, therefore, his technique is not always 
applicable. 

One needs an approximation technique that, given an Fe, 
allows one to generate a function Gkl which is sufficiently 

similar to F ,  and that is steerable, i.e., can be expressed as a 
finite sum of n terms as in (1). In the case of rotations, Free- 
man and Adelson propose to approximate the kernel with an 
adequately high order polynomial multiplied by a radially 
symmetric function (which they show is steerable). However, 
this method does not guarantee a parsimonious approximation: 
given a tolerable amount of error one would like to find an 
approximating GP1 that has minimum number n of compo- 
nents. A different design perspective could also be taken: 
given a number n of filtering operations allowed, synthesize 
the best (with respect to the specific task at hand) kernel within 
the class of functions that can be exactly represented by a sum 
of n terms. Therefore it is useful to be able to answer to the 
question: What is the set of functions that can be represented 
exactly as in (l)? This paper addresses these questions in de- 
tail. Partial results have been reported in [49], [50], [511, [521. 

This paper is organized as follows: the special case of the 
rotations (1) is explored and solved in Section I1 and the ap- 
pendix. In Section I11 a few results from functional analysis are 
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recalled to extend the approximation technique to all 
‘compact’ deformations. In Section IV an application of the 
approximation technique to generating steerable filters for 
edge detection is described. In Section V it is shown how to 
generate a steerable and scalable family. Experimental results 
and implementation issues are presented and discussed for the 
schema presented in Sections V and VI. 

11. STEERABLE APPROXIMATIONS 

In order to solve the approximation problem proposed in the 
introduction one needs of course to define the ‘quality’ of the 
approximation Gbl = F,. There are two reasonable choices: 

1) a distance D(F,, GF]) in the space R2 x S’ where F, is de- 

fined; 2)  if F, is the kernel of some filter one is interested in 
the worst-case error in the ‘output’ space: the maximum dis- 
tance d(( F, f ), ( G;], f )) over all unit-norm f defined on R2 
(the inner products are, of course, taken in L2(R2) and the dis- 
tance is on the Banach space of functions of SI). The symbols 

A,, and a,, will indicate the ‘optimal’ distances, i.e., the mini- 
mum possible approximation errors using n components. 
Among many reasonable definitions of distance, the one in- 
duced by the L2-norm has the advantage that it makes calcula- 
tions particularly convenient. This is the definition that will be 
used in this study: 

DEFINITION. 

Consider now the approximation to F, defined as follows: 

DEFINITION. Call dfll the n-terms sum: 
n 

$’I = c o i a j ( x ) b j ( 8 )  
i=l 

with oi, ai and bj  defined in the following way: let i ( v )  be 
the Fourier series expansion of the function h( 8) defined by: 

(any fixed value is fine for 8 ’, notice that 
%.,,(X) = F(X)) and let vi be the frequencies on which 
i ( v )  is defined, ordered in such a way that i ( v j )  2 h^(vj) if 

i I j .  Call N < m the number of nonzero terms h(vj)-it 
turns out that i ( v j )  2 O(see Theorem 1 and proof in the ap- 

pendix). Finally for i 5 N define the quantities: 

b; = i(Vi)”’ (4) 

Then $I is the best n-dimensional approximation to F, in 
the following sense: 

THEOREM 1. Given the definitions and notation introduced 
above, suppose that F E L2(R2) then: 
1) { a i }  and { b i }  are orthonormal sequences of functions in 

2 )  Fjnl is the smallest possible exact representation of F,, 
L’(R’) and L2(S’), respectively. 

i.e., if 34, pi, g, s.t. Fe(.) = ~ ~ , p j ( e ) g j ( x )  then 

M 2 N .  
3 )  The number N of terms is finite if the number M of indi- 

ces i for which a i ( x )  # O,,,,,, isfinite, and N = M .  

4) is an optimal n-approximation of F, with respect to 
both distances: 

(7) 

5 )  D,, 6, + 0 for n -+ N .  
6) $’I =$]ob. 
7) Vel, ..., 8, with the exception of a set of measure zero 

3b;, ..., b; s.t.  Z$’”(x) = cfl r=l $:’(C)bln(8). 

COMMENT. 
1. The expression for the bj is independent of F. Only oi and ai 

depend on F. The bi depend on the particular group of trans- 
formations (the rotations of the plane in this case) that is 
used to generate F, from F. 

3 .  The ‘if part of statement 3 is equivalent to the main theo- 
rem of [44]-Freeman and Adelson show that all functions 
that one can write as a linear combination of functions like 
the ais (polar-separable with sinusoidal 8 component) are 
steerable. The ‘only if‘ part says that the functions that they 
described are all the steerable functions. 

4. For deciding at what point n to truncate the sum one plots 
the error 6, or A, vs. n and looks for the smallest integer n 
for which the error is less than some assigned value. See 
Figs. 2 and 3. 

