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Reducing “Structure From Motion”:
A General Framework for Dynamic Vision

Part 1: Modeling
Stefano Soatto and Pietro Perona

Abstract—The literature on recursive estimation of structure and motion from monocular image sequences comprises a large
number of apparently unrelated models and estimation techniques. We propose a framework that allows us to derive and compare
all models by following the idea of dynamical system reduction. The “natural” dynamic model, derived from the rigidity constraint and
the projection model, is first reduced by explicitly decoupling structure (depth) from motion. Then, implicit decoupling techniques are
explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such
a function, not only can we account for models seen so far in the literature, but we can also derive novel ones.

Index Terms—Visual motion estimation, epipolar geometry, motion decoupling, compensation, fixation, parallax, output stabilization,
model reduction.
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1 INTRODUCTION

UPPOSE that we are looking at a still scene through a
moving camera. The problem of reconstructing both the

motion of the camera and the structure of the scene, repre-
sented as the position of a number N of point-features in 3D
space, is called “structure from motion” (SFM).

SFM has been the object of extensive study throughout
the past two decades, and it is safe to say that the geometry
of “N points in M views” is now fairly well understood. In
other words, given the projection of N points onto M im-
age-planes, and given knowledge of which point corre-
sponds to which in different views, it is possible to recon-
struct their position in space (possibly up to a change of
projective or affine basis when the geometry of the imaging
device is unknown). Luong and Faugeras provide a review
of the state of the art in their forthcoming book [24].

Additionally, one may exploit the fact that images taken
by a moving camera are adjacent in time, rather than being
N snapshots taken from arbitrarily different vantage points.
Such sequences of images can be analyzed either as a
“batch” or in a recursive and causal fashion. In the latter
case, the estimate at time t is obtained by processing the
“past” measurements (up to time t), while in the former, the
entire sequence is used. Recursive SFM can be traced back
to the pioneering work of Dickmanns et al. [10] and Gen-
nery [13]. The main motivations for such a choice lie in the
fact that causal processing is necessary when the estimates
are used to perform a closed-loop control action such as

driving a car (we cannot use “future” images to turn the
steering wheel “now”); moreover, recursive processing
minimizes the storage and computational needs, a crucial
issue in real-time operation.

In processing sequences of images there seems to be a
fundamental tradeoff: If images are taken from very differ-
ent vantage points (large baseline), the relative localization
error is small, but features undergo large displacements on
the image-plane, which makes the search for correspon-
dences hard (global). If, on the other hand, images are sam-
pled closely in time, so that the image-displacement is
small, the correspondence problem is greatly simplified
(local), but SFM becomes extremely sensitive to noise due
to the small baseline [29]. The solution lies in integrating
information over time, so that one can solve locally the corre-
spondence problem for small displacements while effec-
tively increasing the baseline and therefore making the es-
timates of SFM well behaved. The main obstacle in doing so
is that individual feature-points may be visible only for
very short time-spans or disappear due to occlusions and
therefore we cannot just track them until the baseline is
“long enough” and then apply any SFM algorithm. So far,
only a few authors have addressed the issue of how to inte-
grate structure and motion information over time even in
the presence of a changeable set of feature-points (see for
instance [19] for a batch approach and [27], [38] for recur-
sive approaches). In the limit when only optical flow is
available, so that the life-span of each feature point is two
frames, the only algorithms that can integrate structure and
motion information over time are [38], [37].

It is important to not confuse time averaging with time in-
tegration. We will illustrate this with an example: Suppose
we take a sequence of noisy images closely sampled in
time. Under these circumstances, due to the high noise
level, an SFM algorithm applied to two subsequent views
(time t and t + 1) is likely to return a flawed estimate. In
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fact, the cost function associated to the problem of SFM has
several local minima, as discussed in [44]. Averaging esti-
mates corresponding to local minima will, in general, give a
meaningless result. Instead, we would like to integrate in-
formation over time so as to effectively increase the base-
line, even though individual features appear and disappear.

Despite the simplicity of the constraints that “define” the
problem, the literature on recursive structure and motion
estimation comprises a large number of quite diverse algo-
rithms. We feel the need to understand the relationships
between such algorithms and to assess the qualitative and
quantitative properties of each one by comparing them on a
common ground. In this paper, we will concentrate on re-
cursive SFM algorithms and address the questions of
whether there exist genuinely different approaches,
whether there exists one that is “universally” better than
the others or, if not, whether it is possible to choose the al-
gorithm that is best suited to the application at hand.

1.1 Motion and Structure Estimation as an
Optimization Problem

A variety of models have been proposed involving struc-
ture, motion, and images of feature points, for instance the
coplanarity constraint [23], the subspace constraint [21],
[15], [43], the so-called “plane plus parallax” constraint [4],
[32], [34] and fixation constraints [12]. These have been ex-
ploited for estimating structure and/or motion from image
sequences using a number of optimization schemes, either
batch or recursive. Batch optimization techniques from two
consecutive frames based upon the coplanarity constraint
have been presented both in closed-form [23], [46], or itera-
tive [17], [47]. The same holds for the subspace constraint
[15]. Multiframe batch techniques have also been presented,
both in closed-form under the orthographic and affine pro-
jection [31], [45], and iterative for the case of full perspec-
tive projection [1], [27], [30], [40], [41]. In this paper, we will
be dealing with causal dynamical models for multiframe
processing. In the companion paper [39], we will use such
models for designing local observers, such as the Extended
Kalman Filter (EKF) [20]. Schemes for recursive motion es-
timation also abound in the literature, see for instance [2],
[6], [7], [9], [16], [27], [30], [37], [40]. Few of them, however,
can account for a varying number of features, while only
[37], [38] can integrate motion information in the limit where
we measure optical flow (features survive for only two
frames).

