Supporting information for:
Resolution of the Band Gap Prediction Problem for Materials Design

Jason M. Crowley, Jamil Tahir-Kheli, and William A. Goddard, III*

Materials and Process Simulation Center, MC139-74, California Institute of Technology,
Pasadena, California 91125, United States

E-mail: wag@wag.caltech.edu

Contents

1 Basis Set Recipe S5

2 Comparison of B3PW and G_0W_0 S7

3 Comparison of B3PW and G_0W_0 @ LDA S9

4 Comparison of B3PW and G_0W_0 @ PBE S11

5 Comparison of B3PW and post-G_0W_0 S13

6 Calculated Band Gaps Versus Low-Temperature Experiments for all Compounds S15

7 Tables of B3PW, PBE, GW, and Experimental Band Gaps S18

8 Table of Published Experimental Band Gaps S21

S1
References

B3PW CRYSTAL Input Decks

- Bi₂Se₃ (6ql) .. S32
- Bi₂Se₃ (7QL) .. S36
- Bi .. S40
- Bi₂Se₃ (5QL) .. S43
- Bi₂Se₃ (4QL) .. S47
- Bi₂Se₃ (3QL) .. S51
- Bi₂Se₃ .. S55
- PbSe .. S58
- Bi₂Te₃ .. S61
- PbTe .. S64
- InSb .. S67
- Bi₂Se₃ (2QL) .. S71
- Sb₂Te₃ .. S75
- HgTe .. S78
- SnTe .. S81
- InAs .. S84
- VO₂ .. S88
- InN .. S91
- Ge .. S94
- GaSb .. S97
- SnSe .. S101
- Si .. S104
- MoS₂ .. S106
- InP .. S110
- GaAs .. S113
<table>
<thead>
<tr>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdTe</td>
<td>S117</td>
</tr>
<tr>
<td>AlSb</td>
<td>S121</td>
</tr>
<tr>
<td>CdSe</td>
<td>S124</td>
</tr>
<tr>
<td>BP</td>
<td>S128</td>
</tr>
<tr>
<td>Cu$_2$O</td>
<td>S131</td>
</tr>
<tr>
<td>AlAs</td>
<td>S134</td>
</tr>
<tr>
<td>GaP</td>
<td>S137</td>
</tr>
<tr>
<td>ZnTe</td>
<td>S141</td>
</tr>
<tr>
<td>FeO</td>
<td>S145</td>
</tr>
<tr>
<td>BiVO$_4$</td>
<td>S147</td>
</tr>
<tr>
<td>SiC (3C)</td>
<td>S151</td>
</tr>
<tr>
<td>AlP</td>
<td>S153</td>
</tr>
<tr>
<td>CdS</td>
<td>S156</td>
</tr>
<tr>
<td>AgBr</td>
<td>S160</td>
</tr>
<tr>
<td>ZnSe</td>
<td>S165</td>
</tr>
<tr>
<td>AgI</td>
<td>S169</td>
</tr>
<tr>
<td>SiC (6H)</td>
<td>S174</td>
</tr>
<tr>
<td>CuBr</td>
<td>S176</td>
</tr>
<tr>
<td>CuI</td>
<td>S180</td>
</tr>
<tr>
<td>CoO</td>
<td>S184</td>
</tr>
<tr>
<td>AgCl</td>
<td>S187</td>
</tr>
<tr>
<td>SiC (4H)</td>
<td>S191</td>
</tr>
<tr>
<td>GaN (zincblende)</td>
<td>S193</td>
</tr>
<tr>
<td>SrTiO$_3$</td>
<td>S196</td>
</tr>
<tr>
<td>TiO$_2$ (Rutile)</td>
<td>S200</td>
</tr>
<tr>
<td>SiC (2H)</td>
<td>S202</td>
</tr>
<tr>
<td>CuCl</td>
<td>S204</td>
</tr>
<tr>
<td>Compound</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>TiO$_2$ (Anatase)</td>
<td>S208</td>
</tr>
<tr>
<td>ZnO</td>
<td>S210</td>
</tr>
<tr>
<td>GaN</td>
<td>S213</td>
</tr>
<tr>
<td>MnO</td>
<td>S216</td>
</tr>
<tr>
<td>MgTe</td>
<td>S219</td>
</tr>
<tr>
<td>ZnS</td>
<td>S222</td>
</tr>
<tr>
<td>CuSCN</td>
<td>S226</td>
</tr>
<tr>
<td>NiO</td>
<td>S231</td>
</tr>
<tr>
<td>AlN (zincblende)</td>
<td>S234</td>
</tr>
<tr>
<td>C (Diamond)</td>
<td>S236</td>
</tr>
<tr>
<td>AlN (Wurtzite)</td>
<td>S238</td>
</tr>
<tr>
<td>BN</td>
<td>S240</td>
</tr>
<tr>
<td>MgO</td>
<td>S242</td>
</tr>
<tr>
<td>NaCl</td>
<td>S244</td>
</tr>
<tr>
<td>SiO$_2$ (β-cristobalite)</td>
<td>S247</td>
</tr>
<tr>
<td>LiCl</td>
<td>S250</td>
</tr>
<tr>
<td>SiO$_2$ (α-quartz)</td>
<td>S252</td>
</tr>
<tr>
<td>LiF</td>
<td>S255</td>
</tr>
</tbody>
</table>
1 Basis Set Recipe

Our basis sets were chosen according to the following systematic recipe:

- For elements up to chlorine, we chose 6-311++G** by default. Because very diffuse basis functions can cause linear dependence in basis sets, basis functions were removed so that there was only one basis function with an exponent less than 0.1. We only retain the basis function with the largest exponent less than 0.1. All basis functions with smaller exponents are removed.

- If this modified basis could be used without numerical (linear dependence) problems, we used it. Otherwise, we replaced the most diffuse exponent with 0.1.

- If this modified basis could be used without numerical (linear dependence) problems, we used it. Otherwise, we replaced the most diffuse exponent with 0.12.

- If this modified basis could be used without numerical (linear dependence) problems, we used it. Otherwise, this basis function was removed.

In several cases, the above procedure did not yield a linearly independent basis set. Thus, we made the following modifications.

- For oxygen, we used the 6-31d1 basis set of Gatti et al.[1]

- For LiF, we removed all basis functions with exponents below 0.1 from the aug-cc-PCVTZ basis set.

- For Co, Ni, and Mn, we used 6-31G* and followed the above procedure for treating diffuse exponents.

- We used 6-31G for Fe and followed the above procedure for treating diffuse exponents.

- For all SiC polymorphs, we used 6-31+G** for Si and followed the above procedure for treating diffuse exponents.
• For AlN (zincblende and wurtzite), AlP, AlAs, and AlSb, we used 6-31+G** for Al and followed the above procedure for treating diffuse exponents.

For Sr and all elements from Cu to Bi, we used Stuttgart fully relativistic pseudopotentials and the accompanying cc-PVDZ-level basis sets with the same treatment of diffuse exponents outlined above.
2 Comparison of B3PW and G_0W_0

Figure S1: G_0W_0 and B3PW calculated band gaps versus experiment (low-temperature) for 43 compounds with band gaps below 7 eV. These 43 compounds are those for which our literature search found G_0W_0 results, and are a subset of the 70 compounds listed in Figures 2 and 3. These 43 compounds are listed in Figure S2. (a) Published G_0W_0 results (164 data points, 43 compounds, 32 publications). The mean absolute deviation (MAD) is 0.36 eV. (b) B3PW hybrid DFT calculations on the same 43 compounds. The MAD is 0.23 eV. (c) Zoom of (a) from 0–1 eV. (d) Zoom of (b) from 0–1 eV.
Figure S2: Difference between computed and low-temperature experimental band gaps for the 49 compounds for which our literature search found G_0W_0 results. Our B3PW results are shown by blue circles, and red circles represent literature G_0W_0 results. Compound names are listed on the bottom x-axes; experimental band gaps (low temperature or $T \approx 0K$ when available; see Table S4 for a discussion of experimental gaps) are listed on the top x-axes. (a) Results for Bi to AlAs (experimental band gaps 0.014 – 2.23 eV). (b) Results for GaP to BN (experimental gaps 2.35 – 6.36 eV). (c) Results for MgO to LiF (experimental gaps 7.83 – 14.2 eV)
3 Comparison of B3PW and G_0W_0 @ LDA