6.  This means that dfllis steerable, i.e., its shape does not 

change with 8, modulo a rotation in the domain. Therefore 
$]is the best approximation to F, in the space of 
‘n-steerable’ functions (‘best’ is intended with respect to the 
L2-induced distance). 

7.1. A set of size n of rotated copies of 4% enough for rep- 

resenting FL”], so we may choose to use this different de- 
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composition instead of 2. On the other hand, this represen- 
tation has some numerical disadvantages: 

1) The set 6, is not orthonormal, so its numerical imple- 
mentation is less efficient (it will require more significant 
bits in the calculations to obtain the same final precision). 
2 )  The functions a, are easier to approximate with sums of 
X-Y separable functions than the Fe, (see the experimental 
Section IV.B, and Fig. 5). 

7.2. The error d,(F,, Fe[.]) of the n-approximation is constant 

with respect to 6 since Fe = F 0 R, and dnl = Fin] 0 Re. 
There is no anisotropy even if F’”’ is an approximation. 

The proof of this theorem is reported in the appendix. It is 
based on the fact that the triples (4, a,(x) ,  b,(9) are the singu- 
lar value decomposition (SVD) of a linear operator associated 
to F,(x). (From now on the abbreviation SVD will be used to 
indicate the decomposition of a kernel into such triples). 

111. DEFORMABLE FUNCTIONS 

The existence of the optimal finite-sum approximation of 
the kernel Fdx) as described in the previous section and Ap- 
pendix A is not peculiar to the case of rotations. This is true in 
more general circumstances: this section collects a few facts of 
functional analysis that show that one can compute finite opti- 
mal approximations to continuous families of kernels when- 
ever certain ‘compactness’ conditions are met. 

Consider a parametrized family of kernels F(x; 6,) where 
x E X now indicates a generic vector of variables in a set X 
and 8 E T a vector of parameters in a set T. (The notation is 
changed slightly from the previous section.) Consider the sets 
A and R of continuous functions from X and T to the complex 
numbers, call n(x) and b(e) the generic elements of these two 
sets. Proceed as at the beginning of the appmdix and consider 
the operator L : A -+ R defined by F as (La(.))(@ 

A first theorem says that if the kernel F has bounded norm 
then the associated operator L is compact (see [53]): 
THEOREM 2. Let X and T be locally compact Hausdoespaces 

and F E L ( X  x T). Then L is well defined and is a compact 
operator. 

Such a kernel is commonly called a Hilbert-Schmidt kernel. 
A second result tells us that if a linear operator is compact, 

then it has a discrete spectrum (see [54]): 
THEOREM 3. Let L be a compact operator on (complex) normed 

spaces, then the spectrum S of L is at most denumerable. 

A third result says that if L is continuous and operates on 
Hilbert spaces then the compactness property transfers to the 
adjoint of L (see [54]): 
THEOREM 4. Let L be a compact operator on Hilbert spaces, 

then the adjoint L* is compact. 

The composition of two compact operators is compact, so 
the operators LL* and L* L are compact and will have a dis- 
crete spectrum as guaranteed by Theorem 3. The singular 

= ( F(. ; e), a(.>>/t. 

value decomposition (SVD) for the operator L can therefore be 
computed as the collection of triples (of, a,, b,) ,  i = 0. ... where 
the o, constitute the spectra of both LL* and L* L and the a, 
and 6,  are the corresponding eigenvectors. 

The last result can now be enunciated (see [ S I ) :  
THEOREM 5. Let L A + B be a linear compact operator be- 

tween two Hilbert spaces. Let a, ,  b,, O, be the singular value 
decomposition of L, where the o, are in decreasing order of 
magnitude. Then 
1) An optimal n-dimensional approximation to L is 

Ln = C:=, oiaib, 

2) The approximation error is 6 ,  ( L )  = A t  ( L )  

= Cfl=n+lof 
As a result we know that when our original template kernel 

F(x) and the chosen family of deformations R(e) define a Hil- 
bert-Schmidt kernel F(x: 6,) = ( F  o R(B))(x) then it is possible 
to compute a finite discrete approximation as for the case of 
2D rotations. 

Are the families of kernels F(x;  6) of interest in vision Hil- 
bert-Schmidt kernels? In the cases of interest for vision appli- 
cations the ‘template’ kernel F(x) typically has a finite norm, 
i.e., it belongs to b ( X )  (all kernels used in vision are bounded 
compact-support kernels such as Gaussian derivatives, Gabors, 
etc.). However, this is not a sufficient condition for the family 
F(x;  6,) = F o R ( e )  ( x )  obtained composing F(x) with deforma- 
tions R( e) (rotations, scalings) to be a Hilbert-Schmidt kernel: 
the norm of F ( x ;  6,) could be unbounded. A sufficient condi- 
tion for the associated family F(x;  e) to be a Hilbert-Schmidt 
kernel is that the inverse of the Jacobian of the transformation 
R, URr’ belongs to L2(T). In fact the norm of F( .  ; .) is bounded 
above by the product of the norm of F in X and the norm of 
IJR? in T: 

which is bounded by hypothesis. 
A typical condition in which this arises is when the trans- 

formation R is unitary, e.g., a rotation, a translation, or an ap- 
propriately normalized scaling, and the set T is bounded. In 
that case the norm of llJRll-l is equal to the measure of T. The 
following sections in this paper will illustrate the power of 
these results by applying them to the decomposition of rotating 
2D kernels (Section II), 2D kernels into sums of X-Y- 
separable kernels (Section IV.B), and rotating and scaled ker- 
nels (Section V). 