A simple counting of the dimensions will soon convince
the reader that, regardless the estimation technique em-
ployed, the huge dimensionality of the problem and the
highly nonlinear nature of the space of unknown parame-
ters make the optimization so complicate that the issue of
an appropriate modeling becomes crucial.

1.2 Decoupling as a Modeling Strategy
When facing a high-dimensional optimization problem, it is
important to unravel the geometry of the space of unknown
parameters, in order to see whether there are combinations
of parameters that evolve independently in the cost objec-
tive. In that case one could decompose a high-dimensional
optimization task into a number of smaller, simpler and

better conditioned problems. In the case of structure and
motion estimation, the work of Longuet-Higgins [23] (L-H)
pioneered this approach, by decoupling structure from the
motion parameters, which are encoded in a 3 × 3 matrix,
called Essential matrix. Adiv [1] and Heeger and Jepson [15]
(H-J) further decoupled the translational velocity from the
rotational velocity.

We will rederive the constraints of H-J and L-H within a
unified procedure. These lead, respectively, to the subspace
constraint and the coplanarity constraint, interpreted as
nonlinear implicit models with parameters on a manifold.
Such a manifold is a five-dimensional space, called Essen-
tial manifold, in the discrete-time case of L-H and the two-
dimensional sphere in the continuous-time case of H-J. This
asymmetry between continuous and discrete time, which
cannot be resolved in the context of the reduced-order ob-
server, is what will motivate us towards alternative strate-
gies for reducing the model.

1.3 “Explicit” Versus “Implicit” Decoupling
Although it is not always possible to decouple the un-
known parameters in closed-form, it is possible to do so
implicitly by imposing that some function of the parame-
ters is held constant. We will see how this leads to a reduc-
tion of the model by constraining it onto a subspace of the
parameter space. For instance, we may impose that the im-
age of a point, a line, or a plane remains fixed. This proce-
dure identifies slices of the parameter manifold where the
model is constrained to evolve. For instance, these slices are
four- and three-dimensional submanifolds of the Essential
manifold, when a point or a line are fixated, and the two-
dimensional sphere (also a submanifold of the Essential
manifold), in the case in which a plane is fixated. Thus, we
may interpret the compensation of the motion of a point, a
line, or a plane, as a geometric stratification of the Essential
manifold. By restricting the model to the appropriate slices,
we derive four-, three-, and two-dimensional dynamic con-
straints, the latter being the discrete-time equivalent of the
H-J constraint.

1.4 Relation to Previous Work
This paper starts with the standard rigid motion and per-
spective projection constraints, which are the essential in-
gredients of the problem and underlie all recursive schemes
(for instance [2], [7], [16], [25], [27]), and derives the con-
straints of Longuet-Higgins [17], [23], [46], and Heeger and
Jepson [15], in the context of the observer reduction.

An apparently unrelated line of work is motivated by the
mechanics of the oculomotor system in primates. A number
of studies have suggested that the task of estimating motion
is made easier if some particular point on the scene is being
fixated [12], [33], [42]. However, “made easier” cannot be
directly quantified unless the different constraints are cast
within the same framework and compared using the same
optimization setup. We view such fixation constraints as
instances of transformations of the input images that stabi-
lize particular output functions such as the position of a
point, a line or a plane in the image. This framework allows
us to derive the point-fixation constraint [12], [33], [42], the
plane-fixation underlying the so-called “plane-plus-parallax”
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representation [4], [32], [34], as well as intermediate con-
straints, for instance by fixating the motion of a point and a
point on a line. All the constraints are imposed by consid-
ering slices of the parameter manifold, leaving the estima-
tion technique untouched. This allows us to view all such
models under the framework of epipolar geometry, and
comparing them under equivalent conditions.

2 RECURSIVE ESTIMATION OF RIGID MOTION AND
STRUCTURE FROM POINT-FEATURES

2.1 The Basic Ingredients: Rigid Motion and
Projection

We assume that the scene is described by a number N of
point-features in 3D space, with coordinates Xi ∈ R3 ∀i = … N
relative to a reference frame centered in the optical center of
the camera, which moves rigidly between successive time
instants.

We call Xi i i i T
X Y Z= ŒR

3 the coordinates of a ge-

neric point Pi with respect to an orthonormal reference
frame centered in the center of projection, with Z along the
optical axis and X, Y parallel to the image plane and ar-
ranged as to form a right-handed frame. As the reference
frame moves rigidly between time t and t + 1 (or equiva-
lently, all points move rigidly relative to it), the coordinates
of each point evolve according to

 Xi(t + 1) = R(t)Xi(t) + T(t)     ∀i = 1 … N.              (1)

The matrix R belongs to the space of positive-determinant
orthonormal 3 × 3 matrices, called SO(3), and describes the
change of orientation between the viewer’s reference at
time t and that at time t + 1 relative to the object. T ∈ R

3

describes the translation of the origin of the viewer’s refer-
ence frame. The instantaneous velocity of each featurepoint
can be written as