Figure S3: G_0W_0 @ LDA (G_0W_0 using LDA DFT as the starting point) and B3PW calculated band gaps versus experiment (low-temperature) for 34 compounds with band gaps below 7 eV. These 34 compounds are those for which our literature search found G_0W_0 @ LDA results, and are a subset of the 70 compounds listed in Figures 2 and 3. These 34 compounds are listed in Figure S4. (a) Published G_0W_0 @ LDA results (100 data points, 34 compounds, 22 publications). The mean absolute deviation (MAD) is 0.33 eV. (b) B3PW hybrid DFT calculations on the same 34 compounds. The MAD is 0.21 eV. (c) Zoom of (a) from 0–1 eV. (d) Zoom of (b) from 0–1 eV.
Figure S4: Difference between computed and low-temperature experimental band gaps for the 39 compounds for which our literature search found \(G_0W_0 \) @ LDA results. Our B3PW results are shown by blue circles, and red circles represent literature \(G_0W_0 \) @ LDA results. Compound names are listed on the bottom x-axes; experimental band gaps (low temperature or \(T \approx 0K \) when available; see Table S4 for a discussion of experimental gaps) are listed on the top x-axes. (a) Results for Bi to AlSb (experimental band gaps 0.014 – 1.69 eV). (b) Results for CdSe to BN (experimental gaps 1.86 – 6.36 eV). (c) Results for MgO to LiF (experimental gaps 7.83 – 14.2 eV)
4 Comparison of B3PW and G_0W_0 @ PBE

Figure S5: G_0W_0 @ PBE (G_0W_0 using PBE DFT as the starting point) and B3PW calculated band gaps versus experiment (low-temperature) for 22 compounds with gaps below 7 eV. These 22 compounds are those for which our literature search found G_0W_0 @ PBE results, and are a subset of the 70 compounds listed in Figures 2 and 3. These 22 compounds are listed in Figure S6. (a) Published G_0W_0 @ PBE results (33 data points, 22 compounds, 8 publications). The mean absolute deviation (MAD) is 0.33 eV. (b) B3PW hybrid DFT calculations on the same 22 compounds. The MAD is 0.22 eV. (c) Zoom of (a) from 0–1 eV. (d) Zoom of (b) from 0–1 eV.
Figure S6: Difference between computed and low-temperature experimental band gaps for the 26 compounds for which our literature search found G_0W_0 @ PBE results. Our B3PW results are shown by blue circles, and red circles represent literature G_0W_0 @ PBE results. Compound names are listed on the bottom x-axes; experimental band gaps (low temperature or $T \approx 0K$ when available; see Table S4 for a discussion of experimental gaps) are listed on the top x-axes. (a) Results for Bi$_2$Se$_3$ to BN (experimental band gaps 0.16 – 6.36 eV). (b) Results for MgO to LiF (experimental gaps 7.83 – 14.2 eV).
5 Comparison of B3PW and post-\(G_0W_0\)

Figure S7: Post-\(G_0W_0\) and B3PW calculated band gaps versus experiment (low-temperature) for 40 compounds with band gaps below 7 eV. These 40 compounds are those for which our literature search found post-\(G_0W_0\) results, and are a subset of the 70 compounds listed in Figures 2 and 3. These 40 compounds are listed in Figure S8. (a) Published post-\(G_0W_0\) results (180 data points, 40 compounds, 17 publications). The mean absolute deviation (MAD) is 0.35 eV. (b) B3PW hybrid DFT calculations on the same 40 compounds. The MAD is 0.22 eV. (c) Zoom of (a) from 0–1 eV. (d) Zoom of (b) from 0–1 eV.
Figure S8: Difference between computed and low-temperature experimental band gaps for the 46 compounds for which our literature search found post-\(G_0W_0\). Our B3PW results are shown by blue circles, and red circles represent literature post-\(G_0W_0\) results. Compound names are listed on the bottom x-axes; experimental band gaps (low temperature or \(T \approx 0K\) when available; see Table S4 for a discussion of experimental gaps) are listed on the top x-axes. (a) Results for Bi to GaP (experimental band gaps 0.014 – 2.35 eV). (b) Results for ZnTe to BN (experimental band gaps 2.39 – 6.36 eV). (c) Results for MgO to Ne (experimental gaps 7.83 – 21.7 eV)
Calculated Band Gaps Versus Low-Temperature Experiments for all Compounds

Figure S9: B3PW calculated band gaps versus experiment (low-temperature) for all 70 compounds listed in Figures 2 and 3. The mean absolute deviation is 0.28 eV.
Figure S10: PBE calculated band gaps versus experiment (low-temperature) for PBE for all 70 compounds listed in Figures 2 and 3. The mean absolute deviation is 1.28 eV.
Figure S11: G_0W_0 (red circles) and post-G_0W_0 (green circles) calculated band gaps versus experiment (low-temperature) for the 53 compounds where our literature search found G_0W_0 or post-G_0W_0 results. These 53 compounds form a subset of the 70 compounds listed in Figures 2 and 3. The mean absolute deviation is 0.40 eV overall, 0.41 eV for G_0W_0, and 0.39 eV for post-G_0W_0.
7 Tables of B3PW, PBE, GW, and Experimental Band Gaps

Table S1: Band Gaps (eV) from B3PW, GW, PBE and Experiment. Red boxes link to B3PW CRYSTAL input decks. Green boxes link to references. Table S4 lists the experimental band gap from every reference.

<table>
<thead>
<tr>
<th>System</th>
<th>B3PW</th>
<th>Exp</th>
<th>Refs</th>
<th>PBE</th>
<th>GW</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_2$Se$_3$ (6 QL)</td>
<td>0.08</td>
<td>0.0</td>
<td>S2</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$ (7 QL)</td>
<td>0.07</td>
<td>0.0</td>
<td>S2</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bi</td>
<td>0.05</td>
<td>0.011–0.015</td>
<td>S3, S8</td>
<td>0.01</td>
<td>0.013–0.032</td>
<td>S9</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$ (3 QL)</td>
<td>0.12</td>
<td>0.04</td>
<td>S2</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$ (4 QL)</td>
<td>0.17</td>
<td>0.07</td>
<td>S2</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$ (5 QL)</td>
<td>0.25</td>
<td>0.14</td>
<td>S2</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$ (2 QL)</td>
<td>0.26</td>
<td>0.16–0.35</td>
<td>S3, S10</td>
<td>0.26</td>
<td>0.01–0.34</td>
<td>S11, S13</td>
</tr>
<tr>
<td>PbSe</td>
<td>0.02</td>
<td>0.145–0.165</td>
<td>S3, S14</td>
<td>0.54</td>
<td>0.14–0.23</td>
<td>S15, S16</td>
</tr>
<tr>
<td>Bi$_2$Te$_3$</td>
<td>0.28</td>
<td>0.13–0.171</td>
<td>S3, S17</td>
<td>0.12</td>
<td>0.17–0.21</td>
<td>S11, S13</td>
</tr>
<tr>
<td>PbTe</td>
<td>0.43</td>
<td>0.190</td>
<td>S14</td>
<td>0.14</td>
<td>0.22–0.3</td>
<td>S15, S16</td>
</tr>
<tr>
<td>InSb</td>
<td>0.33</td>
<td>0.24</td>
<td>S3</td>
<td>0.00</td>
<td>0.08–0.54</td>
<td>S18, S20</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$ (2 QL)</td>
<td>0.39</td>
<td>0.25</td>
<td>S2</td>
<td>0.04</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sb$_2$Te$_3$</td>
<td>0.25</td>
<td>0.28</td>
<td>S3</td>
<td>0.00</td>
<td>0.189–0.201</td>
<td>S21</td>
</tr>
<tr>
<td>HgTe</td>
<td>0.03</td>
<td>0.3</td>
<td>S3</td>
<td>0.00</td>
<td>0.45–0.57</td>
<td>S22</td>
</tr>
<tr>
<td>SnTe</td>
<td>0.45</td>
<td>0.36</td>
<td>S3</td>
<td>0.03</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>InAs</td>
<td>0.47</td>
<td>0.42</td>
<td>S3</td>
<td>0.00</td>
<td>0.31–0.68</td>
<td>S18, S20, S23</td>
</tr>
<tr>
<td>VO$_2$</td>
<td>1.25</td>
<td>0.6</td>
<td>S24</td>
<td>0.00</td>
<td>0.46–1.12</td>
<td>S25, S26</td>
</tr>
<tr>
<td>InN</td>
<td>0.85</td>
<td>0.7–1.0</td>
<td>S27, S29</td>
<td>0.02</td>
<td>0.72–0.89</td>
<td>S30, S32</td>
</tr>
<tr>
<td>Ge</td>
<td>0.85</td>
<td>0.744</td>
<td>S3</td>
<td>0.05</td>
<td>0.5–1.0</td>
<td>S33, S36</td>
</tr>
<tr>
<td>GaSb</td>
<td>0.64</td>
<td>0.82</td>
<td>S3</td>
<td>0.00</td>
<td>0.62–1.16</td>
<td>S18, S20</td>
</tr>
<tr>
<td>SnSe</td>
<td>0.95</td>
<td>0.86–0.95</td>
<td>S37, S39</td>
<td>0.33</td>
<td>0.78</td>
<td>S40</td>
</tr>
<tr>
<td>Si</td>
<td>1.58</td>
<td>1.17</td>
<td>S3</td>
<td>0.61</td>
<td>0.56–1.91</td>
<td>S18, S23, S33, S36</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>1.63</td>
<td>1.29</td>
<td>S45</td>
<td>1.01</td>
<td>1.29–1.69</td>
<td>S35</td>
</tr>
<tr>
<td>InP</td>
<td>1.74</td>
<td>1.42</td>
<td>S3</td>
<td>0.79</td>
<td>1.32–1.99</td>
<td>S18, S20, S42, S44</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.47</td>
<td>1.52</td>
<td>S3</td>
<td>0.54</td>
<td>1.09–3.77</td>
<td>S18, S20, S33, S36</td>
</tr>
<tr>
<td>CdTe</td>
<td>1.53</td>
<td>1.61</td>
<td>S47</td>
<td>0.48</td>
<td>1.22–1.84</td>
<td>S19, S23, S48</td>
</tr>
<tr>
<td>AlSb</td>
<td>1.98</td>
<td>1.69</td>
<td>S3</td>
<td>1.05</td>
<td>1.64–1.75</td>
<td>S18, S19</td>
</tr>
<tr>
<td>CdSe</td>
<td>1.57</td>
<td>1.85</td>
<td>S49</td>
<td>0.46</td>
<td>1.25–2.01</td>
<td>S22, S48</td>
</tr>
<tr>
<td>BP</td>
<td>2.48</td>
<td>2.1</td>
<td>S3</td>
<td>1.34</td>
<td>1.9</td>
<td>S50</td>
</tr>
<tr>
<td>Cu$_2$O</td>
<td>1.97</td>
<td>2.17</td>
<td>S3, S51</td>
<td>0.20</td>
<td>1.36–2.65</td>
<td>S26, S36</td>
</tr>
<tr>
<td>AlN</td>
<td>2.36</td>
<td>2.23</td>
<td>S3</td>
<td>1.31</td>
<td>1.57–2.25</td>
<td>S18, S23, S42, S46, S52</td>
</tr>
</tbody>
</table>
Table S2: Band Gaps (eV) from B3PW, GW, PBE and Experiment. Red boxes link to B3PW CRYSTAL input decks. Green boxes link to references. Table S4 lists the experimental band gap from every reference.