A useful subclass of kernels F for which the finite or- 
thonormal approximation can be in part explicitly computed is 
obtained by composing a template function with transforma- 
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tions T, belonging to a compact group. This situation arises in 
the case of n-dimensional rotations and is useful for edge de- 
tection in tomographic data and spatiotemporal filtering [27], 
[49], [50] (the book by Lenz [27] contains a very useful intro- 
duction to the group-theoretical concepts that are needed). 

was ox = koY with k = I ,  2, 3. Calculations were reduced by a 
factor of two exploiting the hermitian symmetry of these ker- 
nels; the number of components can also be halved-the ex- 
perimental data given below and in the figures are calculated 
this way. 

Notice first that the coefficients q converge to zero expo- 

w. STEERABLEAPPROXIMATIONS: miAcncAL 
ISSUES AND EXPERIMENTAL RESULTS 

nentially fast; as a consequence the same is true for both er- 
rors. This is very important in practice since it implies that a 
very small number of coefficients is required. In Fig. 2 the 

In this section the formalism described so far is applied to 
the problem of generating steerable and scalable approxima- 
tions to convolution kernels for an edge-detector. The Gaus- 
sian-derivative kernels used by [46], [23] have been chosen for 
this example. These kernels have an elongated shape to 
achieve high orientation selectivity (equivalently, narrow ori- 
entation tuning). The real part of the kernels is a Gaussian 
G(x, a,, o),) = exp - ((x/ox)’ + (_V/O,)~) differentiated twice 
along the Y axis. The imaginary part is the Hilbert transform 
of the real part taken along the Y axis (see Figs. 1 and 3). 

One more twist is added: the functions U ;  in the decomposi- 
tion may in turn be decomposed as sums of a small number of 

approximate reconstruction is shown for n = 4, 9, 15. Notice 
that the elongation and therefore the ‘orientation selectivity’ of 
the filter increases with the number of components. In Fig. 4 
the modulus of the response of the complex filter to an edge is 
shown for two different kernels and increasing levels of ap- 
proximation. The number n of singular components required to 
reconstruct the : oy = 1 : 1 ,  and 0, : ay = 1:2 families is 
smaller as indicated by the plots and in the caption of Fig. 3. 

singular values ys singular frequencies 
1 0 ‘ 7  I \ 1  I I I I I 

X-Y-separable functions making the implementation of the O 0 

filters considerably faster. 0 0 

A. Rotations 0 

In the case of rotations Theorem 1 may be used directly to 
compute the decomposition. The calculations proceded as in- B 0 

dicated in Section 11. For convenience they are summarized in 
a recipe: 

loo - 0 
0 - 0 

I 0 - 0 

0 
0 

0 

0 

(g-3) I , , , , , , , , O ; _ I  

1) Select the ‘template’ kernel F(x) of which one wants ro- 
tated versions F,(x) = F o R&x) = F(xcos(B) + ysin(B), 
-xsin( B) + ycos( 4) and the maximum tolerable error q. 

tion (3). The sampling period should be a fraction of the 

,o ~ 2) Compute numerically the function h(B) using its defini- 0 2 s lo freq l2 l 4  16 2o 

magnitude and call their square roots (see Fig. 1) and 
the corresponding frequencies V ,  (see (4)). 

5) Define the functions b;(B) according to (5) and the vi cal- 
culated at the previous step. 

6)Compute the error plots 6(n) and A(n) from (7) and (8) 
(see Fig. 3). Obtain the number n of components required 
for the approximation as the first integer where the error 
drops below the tolerable error 77. 

7) Compute the functions a;(x) using (6). (See Fig. 1). 
8) The n-approximation of F,(x) can now be calculated us- 

The numerical implementation of the formulae of Section I1 
is straightforward. In the implementation used to produce the 
figures and the data reported in this section the kernels F, were 
defined on a 128 x 128 array of single-precision floating-point 
numbers. The set of all angles was discretized in 128 samples. 
The Y-axis variance was oy= 8 pixels, and the X-axis variance 

ing (2). 