&X Xi i V i N= Ÿ + " =W 1 K                    (2)

where, under the approximation that the velocity is con-
stant between successive samples, the parameters (V, Ω) are
related to (T, R) by the exponential map [28]. In particular,
R = eΩ∧, where Ω∧ belongs to the set of 3 × 3 skew-
symmetric matrices, called so(3), and describes the cross-
product of Ω with a vector in R3. If we integrate (2) between
time t0 and the current time t, we end up with an equation
of the form

X Xi t
t

i t
tt R t T0 5 2 7= +

0 00                             (3)

where t
tR
0
 and t

tT
0

 indicate the rotation and translation of

the reference frame at time t relative to the one at the initial
time.1

What we measure is the perspective projection π of the
point features onto the image plane, which for simplicity
we represent as the real projective plane RP2 8 R3\R. The

1. The parameters (T, R) that describe a rigid motion for a Lie group,
called SE(3) (Special Euclidean group acting on R3), and their instantaneous
counterparts (V, Ω∧) are elements of the corresponding Lie algebra so(3).
For an introduction to the Lie groups SO(3), SE(3) and their corresponding
Lie algebras so(3), se(3) see, for instance, [28].

projection map π associates to each Pi ≠ 0 its homogeneous
coordinates:

 π : R3 − {0} → RP2  ;  X ° x                          (4)

where x X= p 0 5 8 X
Z

Y
Z

T
1  with Z ≠ 0. x is usually meas-

ured up to some error n, which we model as a white, zero-

mean and normally distributed process with covariance Rn:

y xi i i i
n
in n R= + Œ1 0,4 9 .                       (5)

In practice, feature tracking and optical flow are subject to
various sorts of errors:

1)�pixel noise in the image,
2)� erroneous correspondence, and
3)�violations of the brightness constancy assumption [3].

Any algorithm for reconstructing 3D motion and/or struc-
ture in real-time must handle such errors in an automatic
fashion. We will discuss a test for rejecting outliers in the
companion paper [39].

2.2 Limitations of the Basic Model
The ensemble of equations (1)(5) or (2)(5) may be viewed as
either a discrete-time or a continuous-time dynamical sys-
tem that describes the evolution of point-features in space,
depending upon a set of parameters that encode the rigid
motion constraint. In the language of dynamical systems and
control theory, (1) and (2) are called state equations (or model
equations), and Xi are the states. Equation (5) is called meas-
urement equation, or output equation. The motion parame-
ters may be viewed either as the input to the model, or as
unknown parameters in the model equation. Correspond-
ingly, the task of estimating structure and motion may be
seen as either a mixed state-estimation/model-inversion, or
as a state-estimation/parameter-identification problem.

If the motion parameters (T, R) or (V, Ω) were known,
then the position of the points in space could be recovered
by estimating the state of the above linear dynamical sys-
tems (1)(5) or (2)(5) using an observer, for instance an EKF
as in [25], [30]. Vice-versa, if the trajectory of the points in
space was known, their motion parameters could be esti-
mated by solving (2) as a linear system of algebraic equa-
tions. When neither the motion nor the structure of the
scene are known, the problem becomes significantly more
complicated, for we have to estimate both the state of the
above models and identify their parameters.

Since we measure the output of such models over an in-
terval of time, we may try to analyze the space2 built of
time-derivatives (or time-delays) of the output and see if it
exhibits enough structure to allow reconstructing both the
unknown states and the unknown parameters. The model
that comes out of the basic constraints is “driftless,” in the
sense that all of its dynamics depends upon the unknown
input. This means that all constraints obtained from time-
derivatives of the output couple the unknown states with the
unknown input (parameters). Furthermore, it can be proven
that only the first derivative produces independent constraints

2. Such a space is called the “observability codistribution” [18], and is
constructed by computing Lie derivatives of the output along the state
vector field.
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on the unknowns, and therefore it is not possible to unravel
both the state of the model and its parameters [36].

At this point, we face a choice of two opposite strategies.
We may “dynamically extend” the model, which means
that we take the derivatives of the input to be the unknown
parameter, rather than input itself. Then it is possible to
extend the model by inserting the input into the state. Al-
ternatively, we may try to “reduce” the original model by
decoupling the states from the parameters. These alterna-
tive strategies are discussed in the coming Sections 2.3
and 3.

2.3 “Think Big”: Dynamic Extension and Observers
In order to extend the state of the model described by (1)(5)
or (2)(5) we have to assume some dynamics for the motion
parameters:

T t f T t n t

R t f R t n t

V f V n
f n

T T

R R

V V+ =
+ =

%&K'K
=
=

%&K'K
1
1

0 5 0 5 0 52 7
0 5 0 5 0 52 7

2 7
2 7

,
,

& ,
& ,

or
W WW W

           (6)

since we do not know nT, nR, nV, nΩ, this is a purely formal
step. If some a-priori information is available on how the
motion parameters evolve, for instance the dynamics of the
vehicle on which the camera is mounted, or a bound on
acceleration, then it may be written in the form of fV, fΩ. The
simplest possible model is constant velocity

T t T t
R t R t

V+ =
+ =

%&'
=
=

%&'
1
1

0
0

0 5 0 5
0 5 0 5 or

&
&W                           (7)

Alternatively, one may use a stochastic model, for instance
a Brownian motion, where n* are appropriately defined
white, zero-mean and Gaussian noises. Although we are
going to use a Brownian motion for the purpose of analysis,
we stress that any other dynamical or statistical model may
be inserted in place of f*, as long as it preserves the observ-
ability properties of the original system. There is no “right”
model for the motion parameters, and eventually validation
must come from experiments; in the companion paper [39]
we argue that a first-order random walk can give satisfac-
tory results despite its simplicity.