<table>
<thead>
<tr>
<th>System</th>
<th>B3PW</th>
<th>Exp</th>
<th>Refs</th>
<th>PBE</th>
<th>GW</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaP</td>
<td>2.78</td>
<td>2.35</td>
<td>S3</td>
<td>1.75</td>
<td>2.33–2.97</td>
<td>S18, S19, S35</td>
</tr>
<tr>
<td>ZnTe</td>
<td>2.55</td>
<td>2.39</td>
<td>S3</td>
<td>1.39</td>
<td>1.97–2.67</td>
<td>S19, S22, S48</td>
</tr>
<tr>
<td>FeO</td>
<td>2.33</td>
<td>2.4</td>
<td>S53</td>
<td>0.00</td>
<td>0.86–2.32</td>
<td>S26, S54, S56</td>
</tr>
<tr>
<td>BiVO₄</td>
<td>2.73</td>
<td>2.41</td>
<td>S57</td>
<td>1.49</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SiC (3C)</td>
<td>2.66</td>
<td>2.42</td>
<td>S3</td>
<td>1.38</td>
<td>1.8–2.88</td>
<td>S23, S34, S36</td>
</tr>
<tr>
<td>AIP</td>
<td>2.59</td>
<td>2.5</td>
<td>S3</td>
<td>1.51</td>
<td>1.88–3.1</td>
<td>S18, S34, S36</td>
</tr>
<tr>
<td>CdS</td>
<td>2.37</td>
<td>2.5</td>
<td>S49</td>
<td>1.12</td>
<td>2.11–3.41</td>
<td>S22, S33, S34</td>
</tr>
<tr>
<td>AgBr</td>
<td>2.25</td>
<td>2.71</td>
<td>S3</td>
<td>0.63</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ZnSe</td>
<td>2.69</td>
<td>2.82</td>
<td>S3</td>
<td>1.36</td>
<td>2.24–3.26</td>
<td>S22, S48</td>
</tr>
<tr>
<td>AgI</td>
<td>3.14</td>
<td>2.91</td>
<td>S3</td>
<td>1.59</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SiC (6H)</td>
<td>3.34</td>
<td>3.023</td>
<td>S59</td>
<td>2.04</td>
<td>3.24–3.25</td>
<td>S60, S61</td>
</tr>
<tr>
<td>CuBr</td>
<td>2.86</td>
<td>3.07</td>
<td>S3</td>
<td>0.76</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CuI</td>
<td>3.21</td>
<td>3.12</td>
<td>S3</td>
<td>1.36</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CoO</td>
<td>3.54</td>
<td>2.1–5.43</td>
<td>62, 66</td>
<td>0.13</td>
<td>2.4–4.78</td>
<td>S26, S54, S55</td>
</tr>
<tr>
<td>AgCl</td>
<td>2.63</td>
<td>3.25</td>
<td>S3</td>
<td>0.81</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SiC (4H)</td>
<td>3.58</td>
<td>3.263</td>
<td>S59</td>
<td>2.26</td>
<td>3.08–3.8</td>
<td>S35, S60, S61</td>
</tr>
<tr>
<td>GaN (zincblende)</td>
<td>3.08</td>
<td>3.28</td>
<td>S69</td>
<td>3.27–3.82</td>
<td>S34</td>
<td></td>
</tr>
<tr>
<td>SrTiO₃</td>
<td>3.38</td>
<td>3.25–3.3</td>
<td>S70, S72</td>
<td>1.75</td>
<td>3.36–5.15</td>
<td>S33, S3, S4</td>
</tr>
<tr>
<td>TiO₂ (Rutile)</td>
<td>3.47</td>
<td>3.3</td>
<td>S72</td>
<td>1.78</td>
<td>3.11–4.84</td>
<td>S26, S74, S75</td>
</tr>
<tr>
<td>SiC (2H)</td>
<td>3.60</td>
<td>3.33</td>
<td>S76</td>
<td>2.30</td>
<td>3.15–3.68</td>
<td>S60, S61</td>
</tr>
<tr>
<td>CuCl</td>
<td>3.06</td>
<td>3.4</td>
<td>S3</td>
<td>0.80</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TiO₂ (Anatase)</td>
<td>3.60</td>
<td>3.4</td>
<td>S77</td>
<td>1.98</td>
<td>3.73–5.28</td>
<td>S74, S75</td>
</tr>
<tr>
<td>ZnO</td>
<td>2.82</td>
<td>3.44</td>
<td>S3</td>
<td>1.00</td>
<td>0.1–4.61</td>
<td>S34, S36, S44</td>
</tr>
<tr>
<td>GaN</td>
<td>3.44</td>
<td>3.503</td>
<td>S3</td>
<td>2.01</td>
<td>2.75–3.82</td>
<td>S33, S35</td>
</tr>
<tr>
<td>MnO</td>
<td>3.16</td>
<td>2.0–4.2</td>
<td>S63, S78, S81</td>
<td>0.86</td>
<td>2.34–4.39</td>
<td>S26, S54, S55</td>
</tr>
<tr>
<td>MgTe</td>
<td>3.36</td>
<td>3.6</td>
<td>S82</td>
<td>2.23</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ZnS</td>
<td>3.98</td>
<td>3.84</td>
<td>S49</td>
<td>2.46</td>
<td>1.52–4.15</td>
<td>S22, S84, S48</td>
</tr>
<tr>
<td>CuSCN</td>
<td>3.77</td>
<td>3.94</td>
<td>S83</td>
<td>2.36</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NiO</td>
<td>4.57</td>
<td>3.7–4.3</td>
<td>S63, S65, S84</td>
<td>0.97</td>
<td>1.74–5.0</td>
<td>S26, S54, S55</td>
</tr>
</tbody>
</table>

S19
Table S3: Band Gaps (eV) from B3PW, GW, PBE and Experiment. Red boxes link to B3PW CRYSTAL input decks. Green boxes link to references. Table S4 lists the experimental band gap from every reference.

<table>
<thead>
<tr>
<th>System</th>
<th>B3PW</th>
<th>Exp</th>
<th>Refs</th>
<th>PBE</th>
<th>GW</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlN (zincblende)</td>
<td>4.94</td>
<td>4.9</td>
<td>S86</td>
<td>3.33</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C (diamond)</td>
<td>5.74</td>
<td>5.5</td>
<td>S3</td>
<td>4.19</td>
<td>5.59–6.99</td>
<td>S33,S41,S42,S34,S43,S35,S36,S44</td>
</tr>
<tr>
<td>AlN (wurtzite)</td>
<td>6.05</td>
<td>6.19</td>
<td>S3</td>
<td>4.31</td>
<td>4.81–5.79</td>
<td>S35</td>
</tr>
<tr>
<td>BN</td>
<td>6.19</td>
<td>6.36</td>
<td>S87</td>
<td>4.48</td>
<td>6.19–7.51</td>
<td>S33,S34,S36,S44</td>
</tr>
<tr>
<td>MgO</td>
<td>6.79</td>
<td>7.83</td>
<td>S88</td>
<td>4.69</td>
<td>6.71–10.3</td>
<td>S33,S36,S44</td>
</tr>
<tr>
<td>NaCl</td>
<td>9.08</td>
<td>8.5–8.69</td>
<td>S89,S90</td>
<td>7.27</td>
<td>7.53</td>
<td>S33</td>
</tr>
<tr>
<td>SiO$_2$ (β-cristobalite)</td>
<td>8.90</td>
<td>8.9</td>
<td>S91</td>
<td>6.52</td>
<td>8.36–10.5</td>
<td>S35,S92</td>
</tr>
<tr>
<td>LiCl</td>
<td>8.76</td>
<td>9.4</td>
<td>S93</td>
<td>7.00</td>
<td>8.75–10.98</td>
<td>S18,S36,S41,S42</td>
</tr>
<tr>
<td>SiO$_2$ (α-quartz)</td>
<td>10.18</td>
<td>9.65</td>
<td>S94</td>
<td>7.79</td>
<td>8.77</td>
<td>S95</td>
</tr>
<tr>
<td>LiF</td>
<td>13.33</td>
<td>14.2</td>
<td>S96</td>
<td>10.75</td>
<td>13.13–16.17</td>
<td>S34,S35,S44,S95</td>
</tr>
</tbody>
</table>
8 Table of Published Experimental Band Gaps

Table S4: Experimental Band Gaps (caption on page S20). When there is more than one experimental result, our choice is in bold.