(sfnc 0) (sfnc 1) (sfnc 2) (sfnc 8) 

Fig. 1. The decomposition (ai, bi, a) of a complex kemel used for brightness - 
edge detection [23]. (Top right) The template function (gaus-3) is show I 

rotated counterclockwise by 120”. Its real part (above) is the second deriva- 
tive along the vertical (Y) axis of a Gaussian with a, : a, ratio of 1 : 3. Th: 
imaginary part (below) is the Hilbert transform of the real part along the ‘ I  
axis. (Top left) The first 20 @ (s. val) shown on a logarithmic scale plottej 
against the associated frequencies vi = i (s. freq). They decay roughly expc - 
nentially: @+I = 0.75 @. (Bottom) The functions ai (sfnc.i) are shown for i = 
0, 1, 2, 8. The real part is above; the imaginary part below. The functior s 
bi(@ are complex exponentials (see text) with associated frequencies V, = i .  
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1O'r 

- 
0 

D 01 - 
- .  

io2:  

reconstruction error V.S. components number 
i o0  I I I , , , , , , 

0 
0 

I I I I I , I I I 1 convolutions. 
: 8 0  Even when the kernel F is not X-Y-separable it may be the 

sum of a small number of separable kernels [56], [571, [581: 
~ ( x ,  y )  = C, ~ ~ ( x ) ~ y ( y ) .  One may notice the analogy of this 

decomposition with the one expressed in (1): the function 
F(x, y) may be thought of as a kernel defining an operator from 
a space A of functionsf"(x) to a space B of functionsf'(y). At 
a glance one can see that the kernels a, of Fig. 1 are Hilbert- 
Schmidt: they have bounded norm. Therefore (see Section 111) 

sible. Again the SVD machine may be applied to calculate the 
decomposition of each one of the a, and its optimal n,- 
component approximation. If the SVD of a, is indicated as: 

o o o o  

0 0  

0 0  (gaus-1) 
0 0  0 

0 
0 

0 
O 31 

0 

0 0 
0 0 0 

0 
0 0 

0 0 0 a discrete optimal decomposition and approximation are pos- 1 1  2 1  

0 :  
0 0 

0 
0 

0 0 

493 

0 
0 

0 

0 
0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

4 components 

i o 3  
0 2 4 6 8 10 12 14 16 18 20 

n. components 15 components 

Fig. 2. Approximate reconstruction of the (gaus-3) kernel of Fig. 1. (Right) 
Reconstruction of the kernel with four components, with nine components, 
and with 15 components (only real part shown). The optimal reconstruction 
error A,, for n = 4, 9, 15 calculated from the singular values (plot on left) is, 

52%, 13.98, and 2.2%. respectively. The reconstruction error Ilgaus-3 - 
rec.ill . Ilgaus-3I1-' as measured on the reconstruction in the computer im- 
plementation is 50.2%. 13.4%, and 2.2%, respectively (the reconstruction 
error is independent of the angle and the angle may be chosen in a contin- 
uum). The error decreases exponentially, approximately 25-30%, for each 
component added. (See also the caption of Fig. 3.) 

Fig. 4. Magnitude of the response vs. orientation of orientation-selective 
filters to the image of an edge oriented at 120" (notice the corresponding peak 
in the filter responses). The kemels of the filters are as in Fig. 3, derived from 
a 2:l Gaussian (left) and a 3:l Gaussian (right). The plots show the response 
of the filters for different approximations. The first apporximation (two com- 
ponents) gives a broadly tuned response, while the other approximations (4, 8, 
12 components) have more or less the same orientation selectivity (half-width 
of the peak at half-height). The peak of the response sharpens and the preci- 
sion of the approximation is increased (to 1-2% error for the top curves) when 
more components are used. 

B. X-Y Separability 

Whenever a function F is to be used as a kernel for a 2D 
convolution it is of practical importance to know wether the 
function is X-Y-separable, i.e., if there are two functions f 
andf' such that F(x, y) =f"(x)f.'(y). If this is true the 2D con- 

Fig. 3. Comparison of the error plots for three kernels constructed as ex- 
plained in Fig. 1 from three Gaussians of different aspect ratios. (Right) The 
real parts of the three kernels shown at an angle of 120"; the ratios uX : 0, are 
1 : 1, 1 : 2, 1 : 3, respectively. (Left) The log of the reconstruction errors are 
plotted against the number of components employed. For 10% reconstruction 
error 3, 6, 10 components are needed. For 5% reconstruction error 3, 7, 12 
components are needed. Notice that for these Gaussian-derivative functions 
the reconstruction error decreases roughly exponentially with respect to the 
number n of components employed: An = exp(-:) with T =  1.7,5.2,  8.2. 

N n, 

x >  Y )  = C(Tjbr(e)CPjlta:h(X)U%(y). (9) Fe ( 
i=l h=l 

How is this done in practice? For all practical purposes the 
kernels a; are defined on a discrete lattice. The SVD of a ker- 
nel defined on a discrete M x N rectangular lattice may be 
computed numerically using any one of the common numerical 
libraries [59], [60] as if it were an M x N square matrix A of 
rank R. The typical notation for the matrix SVD is: A = U W T  
where U and V are orthonormal M x R and R x N matrices and 
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W is an R X R band-diagonal with positive entries MI, of de- 
creasing magnitude along the diagonal. If this is written as 

R 

A = ~ w k u k v ~  (10) 
k=l 

where uk and vk are columns of U and V the analogy with (2) 
becomes obvious. Notice that the (hidden in the vector nota- 
tion) row index of U plays the role of the coordinate ,Y and the 
row index of V plays the role of the coordinate x. Rewriting the 
above in continuous notation we obtain: 

R 

a(x ,  Y >  = w k u k ( Y ) v k ( x )  (1 1) 
k=I 

The first two terms of the separable decompositions are shown 
in Fig. 5 for the functions a3 and US.  