In order to recover both structure and motion from the
augmented model we need an observer3 whose state-space

3. We recall that an observer for a dynamical model is itself a dynamical
system that takes as inputs the input/output pairs of the original model,
and returns as output an estimate of its state. For in introduction to the
basic concepts of linear observers, see, for instance [22]. The Kalman filter
represents an instance of an observer for a special class of linear systems
driven by white, zero-mean, and Gaussian noise. For an introduction to
Kalman filtering, see, for instance, [20].

is now quite complicated, for the motion parameters belong
either to the Lie-group of Euclidean motions, (T, R) ∈ SE(3),
or to the corresponding Lie-algebra, (V, Ω∧) ∈ se(3):

X X

y X

i i

T
n t

i i i

t R t t T t
T t T t n t

R t R t e

t t n t

i N tR

+ = +
+ = +
+ =

= +

%
&
KK

'
KK

" =Ÿ

1
1

1 1

0 5 0 5 0 5 0 5
0 5 0 5 0 5
0 5 0 5
0 5 0 54 9 0 5

0 50 5

p

K         (8)

where nT, nR, and ni are white, zero-mean Gaussian noises
and R(t) ∈ SO(3) and T(t) ∈ R

3. This model underlies all
recursive motion estimation methods seen in the literature.
Nonstructural variations of this model include change of
state coordinates (for instance, object-centered or world-
centered reference coordinates), and a change of the pa-
rameter dynamics, for instance higher-order random walks.
A change of the projection model (for instance, weak per-
spective or orthography) is significant from the modeling
point of view; however, all the essential features of the
problem are captured by the perspective projection, and all
the concepts that we will treat in this paper can be extended
to other projection models quite easily.

There are two problems with such an approach: the
high-dimensionality of the models, and the lack of local
observability. Suppose we are looking at number N = 100 of
points, which is a conservative number of feature points in
realistic image sequences. Then, the state of the filter just
described has dimension 305, since there are 300 coordi-
nates of the points, six motion parameters, and one un-
known scaling factor that affects the depth of the scene and
the norm of the translational velocity. Moreover, due to oc-
clusions and appearance of new features, the number of
visible features N(t) changes in time, which causes the filter
to have a variable dimension: when a new feature enters
the state, it needs to be initialized and the estimation error
for the position of that feature will have a discontinuity,
which propagates onto the estimates of the motion pa-
rameters. Therefore, even when the motion is smooth but
the set of feature points changes in time, the estimates of
motion are subject to discontinuities. In [27], a method is
proposed for dealing with such a situation, which uses a
“variable state-dimension filter.”

Local observers, such as EKF, update the estimates with
the residual of the prediction multiplied by a gain com-
puted from the linearization of the model. The model just
described, however, is not locally observable [36]. As an
intuitive argument, first observe that (8) is “block triangu-
lar,” in the sense that the dynamics of each feature point Xi

TABLE 1
GEOMETRIC STRATIFICATION OF THE PROBLEM OF ESTIMATING MOTION UNDER THE

COMPENSATION OF THE IMAGE-MOTION OF A POINT, A POINT AND A LINE, AND A PLANE

Stabilized
feature

Compensating
3D motion

Corresponding
image deformation

Residual
DOFs

State-space manifold

None none none 5 E Essential mfd
point 2D camera

rotation
image center
displacement

4 64 Sylvester mfd

point+line rotation about
optical center

image center
shift+rotation

3 63 three-dimensional
Sylvester mfd

plane no feasible 3D
rigid motion

quadratic warping 2 so(3) skew-symmetric unit-
norm three-matrices
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depends only on itself and on the motion parameters, but
not on other points Xj|i ≠ j. This means that, as far as the
observability is concerned, it does not matter how many
points are visible. In particular, the observability of motion
parameters does not depend upon the number of visible
points, while it is intuitive that the more points are visible
the better the perception of motion ought to be. For in-
stance, consider a camera moving with constant velocity on
a short interval of time while viewing a single point. If the
image of the point moves along the horizontal axis x of the
image plane in the positive direction, this could correspond,
for instance, to the viewer translating along the opposite
direction −X, or rotating about the axis Y. In few words,
these two motions are locally indistinguishable. However,
under the assumption of constant velocity, when we let the
point move for a longer period of time we can distinguish
these different motions, for translational motion along −X
produces a constant velocity motion on the image plane,
while a rotational velocity along Y causes the projection to
escape in finite time.

3 “T HINK SMALL”: R EDUCING THE ORDER OF THE
MODEL

3.1 Explicit Reduction
The reduced-order observer [22] is a long-established tech-
nique for reducing the dimension of an observer for a dy-
namical system. The basic idea is to solve the measurement
equation for some of the states, and then substitute into the
model equation. The states that have been eliminated are no
longer part of the state-space, and their state equation be-
comes a new measurement equation, which involves de-
rivatives of the measurements. The original measurement
equation becomes now trivial, for it has been used to define
the states to be eliminated.