<table>
<thead>
<tr>
<th>System</th>
<th>Band Gap (eV)</th>
<th>Temperature (K)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi₂Se₃ (6QL)</td>
<td>0.00</td>
<td>?</td>
<td>S2</td>
</tr>
<tr>
<td>Bi₂Se₃ (7QL)</td>
<td>0.00</td>
<td>?</td>
<td>S2</td>
</tr>
<tr>
<td>Bi</td>
<td>0.015</td>
<td>1.2</td>
<td>S7</td>
</tr>
<tr>
<td>Bi</td>
<td>0.015</td>
<td>4</td>
<td>S4</td>
</tr>
<tr>
<td>Bi</td>
<td>0.011</td>
<td>4</td>
<td>S5</td>
</tr>
<tr>
<td>Bi</td>
<td>0.0136</td>
<td>0 (extrapolated)</td>
<td>S6</td>
</tr>
<tr>
<td>Bi</td>
<td>0.0153</td>
<td>1.4</td>
<td>S8</td>
</tr>
<tr>
<td>Bi</td>
<td>0.0136</td>
<td>?</td>
<td>S3</td>
</tr>
<tr>
<td>Bi₂Se₃ (5QL)</td>
<td>0.04</td>
<td>?</td>
<td>S2</td>
</tr>
<tr>
<td>Bi₂Se₃ (4QL)</td>
<td>0.07</td>
<td>?</td>
<td>S2</td>
</tr>
<tr>
<td>Bi₂Se₃ (3QL)</td>
<td>0.14</td>
<td>?</td>
<td>S2</td>
</tr>
<tr>
<td>Bi₂Se₃</td>
<td>0.35</td>
<td>RT</td>
<td>S10</td>
</tr>
<tr>
<td>Bi₂Se₃</td>
<td>0.16</td>
<td>77</td>
<td>S3</td>
</tr>
<tr>
<td>PbSe</td>
<td>0.145</td>
<td>4</td>
<td>S3</td>
</tr>
<tr>
<td>PbSe</td>
<td>0.165</td>
<td>4.2</td>
<td>S14</td>
</tr>
<tr>
<td>Bi₂Te₃</td>
<td>0.13</td>
<td>293</td>
<td>S3</td>
</tr>
<tr>
<td>Bi₂Te₃</td>
<td>0.171</td>
<td>0 (extrapolated)</td>
<td>S17</td>
</tr>
<tr>
<td>PbTe</td>
<td>0.190</td>
<td>4.2</td>
<td>S14</td>
</tr>
<tr>
<td>InSb</td>
<td>0.24</td>
<td>1.7</td>
<td>S3</td>
</tr>
<tr>
<td>Bi₂Se₃ (2QL)</td>
<td>0.25</td>
<td>?</td>
<td>S2</td>
</tr>
<tr>
<td>Sb₂Te₃</td>
<td>0.28</td>
<td>299</td>
<td>S3</td>
</tr>
<tr>
<td>HgTe</td>
<td>0.304</td>
<td>0 (extrapolated)</td>
<td>S3</td>
</tr>
<tr>
<td>SnTe</td>
<td>0.36</td>
<td>12</td>
<td>S3</td>
</tr>
<tr>
<td>InAs</td>
<td>0.42</td>
<td>4.2</td>
<td>S3</td>
</tr>
<tr>
<td>VO₂</td>
<td>0.6</td>
<td>300</td>
<td>S24</td>
</tr>
<tr>
<td>InN</td>
<td>0.7 – 0.8</td>
<td>12 – 300</td>
<td>S27</td>
</tr>
<tr>
<td>InN</td>
<td>0.7 – 1.0</td>
<td>RT</td>
<td>S28</td>
</tr>
<tr>
<td>InN</td>
<td>0.72</td>
<td>4–6</td>
<td>S29</td>
</tr>
<tr>
<td>Ge</td>
<td>0.744</td>
<td>1.5</td>
<td>S3</td>
</tr>
<tr>
<td>GaSb</td>
<td>0.82</td>
<td>0 (extrapolated)</td>
<td>S3</td>
</tr>
<tr>
<td>SnSe</td>
<td>0.86</td>
<td>RT</td>
<td>S39</td>
</tr>
<tr>
<td>SnSe</td>
<td>0.898</td>
<td>RT</td>
<td>S37</td>
</tr>
<tr>
<td>SnSe</td>
<td>0.95</td>
<td>RT</td>
<td>S38</td>
</tr>
<tr>
<td>SnSe (average)</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>1.17</td>
<td>0 (extrapolated)</td>
<td>S3</td>
</tr>
<tr>
<td>MoS₂</td>
<td>1.29</td>
<td>?</td>
<td>S45</td>
</tr>
<tr>
<td>InP</td>
<td>1.42</td>
<td>1.6</td>
<td>S3</td>
</tr>
<tr>
<td>System</td>
<td>Band Gap (eV)</td>
<td>Temperature (K)</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.52</td>
<td>0 (extrapolated)</td>
<td>S3</td>
</tr>
<tr>
<td>CdTe</td>
<td>1.48</td>
<td>300</td>
<td>S3</td>
</tr>
<tr>
<td>CdTe</td>
<td>1.61</td>
<td>4.2</td>
<td>S47</td>
</tr>
<tr>
<td>AlSb</td>
<td>1.69</td>
<td>27</td>
<td>S3</td>
</tr>
<tr>
<td>CdSe</td>
<td>1.73</td>
<td>300</td>
<td>S3</td>
</tr>
<tr>
<td>CdSe</td>
<td>1.85</td>
<td>0</td>
<td>S49</td>
</tr>
<tr>
<td>BP</td>
<td>2.1</td>
<td>RT</td>
<td>S3</td>
</tr>
<tr>
<td>Cu$_2$O</td>
<td>2.17</td>
<td>4.2</td>
<td>S51</td>
</tr>
<tr>
<td>Cu$_2$O</td>
<td>2.17</td>
<td>4.2</td>
<td>S3</td>
</tr>
<tr>
<td>AlAs</td>
<td>2.23</td>
<td></td>
<td>S3</td>
</tr>
<tr>
<td>GaP</td>
<td>2.35</td>
<td>0 (extrapolated)</td>
<td>S3</td>
</tr>
<tr>
<td>ZnTe</td>
<td>2.39</td>
<td>< 2</td>
<td>S3</td>
</tr>
<tr>
<td>FeO</td>
<td>2.4</td>
<td>77</td>
<td>S53</td>
</tr>
<tr>
<td>BiVO$_4$</td>
<td>2.41</td>
<td>?</td>
<td>S57</td>
</tr>
<tr>
<td>SiC (3C)</td>
<td>2.42</td>
<td>2K</td>
<td>S3</td>
</tr>
<tr>
<td>AlP</td>
<td>2.5</td>
<td>2</td>
<td>S3</td>
</tr>
<tr>
<td>CdS</td>
<td>2.5</td>
<td>300</td>
<td>S49</td>
</tr>
<tr>
<td>AgBr</td>
<td>2.71</td>
<td>1.8</td>
<td>S3</td>
</tr>
<tr>
<td>ZnSe</td>
<td>2.82</td>
<td>6</td>
<td>S3</td>
</tr>
<tr>
<td>AgI</td>
<td>2.91</td>
<td>4</td>
<td>S3</td>
</tr>
<tr>
<td>SiC (6H)</td>
<td>3.023</td>
<td>4.2</td>
<td>S59</td>
</tr>
<tr>
<td>CuBr</td>
<td>3.07</td>
<td>1.6</td>
<td>S3</td>
</tr>
<tr>
<td>CuI</td>
<td>3.12</td>
<td>80</td>
<td>S3</td>
</tr>
<tr>
<td>CoO</td>
<td>3.6</td>
<td>?</td>
<td>S62</td>
</tr>
<tr>
<td>CoO</td>
<td>2.6</td>
<td>?</td>
<td>S63</td>
</tr>
<tr>
<td>CoO</td>
<td>2.5</td>
<td>?</td>
<td>S64</td>
</tr>
<tr>
<td>CoO</td>
<td>2.1</td>
<td>78</td>
<td>S65</td>
</tr>
<tr>
<td>CoO</td>
<td>2.7</td>
<td>?</td>
<td>S66</td>
</tr>
<tr>
<td>CoO</td>
<td>5.43</td>
<td>?</td>
<td>S68</td>
</tr>
<tr>
<td>CoO (average)</td>
<td>3.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AgCl</td>
<td>3.25</td>
<td>1.8</td>
<td>S3</td>
</tr>
<tr>
<td>SiC (4H)</td>
<td>3.263</td>
<td>4.2</td>
<td>S59</td>
</tr>
<tr>
<td>GaN (zincblende)</td>
<td>3.28</td>
<td>0</td>
<td>S69</td>
</tr>
<tr>
<td>SrTiO$_3$</td>
<td>3.3</td>
<td>?</td>
<td>S72</td>
</tr>
<tr>
<td>SrTiO$_3$</td>
<td>3.25</td>
<td>?</td>
<td>S71</td>
</tr>
<tr>
<td>SrTiO$_3$</td>
<td>3.3</td>
<td>20</td>
<td>S70</td>
</tr>
<tr>
<td>TiO$_2$ (rutile)</td>
<td>3.3</td>
<td>?</td>
<td>S72</td>
</tr>
<tr>
<td>SiC (2H)</td>
<td>3.33</td>
<td>4.2</td>
<td>S76</td>
</tr>
<tr>
<td>CuCl</td>
<td>3.4</td>
<td>2</td>
<td>S3</td>
</tr>
<tr>
<td>TiO$_2$ (anatase)</td>
<td>3.4</td>
<td>0 (extrapolated)</td>
<td>S77</td>
</tr>
<tr>
<td>ZnO</td>
<td>3.44</td>
<td>6</td>
<td>S3</td>
</tr>
<tr>
<td>GaN</td>
<td>3.503</td>
<td>1.6</td>
<td>S3</td>
</tr>
</tbody>
</table>