(gaus-3-30) (gaus-3-40) (gaus-3-sf2) (gaus-bsR) 

(sf2.cmpO) (sf2.cmpl) (sf7.cmpO) (sf7.cmpl) 

approximalion error Y.S. nuniher of separable components 
I,,&"",> 

X-Y separable Components needed for 1% error 
numberof somponcnu 

mal pnn 
'mag" PB" 

6W 

s so 
s 00 
4 50 

7 

2 M  

I SO 
I M  

0 ii ow so f 
OM1 sw 1000 ,500 

Figure 5 .  

Fig. 5.  Comparison of the 'separability' of two rotated copies of the template 
function and two elements of the decomposition. The template function is 
(gaus-3) as in Fig. I .  (Top) The rotation angles are 120' (gaus-3-30) and 130" 
(gaus-3-40). The functions from the decomposition are (13 (gaus-3-sf2) and as 
(gaus-347) (cfr. Fig. 1). The first two separable components of u3 are 
(sf2.cmp0) (sf2.cmpl) and of a8 are (sfl.cmp0) and (sfl.cmp1). (Bottom left) 
Approximation error vs. number of separable components compared for the 
four functions. The rotated copies of the template kernel require more terns 
than the functions U,. The number of X-Y separable components necessary to 
achieve 1 % error is: 7 and 8 for the rotated copies of the template function, 
and I and 3 for the singular functions. (Bottom right) The number of compo- 
nents necessary to approximate U; to less than I %  error is plotted against i. 
From the plots one may deduce that this number is approximately equal to 
1 + i14, so that the total number of 1D convolutions required to implement the 
n-approximation is 2n + n2/4. 

Whether few or many components will be needed for ob- 
taining a good approximation is again an empirical issue and 
will depend on the kernel in question. The decomposition of 
the singular functions a, associated to the Gaussian-derivative 
functions used for these simulations is particularly advanta- 
geous; the approximation error typically shows a steep d'rop 
after a few components are added. This can be seen from the 
curves in Fig. 5 (bottom-left) where the log of the error is 
plotted against the number of X-Y-separable components. A11 
the a, of Fig. 1 can be decomposed this way in sums of X-Y- 
separable kernels. The number of components needed for ap- 
proximating each with 1% accuracy or better is indicated in 
the plots of Fig. 5 (bottom-right) the real and imaginary parts 
have roughly the same separability. One can see that the num- 
ber of components increases linearly with i. The caption of 
Fig. 5 gives precise figures for the Gaussian 3 : 1 case. 

It is important to notice that rotated versions of the original 
template functions F cannot be represented by sums of X-Y- 
separable functions with the same parsimony (see again Fig. 5 
(bottom-left) upper curves). This is one more reason to repre. 
sent F,["] as a sum of orthonormal singular functions, rathei 
than as as sum of rotated copies of the template functior 
(Theorem 1 ,  statement 7.), as discussed at the end of Sec- 
tion 11. One must remember that beyond X-Y-separation therr. 
are a number of techniques for speeding up 2D FIR filtering 
for example small generating kernel (SGK) filtering [61], tha 
could further speed up the convolutions necessary to imple 
ment deformable filtering. 

v. ROTATION AND SCALE 

A number of filter-based early vision and signal processing 
algorithms analyze the image at multiple scales of resolution. 
Although most of the algorithms are defined on, and woulcl 
take advantage of, the availability of a continuum of scale; 
only a discrete and small set of scales is usually employed dus: 
to the computational costs involved with filtering and storin,: 
images. The problem of multi-scale filtering is somewhe t 
analogous to the multi-orientation filtering problem that has 
been analyzed so far: given a template function F(x) and de- 
fined F,,(x) as FJx) = dnF(m), CT E (0, w) one would like t 3 

be able to write F, as a (small) linear combination: 

F,(x) = Csj (o )dj (x )  O E ( O ,  -) ( 1 2 )  

Unfortunately the domain of definition of s is not bounded 
(it is the real line) and therefore the kernel F,,(x) is not Hi1ber:- 
Schmidt (it has infinite norm). As a consequence the spectruin 
of the LL* and L* L operators is continuous and no discre,e 
approximation may be computed. 