For instance, consider the simple linear model

&
&
x a x a x
x a x a x
y c x c x

1 11 1 12 2

2 21 1 22 2

1 1 2 2

= +
= +

= +

%
&K
'K

                                (9)

and “solve” the measurement equation for x2, so that

x y c x
c2

1 1

2
 8 

- . If we now substitute x2 into the dynamic equa-

tions, we get a new state model for x1 which does not in-

volve x2 but has an “output injection” term, and a con-
straint involving the measurements y and &y  and the un-

known state x1:

&

&

x a a x y

y a a y a a a a x

c
c

a
c

c c
c

c

c
c

c
c

c

c

1 11 12 1

1
22

1
12 11 22 12 21 1

1

2

12

2

2 2

1

2
2

1

2

1

2

1
2

2
2

= - +

- +�
�

�
� = - - +�

�
�
�

%
&K

'K
4 9

 (10)

The previous measurement equation is now the identity y =
y. We may rewrite the above model as

& ~
~ ~
x ax ky
y cx

1 1

1

= +
=

%&'                                   (11)

where ~y  hides a time-derivative of the measured output y.
It is possible to get rid of this undesirable effect by either an

output-dependent change of coordinates, as done in the
original reduced-order observer [22], or by integrating the
measurement equation over a sample time interval.

Let us apply this simple idea to the extended model (8)
derived from (2)(5), after integrating it from the initial time
t0 to the current time t. In the simplest case of constant ve-
locity, we have

&

&
&

,

X

y X

i

i t
t

i t
t

i

t

V
t R t T V n t

0

0

0
0
0

0 0

2 7

0 5 0 5 2 7 0 54 9 0 5

=
=
=

= + +

%
&
KK

'
KK

W

W Wp

           (12)

where t
t

t
tT R

0 0
,4 9  describes the change of coordinates be-

tween the initial (at t0) and the current (at t) viewer’s refer-

ence frame. After a change of coordinates Xi ° xiZi, we can

solve the measurement constraint for xi, substitute into the
state equation, and integrate the measurement equation
starting from the initial time-instant. By doing so, we can
eliminate 2N states, and be left with a model having N + 6
states, the depth of each point and the motion parameters:

&

&
&

,

;

Z

Z

i

i t
t

i i t
t

i
y
i

t

V
t R t t T V

n t n t t

0

0 0

0

0
0
0

0 0

2 7

0 5 0 5 2 7 2 7 0 54 9
0 5

=
=
=

= + +

+ >

%

&
KKK

'
KKK

W

W Wy yp
             (13)

Since we cannot measure xi(t0), but only its noisy version

yi(t0), we have to add a bias term ny
i  to the measurement

equation.4

One may now write an EKF for such a model, where the
constant states are modeled as first-order random walks, in
order to estimate simultaneously depth and motion of the
points. This approach has been pursued by Azarbayejani
and Pentland. In [2], they consider an extended model that
has a second-order random walk for the motion parame-
ters, and an alternative projection model that allows or-
thography as a subcase (see the companion paper [39] for
more details). Note that, since there is a scale factor ambi-
guity, the filter will estimate the depth of each point and the
translational velocity modulo a one-dimensional subspace.

Model (13) is structurally similar to (8), and still suffers
the shortcomings outlined in Section 2.3. These motivate us
towards pushing the idea of the reduced-order observer
one step further, in order to eliminate the structure pa-
rameters from the state, and be left with models that only
involve motion and measured projections.

3.1.1 Pushing the Model Reduction: Structure-
Independent Motion Estimation

Let us apply the idea of the reduced-order observer twice to
the model of (2)(5). As we have seen in Section 3.1, in the
first run we can eliminate 2N states, corresponding to the
measured projections of each feature point, and be left with

4. Such a bias, equal to the measurement error at time 0, is the price one
pays for using the measurements to reduce the order of the model. In order
to eliminate the bias, one can insert it in the state, thus obtaining model (12).
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N + 5 states describing the depth of each point Zi and the
motion parameters. Now we can “solve” the new meas-
urement equation, which in fact corresponds to the im-
age motion field (and is approximated by the optical
flow), for the depth parameters Zi.

Since the expression of the image motion field &x  is linear
both in the inverse depth and the rotational velocity, one
may eliminate both depth and rotation, as done in Adiv [1].
Heeger and Jepson [15] proposed to use orthogonal projec-
tions to perform such an elimination: consider the time-
derivative of the projection of each feature point, which can
be written in the form

& ,x xi i i Z tt V
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The derivative of the third (homogeneous) coordinate of xi =
[xi  yi  1]T is identically zero, and has therefore been ne-
glected. Given a sufficient number of point-features, the
equation
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may be solved for the inverse depth parameters and the
rotational velocity, provided that N > 3, and then substi-
tuted into the same equation, which becomes

& &x x= && †                                       (18)

where & & & &†
8

T T4 9-1
 denotes the pseudo-inverse. This

leaves us with a constraint involving only translation V and
measured image-coordinates/flow:

I V- =^&& &† & &x x x8 ,0 5 0.                      (19)

It can be shown that this operation does not alter the
structure of the innovation. Since there is an overall scaling
factor ambiguity, only the direction of translation V

V
 can be

recovered, which we represent by imposing iVi = 1. The
above constraint describes a particular class of nonlinear
dynamical system, called Exterior Differential System [8]
(EDS), with the parameters V constrained on the unit-
sphere S2. We may therefore write our dynamical model as

& ^ = Œ
+ " =

%&K'K
x x S

y x
, V V

n i Ni i i
0 5 & 0

1

2

 8 K
                     (20)

Now, estimating motion is equivalent to identifying the
above EDS, with parameters V on a sphere. Once such

parameters have been identified, the remaining ones can be
recovered a posteriori through the “pseudo-measurement”

1 1
1$ $

$ &
Z Z

T

NL W = & †x .                        (21)

We show in the companion paper [39] how to practically
perform the identification of models of the form (20).