S22
<table>
<thead>
<tr>
<th>System</th>
<th>Band Gap (eV)</th>
<th>Temperature (K)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO</td>
<td>3.6–3.8</td>
<td>?</td>
<td>S78</td>
</tr>
<tr>
<td>MnO</td>
<td>3.8–4.2</td>
<td>?</td>
<td>S79</td>
</tr>
<tr>
<td>MnO</td>
<td>4.1</td>
<td>?</td>
<td>S63</td>
</tr>
<tr>
<td>MnO</td>
<td>3.9</td>
<td>?</td>
<td>S80</td>
</tr>
<tr>
<td>MnO</td>
<td>2.0</td>
<td>77</td>
<td>S81</td>
</tr>
<tr>
<td>MnO (average)</td>
<td>3.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgTe</td>
<td>3.49</td>
<td>RT</td>
<td>S3</td>
</tr>
<tr>
<td>MgTe</td>
<td>3.6</td>
<td>0 (extrapolated)</td>
<td>S82</td>
</tr>
<tr>
<td>ZnS</td>
<td>3.72</td>
<td>300</td>
<td>S3</td>
</tr>
<tr>
<td>ZnS</td>
<td>3.84</td>
<td>0</td>
<td>S49</td>
</tr>
<tr>
<td>CuSCN</td>
<td>3.94</td>
<td>RT</td>
<td>S83</td>
</tr>
<tr>
<td>NiO</td>
<td>4.3</td>
<td>?</td>
<td>S84</td>
</tr>
<tr>
<td>NiO</td>
<td>4.0</td>
<td>?</td>
<td>S63</td>
</tr>
<tr>
<td>NiO</td>
<td>4.0</td>
<td>78</td>
<td>S65</td>
</tr>
<tr>
<td>NiO</td>
<td>3.7</td>
<td>?</td>
<td>S85</td>
</tr>
<tr>
<td>NiO</td>
<td>3.7</td>
<td>?</td>
<td>S66</td>
</tr>
<tr>
<td>NiO (average)</td>
<td>3.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlN (zincblende)</td>
<td>4.9</td>
<td>0</td>
<td>S86</td>
</tr>
<tr>
<td>C (diamond)</td>
<td>5.5</td>
<td>RT</td>
<td>S3</td>
</tr>
<tr>
<td>AlN (wurtzite)</td>
<td>6.19</td>
<td>7</td>
<td>S3</td>
</tr>
<tr>
<td>BN</td>
<td>6.2</td>
<td>?</td>
<td>S3</td>
</tr>
<tr>
<td>BN</td>
<td>6.36</td>
<td>8</td>
<td>S87</td>
</tr>
<tr>
<td>MgO</td>
<td>7.22</td>
<td>?</td>
<td>S97</td>
</tr>
<tr>
<td>MgO</td>
<td>7.9</td>
<td>0 (extrapolated)</td>
<td>S3</td>
</tr>
<tr>
<td>MgO</td>
<td>7.83</td>
<td>83</td>
<td>S88</td>
</tr>
<tr>
<td>NaCl</td>
<td>8.69</td>
<td>77</td>
<td>S90</td>
</tr>
<tr>
<td>NaCl</td>
<td>8.75</td>
<td>10</td>
<td>S98</td>
</tr>
<tr>
<td>NaCl</td>
<td>8.5</td>
<td>?</td>
<td>S89</td>
</tr>
<tr>
<td>SiO₂ (β-cristobalite)</td>
<td>8.9</td>
<td>?</td>
<td>S91</td>
</tr>
<tr>
<td>LiCl</td>
<td>9.4</td>
<td>55</td>
<td>S93</td>
</tr>
<tr>
<td>SiO₂ (α-quartz)</td>
<td>9.65</td>
<td>?</td>
<td>S94</td>
</tr>
<tr>
<td>LiF</td>
<td>14.2</td>
<td>77</td>
<td>S96</td>
</tr>
</tbody>
</table>
Table S4 lists the experimental band gap in every reference we found. We also list the temperature for each result or a question mark when we were unsure. In many cases there are several experimental results to choose from. When this is the case, our choice is shown in bold in Table S4. In general, when a low-temperature result from reference S3 (a standard and well-known reference work) was available, we used it. We followed this approach in all cases except the following.

PbSe. We chose reference S14, as this result is more commonly used in the literature.

Bi$_2$Te$_3. We chose reference S17 because it is a 0 K result, whereas the band gap in S3 is at room temperature.

SnSe. We found three recent room-temperature measurements. In order to avoid biasing our comparison, we chose to average these results.

CoO, MnO, NiO. There appears to be no clear consensus as to the band gaps of these materials. We gathered the results most commonly cited in the GW literature and averaged. As a result, the MADs for GW decreased by ~ 0.01 eV and the MADs for B3PW increased by ~ 0.01 eV.

MgO and NaCl. We chose the references commonly used in the GW literature. This choice biases the comparison in favor of GW.

BP. Lucero et al. S99 quote a low-temperature experimental band gap of 2.4 eV. This number seems plausible given the room temperature value of 2.1 eV. However, we were unable to locate any experimental paper containing this value. Thus, we used the room temperature band gap from reference S3.
References

B3PW CRYSTAL Input Decks

References to the experimental structures used are shown at the top of each input deck. All experimental structures were taken from the Inorganic Crystal Structure Database (ICSD).

Bi$_2$Se$_3$ (6q)

bi2se3 – Inorg Chem (1999) 38 (9) 2131

crystal
0 0 0
166
4.1355 28.615
3
283 0.000 0.000 0.4006
234 0.000 0.000 0.0000
234 0.000 0.000 0.2109
slab
0 0 1
3
30
printout
basisset
end
end
283 8
input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.779775 4.060445 0
0.739216 5.980282 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1

S32
0.120284 1.0
0.2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0.2101
0.165982 1.0
0.2 1 0 1
0.077856 1.0
0.3 1 0 1
0.256 1.0
0.3 1 0 1
0.134 1.0
234 9
input
24. 0 2 4 6 2
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0.0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0.0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0
0 1 0. 1
0.3830 1
0 0 1 0. 1
0.1399 1
0 2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
0 2 7 4.0 1
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0 2 1 0. 1
0.1137 1
0 3 6 10. 1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0 3 1 0. 1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
sorestart
tolinteg
9 7 7 7 14
end
10 0 20
maxcycle
1
fmethod
80
broyden
0.01
ppan
end
\textbf{Bi}_2\textbf{Se}_3 (7QL)

\textit{Bi}_2\textit{Se}_3 – Inorg Chem (1999) 38 (9) 2131

crystal
0 0 0
166
4.1355 28.615
3
283 0.000 0.000 0.4006
234 0.000 0.000 0.0000
234 0.000 0.000 0.2109
slab
0 0 1
3
35
printout
basisset
end
end
283 8
input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.779775 4.060445 0
0.739216 5.980282 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1
0.120284 1.0
0 2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0 2 1 0 1