One has therefore to renounce to the idea of generating a 
continuum of scales spanning the whole positive line. This is 
not a great loss: the range of scales of interest is never the e.1- 
tire real line. An interval of scales (oI, oz), with 0 < q I (72 

< is a very realistic scenario; if one takes the human visual 
system as an example, the range of frequencies to which it is 
most sensitive goes from approximately two to 16 cycles p:r 

I 
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degree of visual angle i.e., a range of three octaves. In this case 
the interval of scales is compact and therefore Fu(x) restricted 
to this interval is Hilbert-Schmidt and one can apply the results 
of Section I11 and calculate the SVD and therefore an 
L,-optimal finite approximation. 

In this section an optimal scheme for doing so is proposed. 
The problem of simultaneously steering and scaling a given 
kernel F(x) generating a family F(,,)(x) which has a finite ap- 
proximation will be tackled. Previous non-optimal schemes are 
due to Perona [49], [50] and Freeman and Adelson [22]. 

A. Polar-Separable Decomposition 

Observe first that the functions a, defined in (6) are polar- 
separable. In fact x may be written in polar coordinates as 
x = IlxllRdx)u where U is some fixed unit vector (e.g. the first 
coordinate axis versor) and &x) is the angle between x and U 

and Rdxl is a rotation by @. Substituting the definition of F, in 
(6) we get: 

a;(.) = UT' I,, F(IIXII$+,(x)(U))eJ2"Y'ede 

so that (2) may be also written as : 

The scaling operation only affects the radial components c, 
and does not affect the angular components. The problem of 
scaling the kernels a,, and therefore F, through its decomposi- 
tion, is then the problem of finding a finite (approximate) de- 
composition of continuously scaled versions of functions c(p): 

co(P) = c s k ( B ) r k ( P )  o E ( B 1 3  O2) (15) 
k 

If the scale interval (U,, 02) and the function c are such that 
the operator L associated to F is compact then we can obtain 
the optimal finite decomposition via the singular value decom- 
position. The conditions for compactness of L are easily met in 
the cases of practical importance: it is sufficient that the inter- 
val (01, 02) is bounded and that the norm of c(p) is bounded 

Even if these conditions are met, the calculations usually 
cannot be performed analytically. One can employ a numerical 
routine as in Section 1V.B for X-Y-separation and for each C, 
(below indicated as c') obtain an SVD expansion of the form: 

( P E  fp+). 

d ( P )  = & ; s W r M  (16) 
k 

As discussed before one can calculate the approximation er- 
ror from the sequence of the singular values r ; .  Finally, sub- 
stituting (16) into (13) and (14) the scale-orientation expansion 
takes the form (see Fig. 8): 

495 

Filtering an image I with a deformable kernel built this way 
proceeds as follows: First the image is filtered with kernels 
a;(.) = exp(-j2miQ(x))r~(I~x~I), i = 0, ..., N ,  k = 0, ..., n;, the 
outputs 1; of this operation can be combined as 

to yield the result. The filtering operations described above 
can of course be implemented as X-Y-separable convolutions 
as described in Section 1V.B. 

A, I .  Polar-Separable Decomposition, Experimental Results 

An orientation-scale decomposition was performed on the 
usual kernel (second derivative of a Gaussian and its Hilbert 
transform, 0, : oy = 3 : I): The decomposition described in 
Section 1V.A was taken as a starting point. The corresponding 
functions ci of (1 3) are shown in Fig. 6. 

Gaussian 3:l-- singular functions 

I I I polar-sfnc.0 

Y 10-3 

. . . . . ._____. . . .. ................ . ....... 
polar-sfnc.1 

10.00 20.00 

polar decomposition G3 

-20.00 - 

-25.00 - 

-30.00 - 

0.00 

sfnc 0 sfnc 4 

X 

sfnc 8 

Fig. 6. (Top) The plots of ci(p), the radical part of the singular functions ui 
(cfr. (13)). The 6 part is always a complex exponential. The original kernel is 
the same as in Fig. I .  (Bottom) The Orh, 4th, and 8rh components CO, c4, and 
c g  represented in two dimensions. 
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The interval of scales chosen was (q. 9) s.t. ol : CTZ = 1 : 8, 
an interval which is arguably ample enough for a wide range of 
visual tasks. 

10% approximation error is allowed the number of filters de- 
creases by approximately a factor of 4 to 32. 

VI. OPEN ISSUES AND DISCUSSION The range of scales was discretized in 128 samples for 
computing numerically the singular value decomposition 
(YL, s;, r:) of c i ( p ) .  The computed weights ~ 5 ,  are plotted on 
a logarithmic scale in Fig. 7 (top left). The ‘x’ axis c0n-e- 
sponds to the k index, each curve is indexed by i, i = 0, . . ., 8. 
One can see that for all the c, the error decreases exponentially 
at approximately the same rate. The components r;@) and 
sL(D),  i = 4, k = 0, ..., 3 are shown in the two plots at the 
bottom of Fig. 7. 

