Supporting Information for

A Molten Salt Lithium-Oxygen Battery

Vincent Giordani, *1 Dylan Tozier,2a Hongjin Tan,1 Colin M. Burke,3 Betar M. Gallant,2b Jasim Uddin,1 Julia R. Greer,2a Bryan D. McCloskey,3 Gregory V. Chase,1 and Dan Addison *1

1 Liox Power, Inc., 129 N. Hill Ave., Pasadena, California 91106, United States.

2a Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States. 2b Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

3 Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States; Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

*Email: vincent@liox.com, dan@liox.com
List of figures

Figure S1. TGA-MS analysis of a Super P carbon:PTFE/Li$_2$O$_2$/(Li,K)NO$_3$ mixture (1/1/3 mass ratio). Sample is heated up (5 °C/min) and kept at 200 °C first under Ar then under O$_2$ (both for 60 hours). Mass fragments 28 (CO), 30 (NO), 32 (O$_2$), 40 (Ar) and 44 (CO$_2$) are monitored (right y-axis). Note that the baseline for mass 28 (CO, light blue), 30 (NO, green) and 44 (CO$_2$, dark blue) varies depending upon the carrier gas (Ar or O$_2$).

Figure S2. TGA-MS analysis of a (Li,K)NO$_3$/Li$_2$O$_2$ mixture (85/15 wt.%) heated up to 150 °C at 2 °C/min, held at 150 °C for 2.5 hours then heated up to 400 °C at 2 °C/min. 2Li$_2$O$_2$ → 2Li$_2$O + O$_2$ thermal decomposition typically observed around 250 °C. Expected weight loss (95% pure Li$_2$O$_2$): 33.1%.

Figure S3. Levich plot derived from linear sweep voltammograms recorded at various rotation rates for Li$_2$O$_2$ bulk oxidation in (Li,K)NO$_3$ molten salt electrolyte. Working electrode: Pt RDE ($A= 0.196$ cm2), T= 150 °C, sweep rate= 1 mV/s. The limiting current increases linearly with the square root of the rotation rate, and the line intercepts the vertical axis at zero, as predicted by the Levich equation ($i_L = 0.620 n F AD^{2/3} \nu^{-1/6} C_o^{1/2}$). Kinematic viscosity ν of LiNO$_3$-KNO$_3$ eutectic at 150 °C: 5.82x10$^{-2}$ cm2/s.

Figure S4. a) SEM analysis of a Super P carbon:PTFE air cathode following the 1st cycle (battery was fully charged to 3.0 V cutoff), confirming complete removal of Li$_2$O$_2$ (500 nm to several microns in diameter hexagonal prisms). Left image: amorphous carbon nanoparticles; right image: Li$_2$CO$_3$ particles covering the electrode surface. b) Elemental analysis performed on the area covered by Li$_2$CO$_3$.
Figure S1. TGA-MS analysis of a Super P carbon:PTFE/Li₂O₂/(Li,K)NO₃ mixture (1/1/3 mass ratio). Sample is heated up (5 °C/min) and kept at 200 °C first under Ar then under O₂ (both for 60 hours). Mass fragments 28 (CO), 30 (NO), 32 (O₂), 40 (Ar) and 44 (CO₂) are monitored (right y-axis). Note that the baseline for mass 28 (CO, light blue), 30 (NO, green) and 44 (CO₂, dark blue) varies depending upon the carrier gas (Ar or O₂).
Figure S2. TGA-MS analysis of a (Li,K)NO$_3$/Li$_2$O$_2$ mixture (85/15 wt.%) heated up to 150 °C at 2 °C/min, held at 150 °C for 2.5 hours then heated up to 400 °C at 2 °C/min. 2Li$_2$O$_2$ → 2Li$_2$O + O$_2$ thermal decomposition typically observed around 250 °C. Expected weight loss (95% pure Li$_2$O$_2$): 33.1%.
Figure S3. Levich plot derived from linear sweep voltammograms recorded at various rotation rates for Li$_2$O$_2$ bulk oxidation in (Li,K)NO$_3$ molten salt electrolyte. Working electrode: Pt RDE ($A= 0.196$ cm2), $T= 150$ °C, sweep rate= 1 mV/s. The limiting current increases linearly with the square root of the rotation rate, and the line intercepts the vertical axis at zero, as predicted by the Levich equation ($i_L= 0.620nFAD^{2/3}v^{-1/6}C_\omega^{1/2}$). Kinematic viscosity v of LiNO$_3$-KNO$_3$ eutectic at 150 °C: 5.82×10^{-2} cm2/s.
Figure S4. a) SEM analysis of a Super P carbon:PTFE air cathode following the 1st cycle (battery was fully charged to 3.0 V cutoff), confirming complete removal of Li$_2$O$_2$ (500 nm to several microns in diameter hexagonal prisms). Left image: amorphous carbon nanoparticles; right image: Li$_2$CO$_3$ particles covering the electrode surface. b) Elemental analysis performed on the area covered by Li$_2$CO$_3$.