S36
0.165982 1.0
0.2101
0.077856 1.0
0.3101
0.256 1.0
0.3101
0.134 1.0
234 9
input
24. 0 2 4 6 2
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
11.950867 -0.766262 0
17.810780 -2.102742 0
0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0 8 2.0 1
0 8 2.0 1
0 0 1 0. 1
0.3830 1
0 0 1 0. 1
0.1399 1
0.2760 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0.210 1.1
0.1137 1
0.3656 10.1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0.310 1.1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
977714
end
10 0 20
maxcycle
20
fmixing
80
broyden
0.01
ppan
end
Bi

bi – Acta Crystallographica 1962 15 865

crystal

0 0 0

166

4.546 11.862

1

283 0.000 0.000 0.2339

end

283 9

input

23. 0 2 4 4 2

13.043090 283.264227 0

8.221682 62.471959 0

10.467777 72.001499 0

9.118901 144.002277 0

6.754791 5.007945 0

6.252592 9.991550 0

8.081474 36.396259 0

7.890595 54.597664 0

4.955556 9.984294 0

4.704559 14.981485 0

4.214546 13.713383 0

4.133400 18.194308 0

0 0 8 2 1

211.821 0.001088

21.3262 -0.105862

13.3654 0.530808

6.94610 -1.050265

1.71229 0.995856

0.839107 0.398952

0.255364 0.011778

0.096700 -0.001470

0 0 8 2 1

211.821 0.000422

21.3262 -0.038537

13.3654 0.217238

6.94610 -0.481097

1.71229 0.701595

0.839107 0.290520

0.255364 -0.799778

0.096700 -0.496131

0 0 1 0 1

0.255364 1
uhf
dft
b3pw
end
biesplit
10
tolinteg
9 7 7 7 14
tolpseud
7
end
12 0 24
maxcycle
100
fmixing
80
broyden
0.0001
tolscf
8 8
ppan
end
Bi$_2$Se$_3$ (5QL)

bi2se3 – Inorg Chem (1999) 38 (9) 2131

crystal
0 0 0
166
4.1355 28.615
3
283 0.000 0.000 0.4006
234 0.000 0.000 0.0000
234 0.000 0.000 0.2109
slab
0 0 1
3
25
printout
basisset
end
end
283 8
input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.797775 4.060445 0
0.739216 5.980282 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1
0.120284 1.0
0 2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0 2 1 0 1
0.165982	1.0
0.2101	1.0
0.077856	1.0
0.3101	1.0
0.256	1.0
0.3101	1.0
0.134	1.0
234	9

input

24.	02462	
30.046990	370.122888	0
6.918688	10.456168	0
45.773014	99.135059	0
45.294642	198.292483	0
20.739648	28.338747	0
20.028601	56.749747	0
50.941768	-18.526556	0
49.594740	-28.334921	0
16.323522	-0.696089	0
14.465196	-1.167891	0
3.775330	0.041443	0
3.501953	0.235583	0
11.950867	-0.766262	0
17.810780	-2.102742	0
008201		
2609.7204	0.001829	
391.5228	0.009706	
48.2893	0.071606	
16.8019	-0.383980	
3.5149	0.691926	
1.5894	0.491893	
0.3830	0.021091	
0.1399	-0.003916	
008201		
2609.7204	-0.000694	
391.5228	-0.003866	
48.2893	-0.024839	
16.8019	0.140207	
3.5149	-0.342280	
1.5894	-0.364598	
0.3830	0.698440	
0.1399	0.532390	
00101		
0.3830	1	
00101		

S44
0.1399 1
0 2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
0 2 7 4.0 1
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0 2 1 0. 1
0.1137 1
0 3 6 10. 1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0 3 1 0. 1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
9 7 7 7 14
end
10 0 20
maxcycle
20
fmixing
80
broyden

S45
0.01
ppan
end
\textbf{Bi}_2\textbf{Se}_3 \ (4QL)

\textit{bi2se3} \ – Inorg Chem (1999) 38 (9) 2131

crystal
0 0 0
166
4.1355 28.615
3
283 0.000 0.000 0.4006
234 0.000 0.000 0.0000
234 0.000 0.000 0.2109
slab
0 0 1
3
20
printout
basisset
end
end
283 8
input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.797775 4.060445 0
0.739216 5.980282 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1
0.120284 1.0
0 2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0 2 1 0 1

S47
<table>
<thead>
<tr>
<th>0.165982</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 1 0 1</td>
<td></td>
</tr>
<tr>
<td>0.077856</td>
<td>1.0</td>
</tr>
<tr>
<td>0 3 1 0 1</td>
<td></td>
</tr>
<tr>
<td>0.256</td>
<td>1.0</td>
</tr>
<tr>
<td>0 3 1 0 1</td>
<td></td>
</tr>
<tr>
<td>0.134</td>
<td>1.0</td>
</tr>
<tr>
<td>234</td>
<td>9</td>
</tr>
</tbody>
</table>

input

<table>
<thead>
<tr>
<th>24. 0 2 4 6 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.046990</td>
</tr>
<tr>
<td>6.918688</td>
</tr>
<tr>
<td>45.773014</td>
</tr>
<tr>
<td>45.294642</td>
</tr>
<tr>
<td>20.739648</td>
</tr>
<tr>
<td>20.028601</td>
</tr>
<tr>
<td>50.941768</td>
</tr>
<tr>
<td>49.594740</td>
</tr>
<tr>
<td>16.323522</td>
</tr>
<tr>
<td>14.465196</td>
</tr>
<tr>
<td>3.775330</td>
</tr>
<tr>
<td>3.501953</td>
</tr>
<tr>
<td>11.950867</td>
</tr>
<tr>
<td>17.810780</td>
</tr>
<tr>
<td>0 0 8 2.0 0 1</td>
</tr>
<tr>
<td>2609.7204</td>
</tr>
<tr>
<td>391.5228</td>
</tr>
<tr>
<td>48.2893</td>
</tr>
<tr>
<td>16.8019</td>
</tr>
<tr>
<td>3.5149</td>
</tr>
<tr>
<td>1.5894</td>
</tr>
<tr>
<td>0.3830</td>
</tr>
<tr>
<td>0.1399</td>
</tr>
<tr>
<td>0 0 8 2.0 0 1</td>
</tr>
<tr>
<td>2609.7204</td>
</tr>
<tr>
<td>391.5228</td>
</tr>
<tr>
<td>48.2893</td>
</tr>
<tr>
<td>16.8019</td>
</tr>
<tr>
<td>3.5149</td>
</tr>
<tr>
<td>1.5894</td>
</tr>
<tr>
<td>0.3830</td>
</tr>
<tr>
<td>0.1399</td>
</tr>
<tr>
<td>0 0 1 0. 0 1</td>
</tr>
<tr>
<td>0.3830 0 1</td>
</tr>
<tr>
<td>0 0 1 0. 1</td>
</tr>
</tbody>
</table>

S48
0.1399 1
0.276.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0.210. 1
0.1137 1
0.3656 1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0.310. 1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
977714
end
10 020
maxcycle
20
fmixing
80
broyden
0.01
ppan
end
Bi$_2$Se$_3$ (3QL)

bi2se3 – Inorg Chem (1999) 38 (9) 2131

crystal
0 0 0
166
4.1355 28.615
3
283 0.000 0.000 0.4006
234 0.000 0.000 0.0000
234 0.000 0.000 0.2109
slab
0 0 1
3
15
printout
basisset
end
end
283 8
input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.779775 4.060445 0
0.739216 5.980282 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1
0.120284 1.0
0 2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0 2 1 0 1
0.165982 1.0
0 2 1 0 1
0.077856 1.0
0 3 1 0 1
0.256 1.0
0 3 1 0 1
0.134 1.0
234 9
input
24. 0 2 4 6 2
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
11.950867 -0.766262 0
17.810780 -2.102742 0
0 0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.698440
0.1399 0.532390
0 0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0 0 1 0. 1
0.3830 1
0 0 1 0. 1

S52
0.1399 1
0.276.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
100.0192 -0.001058
25.8909 0.021709
6.2093 0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0.210.1
0.0.1
0.3610.1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0.310.1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
977714
end
100 20
maxcycle
20
fmixing
80
broyden
Bi$_2$Se$_3$

bi2se3 – Inorg Chem (1999) 38 (9) 2131

crystal
0 0 0
166
4.1355 28.615
3
283 0.000 0.000 0.4006
234 0.000 0.000 0.0000
234 0.000 0.000 0.2109

end
283 8

input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.779775 4.060445 0
0.739216 5.980282 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1
0.120284 1.0
0 2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0 2 1 0 1
0.165982 1.0
0 2 1 0 1
0.077856 1.0
0 2 1 0 1
0.256 1.0
0 3 1 0 1
0.134 1.0