A few issues remain open to investigation: 
1) The decomposition of the kernels a, into X-Y-separable 

ones (Section 1V.B) speeds up computations considera- 
bly in digital square-lattice implementations. However, 
the decomposition is done a posteriori, after the SVD de- 
composition of F,(x) into (u,(x), b,( e>, o,), and, therefore, 
it may not be the most parsimonious X-Y-separable de- 
composition. This issue ought to be addressed. One ought 

Gaussian 3 1  -. 
Y 

.f. scale decomposition -- weights 

‘ X  
5W IOW 

decomposition weights 7; ( cos (2nd)&~) )  

Gaussian 3 1  --singular function n.4 - radius Gaussian 3:l -singular funelion n.4 - scale 
Y 10-3 Y I I C 3  

- n d i ” r l - l  

- 3 M W -  > 
X 

J W  1000 
-350 M ~ I 

OW 

sfnc 4.0 - radius 

- 3 M W -  > 
X 

J W  1000 
-350 M ~ I 

OW 

sfnc 4.0 - radius 

-ISOW- i‘: ’ 
-2“ ~ ’.! 

-250.M - ; 
‘ X  

0.50 I M  

sfnc 4.0 - scale 

Fig. 7. Scale-decomposition of the radial component of the functions U,.  The 
interval of scales o is d E (0.125, 1.00). See also Fig. 8. (Top left) The 
weights rl of each polar function’s decomposition (i = 0, ..., 8, k along the x 
axis). The decay of the weights is exponential in k; five to eight components 
are needed to achieve 1% error (e.g. five for the Oth, seven for the 4th. and 
eight for the 8th shown in Fig. 6). (Bottom) The first four radial (left) and 
scale (right) components of the 5th singular function: < ( p )  and S;(CT), 

k = 0, ..., 3 (see (16)). (Top right) The real part of one scale-component of us, 

the 5th singular function: cos(2~v,O)s~(p)  (see (17)). 

In Fig. 8 reconstructions of the kernel based on a 1% error 
decomposition are shown for various scales and angles. A 
maximum of 1% error was imposed on the original steerable 
decomposition, and again on the scale decomposition of each 
single ui. The measured error was 2.5% independent of angle 
and scale. The total number of filters required to implement a 
three-octave 1 % (nominal, 2.5% real) approximation error of 
the 3 : 1 Gaussian pair is 16 (rotation) x 8 (scale) = 128. If 

to impose X-Y-separability together with steerability and 
scalability right from the start. 
Sometimes one would like to generate a discrete decom- 
position of a family of filters that obeys other constraints 
than just being the most parsimonious one. For example 
a) hardware limitations could constrain the shape of the 
interpolating funtions b(W, b) one would like to build 
pyramid implementations of the decomposition for 
speeding up the filtering stage (work on this issue has 
been done by Simoncelli et al. [62]). 

3 )  Another interesting question mentioned in the introduc- 
tion is the synthesis of the discrete decomposition di- 
rectly from the specification of an early vision task, 
rather than passing through the synthesis of a 2D (nD) 
kernel which then is deformed somewhat arbitrarily. 
Work in this direction has been done by Hueckel 1631, 
[64], Hummel [40], and Haralick [65] who approached 
the problem of feature (step edge, line in [64]) detection 
and localization as one of projecting image neighbour- 
hoods on small-dimension linear subspaces, and deriving 
the relevant parameters (orientation, position) of the fea- 
ture from this reduced representation. 
Hummel’s approach is particularly interesting: the pa- 
rameters describing the feature are modelled as continu- 
ous random variables. The neighborhood operators (“=” 
kernels of the linear filters) used to project each neigh- 
borhood onto a small-dimensional subspace space are 
selected using the Karhunen-Lobve transform. Such pro- 
cedure guarantees that the projection maximizes the vari- 
ance of the parameters and therefore the parameters thus 
obtained are maximally informative. 
The similarity of the kernels derived by Hueckel and 
Hummel to the U, depicted in Fig. 1 is not totally surpris- 
ing: the polar separability and the fact that the tangential 
component of the kernels is sinusoidal has to be expected 
from the fact that one of the parameters in question is a 
rotation in  the plane. 

VII. CONCLUSIONS 

A technique has been presented for implementing familie: 
of deformable kernels for early vision applications. A giver 
family of kernels obtained by deforming continuously a tem 
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plate kernel is approximated by interpolating a finite discrete 
set of kernels. The technique may be applied if and only if the 
family of kernels involved satisfy a compactness condition. 
This improves upon previous work by Freeman and Adelson 
on steerable filters in that 1) it is formulated with maximum 
generality to the case of any compact deformation, or, equiva- 
lently any compact family of kernels, and 2) it provides a de- 
sign technique which is guaranteed to find the most parsimoni- 
ous discrete approximation. 

(0 = 0.125,O = 30’) 

(0 = 0.33,O = 66’) 

(G = 0.77,O = 122’) 

Fig. 8. The kemel at different scales and orientations: the scales are (left to 
right) 0.125.0.33.0.77. The orientations are (left to right) 30°, 66”, 122”. The 
kernels shown here were obtained from the scale-angle decomposition. 