Discrete-Time: The Essential Model
The idea of the reduced-order observer may be applied also
to the discrete-time system (1)(5). The tool used to “elimi-
nate” the depth parameters is now the so-called “Epipolar
geometry” (see [11] for a review).

When a rigid object is moving between two time instants
t and t + 1, the coordinates Xi(t) of a point at time t, their
correspondent Xi(t + 1) at time t + 1, and the translation
vector T are coplanar. Their triple product is therefore zero.
This is true of course also for xi(t), xi(t + 1) and T, since xi is
the projective coordinate of Xi and therefore the two repre-
sent the same direction in R3, interpreted as the “ray-space”
model of RP2 [35]. When expressed with respect to a com-
mon reference frame, for example that at time t, we may
write the triple product as

xi(t + 1)T (T ∧ (Rxi(t))) = 0     ∀ i = 1 : N.            (22)

Let us define Q 8 (T∧)R, so that the above coplanarity con-
straint, which is also known as the “Essential constraint” or
the “epipolar constraint,” becomes

xi(t + 1)T Qxi(t) = 0   ∀ i = 1 … N.                   (23)

The above constraint may be interpreted as a discrete-time
implicit dynamical model, with unknown parameters con-
strained to be of the form T ∧ R. Estimating motion there-
fore corresponds to identifying the model
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where now the parameters Q are constrained to belong to
the so-called Essential manifold

E 8 {SR|R ∈ SO(3),  S = (T ∧) ∈ so(3)} ⊂ R3 × 3        (25)

normalized in order to take into account the scale factor
iTi = 1. The Essential manifold is a differentiable manifold
of dimension six (or five after normalization), which is iso-
morphic to the tangent bundle of the rotation group TSO(3),
and therefore to the Euclidean group of rigid motions SE(3).
For a discussion of the topological and differential prop-
erties of the Essential manifold, see [37], and for a thor-
ough description of its algebraic structure, see for instance
[11], [26].

Asymmetry Between Continuous and Discrete-Time
The application of the simple idea of the reduced-order ob-
server led us to formulating two implicit dynamical models
involving only motion parameters and image coordinates.
In the continuous-time case we could push the idea of the
reduced-order observer up to the point in which we had a
model with only two parameters. This was reasonably sim-
ple, for the parameters of rotation appeared linearly in the
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reduced measurement equation [15]. This did not work in
the discrete-time case. In fact, although the elements of the
rotation matrix R appear linearly, the rotation parameters
Ω appear through the exponential map R = eΩ∧, which we
cannot invert in closed-form in order to substitute it into
the model equation and apply the trick of the reduced-
order observer.

Therefore, there is an asymmetry between the instanta-
neous case and the discrete-time case. This will motivate us
to explore alternative methods for reducing the state of the
observer, which we do in the next section.

3.2 Implicit Reduction: Motion From Fixation
3.2.1 Output Stabilization and Geometric Stratification
Suppose that we are told that some of the states of a dy-
namical model are fixed. Then we may constrain the ob-
server to the remaining states, and eliminate the constant
ones from the dynamical model. The same applies if a func-
tion of the states is held constant. In fact, consider a point in
the state-space manifold P ∈ M. If f : M → R is smooth, and
0 = f(P) is a regular value, then the preimage f 

−1(0) ⊂ M is a
submanifold of M [14], and the point P is constrained onto
such a submanifold. In this case it is possible to find a set of
coordinates where some of the parameters are constant, and
we can therefore concentrate our attention on the re-
maining ones.

Therefore, if we view some function of the state as an
output (measurement equation) of the dynamic system, and
this output is held constant, or stabilized, we may identify a
“slice” of the state-manifold, and constrain the model on
such a slice.

Although the choice of which function to stabilize is ar-
bitrary, we will consider three simple instances; the image-
motion of a point, a point and a line through it, and a plane.
By stabilizing such outputs, we identify slices of the Essen-
tial manifold which build a geometric stratification of the
problem of estimating motion under fixation constraints.

3.2.2 Choosing a Control Action
In order to stabilize a particular function of the image, we
could either actuate the camera, and move it in space (“me-
chanical control”), or preprocess the image by considering
changes of coordinates that depend upon the outputs,
without physically acting on the camera (“software con-
trol”). For instance, keeping a single feature point fixed on
the image plane can be accomplished both by rotating the
camera about the center of projection (or about another
point in space), or by shifting the origin of the image-
coordinates. As far as the effects on motion estimation are
concerned, the two methods are equivalent. It is simple to
design gaze-control techniques which guarantee exponen-
tial convergence, while image-shift registration techniques
that achieve fixation in a single step are described, for in-
stance, in [42].

Fixating a point and a line through it on the image plane
may be easily achieved by fixating a point and then rotating
the image until another point comes to the desired line.
This may be accomplished both by rotating the camera
about the fixation axis, or by rotating the image about the
optical center with a purely software operation.