S55
23 4 9
input
24. 0 2 4 6 2
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
11.950867 -0.766262 0
17.810780 -2.102742 0
0 0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0 0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0 0 1 0. 1
0.3830 1
0 0 1 0. 1
0.1399 1
0 2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
0 2 7 4.0 1
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0 2 1 0. 1
0.1137 1
0 3 6 10. 1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0 3 1 0. 1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
9 7 7 7 14
df
10 0 20
maxcycle
20
fmixing
80
broyden
0.01
end
PbSe

crystal

0 0 0
225
6.128
2
282 0.5 0.5 0.5
234 0.00 0.00 0.00

printout

basisset
end
end
282 8

input

4. 0 2 4 2 2 0
1.940106 35.775442 0
0.275063 -0.558568 0
0.921930 2.609796 0
0.903965 5.553646 0
0.256555 -0.151563 0
0.189112 -0.090292 0
0.664793 2.956364 0
0.621886 4.242489 0
0.813760 -2.144958 0
0.779307 -2.666379 0
0 0 3 2 1
1.576075 0.499998
1.157411 -0.874119
0.340937 -0.298476
0 0 1 0 1
0.252448 1.0
0 0 1 0 1
0.109434 1.0
0 2 3 2 0 1
2.836533 0.007303
0.604749 -0.206213
0.442006 0.173019
0 2 1 0 1
0.180638 1.0
0 2 1 0 1
0.082396 1.0
0 3 1 0 1
0.2306 1.0
0 3 1 0 1
0.1142 1.0
234 9
input
24. 0 2 4 6 2
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
11.950867 -0.766262 0
17.810780 -2.102742 0
0 0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0 0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0 0 1 0. 1
0.3830 1
0 0 1 0. 1
0.1399 1
0 2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
Bi₂Te₃

crystal
0 0 0
166
4.395 30.440
3
283 0.000 0.000 0.4005
252 0.000 0.000 0.0000
252 0.000 0.000 0.2097
printout
basisset
der
end
end
283 8
input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.779775 4.060445 0
0.739216 5.98028 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1
0.120284 1.0
0 2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0 2 1 0 1
0.165982 1.0
0 2 1 0 1
0.077856 1.0
0 3 1 0 1
0.256 1.0
0 3 1 0 1
0.134 1.0
252 6
input
6 0 2 4 2 2 0
2.656483 50.217674 0
2.281974 1.982941 0
2.946988 39.938015 0
2.790001 79.873384 0
1.750168 -0.651126 0
1.909579 -1.288332 0
1.107233 5.059096 0
1.084059 7.498701 0
1.992613 -7.997183 0
1.968281 -10.464938 0
0 0 3 2 1
4.620870 -0.076259
3.407086 0.222163
1.353795 -0.541514
0 0 1 0 1
0.278218 1.0
0 0 1 0 1
0.128403 1.0
0 2 3 4 1
4.772823 -0.038412
3.508559 0.112992
1.653984 -0.229605
0 2 1 0 1
0.326880 1.0
0 2 1 0 1
0.139746 1.0
99 0
end
uhf
dft
b3pw
end
biesplit
10
sorestart
end
10 0 20
maxcycle
100

S62
fmixing
60
broyden
0.01
ppan
end
PbTe

PbTe – Acta Crystallographica, Section B: Structural Science (1983) 39, p312-p317

crystal

0 0 0
225
6.462
2
282 0.5 0.5 0.5
252 0.00 0.00 0.00
printout

basisset

end

282 8
input
4. 0 2 4 2 2 0
1.940106 35.775442 0
0.275063 -0.558568 0
0.921930 2.609796 0
0.903965 5.553646 0
0.256555 -0.151563 0
0.189112 -0.090292 0
0.664793 2.956364 0
0.621886 4.242489 0
0.813760 -2.144958 0
0.779307 -2.666379 0
0 0 3 2 1
1.576075 0.499998
1.157411 -0.874119
0.340937 -0.298476
0 0 1 0 1
0 2 3 2 0 1
2.836533 0.007303
0.604749 -0.206213
0.442006 0.173019
0 2 1 0 1
0.180638 1.0
0 2 1 0 1
0.082396 1.0
0 3 1 0 1
0.2306 1.0

S64
0 3 1 0 1
0.1142 1.0
252 6
input
6 0 2 4 2 2 0
2.656483 50.217674 0
2.281974 1.982941 0
2.946988 39.938015 0
2.790001 79.873384 0
1.750168 -0.651126 0
1.909579 -1.288332 0
1.107233 5.059096 0
1.084059 7.498701 0
1.992613 -7.997183 0
1.968281 -10.464938 0
0 0 3 2 1
4.620870 -0.076259
3.407086 0.222163
1.353795 -0.541514
0 0 1 0 1
0.278218 1.0
0 0 1 0 1
0.128403 1.0
0 2 3 4 1
4.772823 -0.038412
3.508559 0.112992
1.653984 -0.229605
0 2 1 0 1
0.326880 1.0
0 2 1 0 1
0.139746 1.0
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 9 30
end
12 0 24
maxcycle
100
fmixing
80
broyden
0.0001
tolscf
7 7
end
InSb

InSb – Materials Chemistry and Physics (2008) 112, p745-p748

Crystal
0 0 0
216
6.476
2
249 0. 0. 0.
251 0.25 0.25 0.25
printout
basisset
end
end
249 9
input
21. 0 2 4 4 2
15.392822 281.122350 0
8.055864 61.901470 0
13.928672 67.462154 0
13.347234 134.949250 0
7.614132 14.746140 0
7.318365 29.639262 0
14.034715 35.493254 0
14.511616 53.178773 0
5.550550 9.177281 0
5.059415 12.392410 0
12.539056 -13.728078 0
12.552561 -18.206866 0
0 0 8 2 1
265.131 0.000770
25.5694 -0.052791
16.0041 0.259343
6.81885 -0.739289
1.66676 0.885773
0.769232 0.442592
0.170415 0.011574
0.1 -0.002451
0 0 8 2 1
265.131 -0.000230
25.5694 0.014088
16.0041 -0.078615
6.81885 0.252864
1.66676 -0.296647
0.769232 -0.296647
0.170415 0.678578
0.1 0.527129
0 0 1 0 1
0 0 1 0 1
0.170415 1
0 0 1 0 1
0.1 1
0 2 6 6 1
14.4691 0.090177
9.28083 -0.267642
2.08201 0.664483
0.844314 0.461690
0.186900 0.027059
0.1 -0.004677
0 2 6 1 1
14.4691 -0.019023
9.28083 0.059157
2.08201 -0.180749
0.844314 -0.114582
0.186900 0.440739
0.1 0.687789
0 2 1 0 1
0.1 1
0 3 6 10 1
30.7879 0.005766
19.2555 -0.010708
3.19662 0.293860
1.33210 0.510869
0.504619 0.341519
0.1498 0.052465
0 3 1 0 1
0.1498 1
251 9
input
23. 0 2 4 4 2 0
16.330865 281.071581 0
8.556542 61.716604 0
14.470337 67.457380 0
13.816194 134.933503 0
8.424924 14.716344 0
8.092728 29.518512 0
14.886331 35.447815 0
15.146319 53.143466 0
5.908267 9.179223 0
5.594322 13.240253 0
14.444978 -15.366801 0
<table>
<thead>
<tr>
<th>X1</th>
<th>Y1</th>
<th>X2</th>
<th>Y2</th>
<th>Z1</th>
<th>Z2</th>
<th>Z3</th>
<th>Z4</th>
<th>Z5</th>
<th>Z6</th>
<th>Z7</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.449295</td>
<td>-20.296138</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>371.584</td>
<td>0.001591</td>
<td>26.5392</td>
<td>-0.041684</td>
</tr>
<tr>
<td>7.73551</td>
<td>-0.767685</td>
<td>1.89234</td>
<td>0.899496</td>
<td>0.910431</td>
<td>0.431387</td>
<td>0.244231</td>
<td>0.012837</td>
<td>0.092397</td>
<td>-0.002173</td>
<td>0</td>
</tr>
<tr>
<td>16.6213</td>
<td>0.093833</td>
<td>7.73551</td>
<td>-0.304009</td>
<td>1.89234</td>
<td>0.508409</td>
<td>0.910431</td>
<td>0.339239</td>
<td>0.244231</td>
<td>-0.734772</td>
<td>0</td>
</tr>
<tr>
<td>10.2621</td>
<td>-0.275559</td>
<td>2.42832</td>
<td>0.65864</td>
<td>1.03360</td>
<td>0.466892</td>
<td>0.25944</td>
<td>0.028511</td>
<td>0.086108</td>
<td>-0.005155</td>
<td>0</td>
</tr>
<tr>
<td>16.0509</td>
<td>0.092157</td>
<td>10.2621</td>
<td>-0.242094</td>
<td>1.03360</td>
<td>-0.148605</td>
<td>0.25944</td>
<td>0.548944</td>
<td>0.086108</td>
<td>0.589291</td>
<td>0</td>
</tr>
<tr>
<td>16.0509</td>
<td>-0.025313</td>
<td>10.2621</td>
<td>0.079796</td>
<td>2.42832</td>
<td>-0.242094</td>
<td>1.03360</td>
<td>-0.148605</td>
<td>0.25944</td>
<td>0.548944</td>
<td>0</td>
</tr>
<tr>
<td>45.4785</td>
<td>0.003259</td>
<td>18.5114</td>
<td>-0.005497</td>
<td>3.91600</td>
<td>0.279953</td>
<td>1.71482</td>
<td>0.512751</td>
<td>0.697319</td>
<td>0.332872</td>
<td>S69</td>
</tr>
</tbody>
</table>
0.2304 0.048843
0 3 1 0. 1
0.2304 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.001
end
end
Bi$_2$Se$_3$ (2QL)