Unlike common techniques used in early vision where the 
set of orientations is discretized, here the kernel and the re- 
sponse of the corresponding filter may be computed in a con- 
tinuum for any value of the deformation parameters, with no 
anisotropies. The approximation error is computable a priori 
and it is constant with respect to the deformation parameter. 
This allows one, for example, to recover edges with great spa- 
tial and angular accuracy. 

APPENDIX 

A. Proof of Theorem 1 

What follows is a derivation to prove Theorem 1. The proof 
is summarized at the end of the section. 

PROOF. THE family of functions Fe defined by (1) may be 
thought of as the kernel associated to a linear operator 
L : A + B, defined by 

b(@) = ( w e )  = jR2 F , ( x ) a ( x ) h  (18) 

where A = L’(R ), and B = L2(S’), the square integrable 
functions defined on the plane and the circle, respectively, 
and a E A, b E B, 8 E SI. Let L* denote the adjoint to L,  
i.e., the unique linear operator satisfying the equality 

2 

(La, b)B = (a, L*b)A (19) 

with ( . , . )C indicating the inner product of a Hilbert space C 

If IIF(l 5 00 then Fe is a Hilbert-Schmidt kernel and L has a 
discrete spectrum; then Fe can be written as a sum: 

N 
Fe = U P ,  (xP,  (0) (21) 

r=l 

where the U,’ are the nonzero (positive, in fact) eigenvalues 
of the auto-adjoint operators LL* = L o L* and L*L 
= L* o L, and the a, and 6,  are the associated eigenfunctions 
of L* L and LL*, respectively, and N could be infinite. The 
collection of triples (q, a,, , N is the SVD of L (see 
e.g., 1661). 
Observe that expression (20) is in the desired form of (l), 
with the additional advantage that the a, and b, are or- 
thonormal bases of A and B (see below). Therefore if one 
could calculate the SVD (i.e., the a,, b,, and q) of L explic- 
itly one would be able to write Fe as in (l), and the problem 
would be solved. 

L* can be computed from its definition (19) and (18) and 
is: 

and L*L is 

(L*La)(x)  = JR* K ( x ,  x’)u(x’)h’  (24) 

~ ( x ,  x’> = JsI Fe(x)Fe(x’)de (25) 

Observe that the kernel associated with LL* is a function of 
the difference of its arguments only. To see that change the 
variable of integration in (23), y = &,x, obtaining H(0, e? 
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= H ( e -  e: 0) = h ( e -  e?. 
The eigenvalue-eigenvector problem for LL* 

LL*bi = nibi (26) 

can then be solved explicitly substituting (22) in (26): 

j,, h(e - e’)bi(e’)de’ = nibi (e) (27) 

The equation holds between the Fourier transforms of the 
two terms of the shift-invariant convolution of (27): 

i(v)&) = niii(v) (28) 

oi = i ( V i ) l / *  bi(e) = ej’mi’ (29) 

The nonzero solutions of this equation are the couples 
(A i ,  b i )  s.t. Ai = h ( v i ) ,  and b i ( v )  = 6(v -  v i ) ;  therefore 

where, by convention, the frequency numbers vi are ordered 
so that i ( v i>  is a nonincreasing sequence: 
i ( v i )  2 i(~,+~) > 0. For multiple eigenvalues any linear 
combinations of the corresponding eigenfunctions 
(eigenvectors) will also be eigenfunctions. 

The eigenfunctions of the L * L  operator cannot be easily 
determined directly from its integral expression (24) as for 
LL*. However one can make use of the fact that L*bi is an 
eigenfunction of L * L ,  which can be verified as follows: 
L*L(L*bi )  = L*(LL*bi)  = L*Aibi = A i ( L * b i ) .  The unit- 
norm eigenfunctions of L*L are therefore the functions de- 
fined by 

q(x )  = A;’12L*bi = o;]j,, F,(x)eJzmiede (30) 

i.e., at each x, a,(x)  is the conjugate of the Fourier coeffi- 
cient of F,(x) corresponding to the frequency -v,. 
In conclusion (the numbers refer to the corresponding 
statements of the theorem): 

1) Follows from the properties of SVD and the fact that the 

2) As above. 
3) From (30) and the fact that the dimension of the range of 

L* is equal to N, the number of nonzero eigenvalues. 
4) Follows from SVD properties. 
5)Follows from the fact that CT, 2 q+] and that 

x i o i  = llL1f c 00 .  May be seen directly from SVD 

properties. 
6) From (13) one can see that is a function of 1x1 and 

8- Nx) only. 
7) The functions a, are linearly independent, so any collec- 

tion of n of them spans an n-dimensional subspace of 
L2(R2).  This is the same subspace spanned by any line- 

arly independent collection $]i = 1, . . . , n. The thesis 

follows from the fact drl = 0 $, . The coefficients a, 
can be obtained with the usual change of basis formulae. 0 

sum (20) is built using the SVD triples. 
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