Fixating a plane in the image, however, can be only ac-
complished by manipulating, or preprocessing, the image
as described in Section 3.2.5.

3.2.3 Stabilization of a Point (Fixation)
Let us assume that we have applied some fixation tech-
nique that provides us with a sequence of images where the
projection of a given point remains fixed on the image-
plane. Since the projection of the fixation point is stationary,
the object (scene) is free only to rotate about this point, and
to translate along the fixation line. Therefore there are over-
all 4 degrees of freedom left. These four degrees of freedom
are encoded into the rotation matrix R = eΩ∧, and in the
relative translation along the fixation axis v ∈ R. The
epipolar representation presented in the previous section
applies immediately once we represent the translation T as

T R v R R R v

T
,0 5 8 - - - +13 23 33

,                    (26)

 and v d t
d t

 8 
+ π1 00 5
0 5  is the ratio between the distance of the

fixation point at time t + 1 and the same distance at time t.
The coplanarity constraint (23) also holds in the case of

fixation, once we have substituted the appropriate expres-
sion for T. Since there are four degrees of freedom, the pa-
rameters Ω and v will now lie on a four-dimensional sub-
space of the Essential manifold. Indeed, it can be shown
that the Essential matrices under the fixation constraint are
all and only the 3 × 3 Essential matrices that satisfy the fol-
lowing Sylvester’s equation

Q(R, v) = RST + vSR                              (27)

 where S 8 [0  0  α]T∧ and α is the arbitrary scaling factor
due to the homogeneous nature of the coplanarity con-
straint. We will call 64 the four-dimensional submanifold of
the Essential manifold which is defined by the above equa-
tion after normalization. The 64 manifold is locally diffeo-
morphic to R × SO(3) and hence to R4.

Therefore, in order to estimate motion under the fixation
constraint, it is sufficient to consider the epipolar constraint
where now the parameters are constrained not on the Es-
sential manifold, but on the 64-manifold. We have therefore
to deal with a model of the form

Qx x

y x
Q

i T i

i i
i

t t

t t n t

0 54 9 0 5
0 5 0 5 0 5

+ =

= +

%
&K
'K

Œ1 0 46                     (28)

where
64 = {Q ∈ E|Q = RST + vSR, R ∈ SO(3),

v ∈ R, S = [0  0  1]T ∧}.                          (29)

Estimating motion reduces to identifying the above dy-
namical system with parameters on 64. At this stage we do
not consider the unavoidable fixation error, which makes
the analysis significantly more complicated. In the com-
panion paper we evaluate experimentally the impact of the
fixation error on the quality of the estimates.

3.2.4 Stabilization of a Point and a Line Through It
Suppose now that, in addition to fixating a point, we can
maintain a line passing through it fixed in the image plane.
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We are essentially in the same situation described in the
previous section, once we have “frozen” the degree of free-
dom corresponding to cyclorotation (rotation about the op-
tical axis). Therefore, there are overall 3 degrees of freedom.
The Essential matrices corresponding to motions that obey
the “point plus line” fixation constraint must lie on a three-
dimensional submanifold of the submanifold 64 of the Es-
sential manifold E, since the point-fixation constraint de-
scribed in the previous section is satisfied. The only modifi-
cation that occurs is that now there is no cyclorotation.
Therefore the parameter space becomes

6 63 4 01 2= « =%&'
()*

ŸR e
Tw w .                    (30)

Hence, under the “point plus line” fixation assumption, we
end up with a model of the form
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which needs to be identified in order to estimate the motion
parameters.

3.2.5 Stabilization of a Plane
We now proceed in our stratification by assuming that we
are able to “compensate” the image sequence in such a way
that the points that lie on some plane (not necessarily a
physical plane in the scene) remains fixed in the image
plane. In this case there is no physical motion of the camera
that achieves this compensation (besides locking the camera
to the plane). Therefore we need to “warp” the images of
the sequence in order to account for the motion of the
plane.

Compensation of Plane-Motion: Warping
Let us assume, for the moment, that all points in the scene
lie on a plane – not passing through the origin – described
by Π = {Xπ ∈ R3|aTX π = 1}. We indicate with xπ ∈ RP2 the
projective coordinates of the generic point of the plane Π.
We will now see that, as the plane Π moves rigidly in space,
its image deforms according to a projective transformation,
i.e., a linear transformation of the projective coordinates. In
fact, we may write the evolution of the 3D points of the
plane as

X X a X Xp p p p
i i T i it R t t T t t A t t+ = +10 5 0 5 0 5 0 5 0 5 0 5 0 5 8        (32)

where A(t) = R(t) + T(t)aT is a 3 × 3 invertible matrix. The
projective coordinates of the points on the plane obey a
similar relation

x xp p
i it A t t+ 10 5 0 5 0 5~                             (33)

where the symbol , indicates equality up to a scaling factor
(projective equivalence). Given four or more point-
correspondences on the image-plane, we may solve the
above equation for the eight parameters of A that are free
after normalization.

Once the matrix A has been estimated, up to a scaling
factor, we may undo the transformation by multiplying the
transformed points by A−1:

x x xp p p
i w i it A t t+ + =-1 110 5 0 5 0 5 8 .                (34)

Therefore, such a warping leaves the points of the plane
fixed in the image [4], [32], [34].

Plane-Plus-Parallax Representation
Now, let us assume that we have compensated for some
plane, for instance the average plane, and see what happens
to the points Xi that do not lie on such a plane, after the
warping with A−1. In general, xi(t + 1)w ≠ xi(t). More specifi-
cally, we have

xi(t + 1)w , A−1xi(t + 1) = (R + TaT)−1xi(t + 1)

                               , (I − RTTaT)−1RT[RXi(t) + T]                  (35)

where the matrix inversion lemma has been used [22] and
[⋅] denotes the projective coordinates. If we call T′ 8 RTT,
then we can write
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which may be finally written as

xi(t + 1)}w , xi(t) + βi(t)T’                        (37)

where b i T t
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a X

a
 is a scalar factor. Therefore, the

last term can be interpreted as a residual, which is in the
direction of the epipole (the projective coordinates of the
direction of translation T′). The derivation above is taken
from [34].

This representation, consisting in the motion of a plane—
encoded by the matrix A—and the residual parallax in the
direction of the epipole—encoded by βi(t)—is known in the
literature as the “plane-plus-parallax” representation, and
has been developed in [4], [32], [34].

Now, let us see how warping affects the setup of epipo-
lar geometry. It is immediate to verify that

x x Si T iw
t T t T+ ¢ Ÿ = ¢ Œ1 0 20 5 0 5 0 5                  (38)

and, therefore, the effect of rotation has been canceled out
by the image warping. We may represent the overall model
as, again, an implicit dynamical system, with parameters on
a manifold
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where the last equivalence follows from the isomorphism
between so(3) and R

3 [5]. Thus, the plane-fixation con-
straint corresponds to Essential matrices which are of the
form Q = T′∧. Due to the normalization constraint on T′,
we have only two degrees of freedom left, and rotation
has been fully decoupled from translation. This model
may be considered the discrete-time equivalent of the sub-
space constraint, for it fully decouples structure and rota-
tion, and leaves a dynamic constraint only in the direction
of translation.
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4 CONCLUSIONS

We have proposed a unified framework for modeling
“Structure From Motion.” Most of the dynamic models cur-
rently used in the literature can be derived following very
simple ideas from the theory of dynamical systems. The
first unifying concept is the so-called “reduced-order ob-
server,” which allows deriving the coplanarity constraint of
Longuet-Higgins [17], [23], [46] and the subspace constraint
of Heeger and Jepson [15] as a unique procedure from the
basic dynamical model, which is essentially underlying all
recursive structure and/or motion estimation techniques.
The “Essential filter” [37], and the “Subspace filter” [38] are
methods tailored for estimating motion from such con-
straints, interpreted as implicit dynamical models with pa-
rameters on a manifold.

We solve the asymmetry between the continuous-time
case, where rotation is easily decoupled from translation,
and the discrete-time case, where such a decoupling is not
possible, within the context of output stabilization. The
constraints resulting from fixating the motion of a point, a
line and a plane are derived in a unified fashion as Essential
filters constrained to submanifolds of the Essential mani-
fold. This procedure generates a geometric stratification of
the Essential manifold, which unifies the work on fixation
[12], [33], [42] and the so-called “plane plus parallax” [34],
[32] approach in the framework of epipolar geometry [11].
All of these models are no longer treated as algebraic con-
straints on motion and/or structure parameters from a
number of views. Rather, they are dynamical systems with
unknown parameters on differentiable manifolds. Such
dynamical systems are in the particular form of Exterior
Differential Systems:
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where xi ∈ RP2 are the projective coordinates of each visible
featurepoint and φ are the unknown parameters that en-
code the motion of the viewer relative to the scene. The
only thing that changes among different models is the pa-
rameter manifold M. We derive similar models in the dis-
crete-time case. The models (20), (24), (28), (31), (39) all fall
within this category, where the manifold M is, in each in-
stance, a submanifold of the Essential manifold E, defined
in (25). In all cases, the motion parameters may be esti-
mated by identifying the parameters of the corresponding
model in the form (40), as we discuss in the companion pa-
per [39].

Despite SFM being a somewhat “old” subject in com-
puter vision, we believe that a few crucial issues are worth
discussing:

1)� the fundamental difference between time integration
and time averaging,

2)� the possibility of achieving time integration with
time-discontinuous feature sets (or with optical flow
in the limit),

3)� the relationship between different SFM models.

With regard to issue 1, any algorithm that averages out
estimates obtained from few frames can only operate to the

extent in which the few-frames algorithms work. For in-
stance, if we use a two-frame algorithms in the presence of
small parallax and high noise, this will lead to biased esti-
mates that, once averaged, will be meaningless. On the
other hand, the models presented in this paper represent a
way to effectively increase the baseline by integrating in-
formation over time. This allows us to work with small in-
ter-frame motion (which makes the correspondence prob-
lem simple) while achieving accuracy and robustness typi-
cal of large baseline-motions. Furthermore, we can estimate
motion even if the visible features drop below five in each
frame. Averaging results from two-frames algorithms in
this case would not be possible at all. Reduced models can
integrate motion information over time even if the feature
set changes (issue 2); this is a crucial issue, since it is very
difficult to track features over an extended period of time.
With regard to issue 3, we often see in the literature “new”
algorithms being proposed, which turn out to be variations
of existing models, often with a different choice of optimi-
zation technique. In this paper we have made an effort to
provide the researcher in motion analysis with tools to
judge whether a model proposed is in fact new, and how it
compares with existing techniques.
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