bi2se3 – Inorg Chem (1999) 38 (9) 2131

crystal
0 0 0
166
4.1355 28.615
3
283 0.000 0.000 0.4006
234 0.000 0.000 0.0000
234 0.000 0.000 0.2109
slab
0 0 1
3
10
printout
basisset
end
end
283 8
input
5. 0 2 4 2 2 0
1.994153 35.755622 0
0.240286 -0.404113 0
0.896039 2.688441 0
0.875463 5.715603 0
0.262580 -0.171255 0
0.232846 -0.150845 0
0.779775 4.060445 0
0.739216 5.980282 0
0.987519 -2.646547 0
0.959907 -3.373825 0
0 0 3 2 1
1.696224 0.519113
1.248042 -0.912045
0.365482 -0.259603
0 0 1 0 1
0.270727 1.0
0 0 1 0 1
0.120284 1.0
0 2 3 3 1
3.671058 0.010198
0.555533 -0.317612
0.411224 0.38604
0 2 1 0 1
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.165982</td>
<td>1.0</td>
<td>0.2101</td>
<td>0.077856</td>
<td>1.0</td>
</tr>
<tr>
<td>0.256</td>
<td>1.0</td>
<td>0.3101</td>
<td>0.134</td>
<td>1.0</td>
</tr>
<tr>
<td>234 9</td>
<td>input</td>
<td>24.</td>
<td>0 2 4 6 2</td>
<td></td>
</tr>
<tr>
<td>30.046990</td>
<td>370.122888</td>
<td>0</td>
<td>6.918688</td>
<td>10.456168</td>
</tr>
<tr>
<td>45.773014</td>
<td>99.135059</td>
<td>0</td>
<td>45.294642</td>
<td>198.292483</td>
</tr>
<tr>
<td>20.739648</td>
<td>28.338747</td>
<td>0</td>
<td>20.028601</td>
<td>56.749747</td>
</tr>
<tr>
<td>50.941768</td>
<td>-18.526556</td>
<td>0</td>
<td>49.594740</td>
<td>-28.334921</td>
</tr>
<tr>
<td>16.323522</td>
<td>-0.696089</td>
<td>0</td>
<td>20.028601</td>
<td>56.749747</td>
</tr>
<tr>
<td>14.465196</td>
<td>-1.167891</td>
<td>0</td>
<td>3.775330</td>
<td>0.041443</td>
</tr>
<tr>
<td>3.501953</td>
<td>0.235583</td>
<td>0</td>
<td>11.950867</td>
<td>-0.766262</td>
</tr>
<tr>
<td>17.810780</td>
<td>-2.102742</td>
<td>0</td>
<td>20.028601</td>
<td>56.749747</td>
</tr>
<tr>
<td>2609.7204</td>
<td>0.001829</td>
<td>0</td>
<td>391.5228</td>
<td>0.009706</td>
</tr>
<tr>
<td>48.2893</td>
<td>0.071606</td>
<td>0</td>
<td>16.8019</td>
<td>-0.383980</td>
</tr>
<tr>
<td>3.5149</td>
<td>0.691926</td>
<td>0</td>
<td>1.5894</td>
<td>0.491893</td>
</tr>
<tr>
<td>0.3830</td>
<td>0.021091</td>
<td>0</td>
<td>0.1399</td>
<td>-0.003916</td>
</tr>
<tr>
<td>2609.7204</td>
<td>-0.000694</td>
<td>0</td>
<td>391.5228</td>
<td>-0.003866</td>
</tr>
<tr>
<td>48.2893</td>
<td>-0.024839</td>
<td>0</td>
<td>16.8019</td>
<td>0.140207</td>
</tr>
<tr>
<td>3.5149</td>
<td>-0.342280</td>
<td>0</td>
<td>1.5894</td>
<td>-0.364598</td>
</tr>
<tr>
<td>0.3830</td>
<td>0.698440</td>
<td>0</td>
<td>0.1399</td>
<td>0.532390</td>
</tr>
<tr>
<td>2609.7204</td>
<td>-0.000694</td>
<td>0</td>
<td>391.5228</td>
<td>-0.003866</td>
</tr>
<tr>
<td>48.2893</td>
<td>-0.024839</td>
<td>0</td>
<td>16.8019</td>
<td>0.140207</td>
</tr>
<tr>
<td>3.5149</td>
<td>-0.342280</td>
<td>0</td>
<td>1.5894</td>
<td>-0.364598</td>
</tr>
<tr>
<td>0.3830</td>
<td>0.698440</td>
<td>0</td>
<td>0.1399</td>
<td>0.532390</td>
</tr>
<tr>
<td>0 0 1 0 1</td>
<td>0.3830</td>
<td>1</td>
<td>0 0 1 0 1</td>
<td></td>
</tr>
</tbody>
</table>
0.1399 1
0.2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
0 2 7 4.0 1
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0 2 1 0. 1
0.1137 1
0 3 6 10. 1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0 3 1 0. 1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
9 7 7 7 14
end
10 0 20
maxcycle
20
fmixing
80
broyden
0.01
ppan
end
Sb₂Te₃

crystal
0 0 0
166
4.2640 30.458
3
251 0.000 0.000 0.3988
252 0.000 0.000 0.0000
252 0.000 0.000 0.2128
printout
basisset
end
end
251 6
input
5. 0 2 4 2 2 0
2.332041 67.892881 0
1.376531 -7.420586 0
2.226128 18.864130 0
2.121810 37.723024 0
1.243157 -0.736364 0
1.316596 -1.516824 0
0.930013 3.774218 0
0.912651 5.637552 0
1.631791 -6.368730 0
1.609802 -8.315509 0
0 0 3 2 1
1.817000 0.717271
1.336276 -1.399583
0.984000 0.321171
0 0 1 0 1
0.218237 1.0
0 0 1 0 1
0.094049 1.0
0 2 3 3 1
2.061268 0.140755
1.526865 -0.276063
0.303261 0.328800
0 2 1 0 1
0.148617 1.0
0 2 1 0 1
0.074125 1.0
252 6

S75
input
6 0 2 4 2 2 0
2.656483 50.217674 0
2.281974 1.982941 0
2.946988 39.938015 0
2.790001 79.873384 0
1.750168 -0.651126 0
1.909579 -1.288332 0
1.107233 5.059096 0
1.084059 7.498701 0
1.992613 -7.997183 0
1.968281 -10.464938 0
0 0 3 2 1
4.620870 -0.076259
3.407086 0.222163
1.353795 -0.541514
0 0 1 0 1
0.278218 1.0
0 0 1 0 1
0.128403 1.0
0 2 3 4 1
4.772823 -0.038412
3.508559 0.112992
1.653984 -0.229605
0 2 1 0 1
0.326880 1.0
0 2 1 0 1
0.139746 1.0
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
10 0 20
maxcycle
50
tolscf
7 7
fmixing
80
broyden
0.0001
end
HgTe

Crystal

2

280 0.000 0.000 0.000
252 0.25 0.25 0.25

printout

basisset

end

end

280 8

input

20. 0 2 4 4 2 0

12.413071 275.774797 0
6.897913 49.267898 0
11.310320 80.506984 0
10.210773 161.034824 0
5.939804 9.083416 0
5.019755 18.367773 0
8.407895 51.137256 0
8.214086 76.707459 0
4.012612 6.561821 0
3.795398 9.818070 0
3.273106 9.429001 0
3.208321 12.494856 0
0 0 7 2 1
0.4148040E+02 0.1007200E-01
0.2253280E+02 -0.1147810E+00
0.1407900E+02 0.3564080E+00
0.5724740E+01 -0.8484430E+00
0.1479480E+01 0.9405960E+00
0.6882660E+00 0.2500500E+00
0.1641810E+00 -0.6488410E+00

0 0 7 2 1
0.4148040E+02 0.2032000E-02
0.2253280E+02 -0.3231400E-01
0.1407900E+02 0.5135230E+00
0.5724740E+01 -0.3177630E+00
0.1479480E+01 0.5135230E+00
0.6882660E+00 0.2500500E+00
0.1641810E+00 -0.6488410E+00
0 0 1 0 1
0.16418100E+00 -0.10536460E+01
0 0 1 0 1
0.1 0.10000000E+01
0 2 6 6 1
0.10580500E+02 0.12869200E+00
0.68053900E+01 -0.36084200E+00
0.17901600E+01 0.56411700E+00
0.86226100E+00 0.50027400E+00
0.37527700E+00 0.11378500E+00
0.12842100E+00 0.29390000E-02
0 2 1 0 1
0.1 0.10000000E+01
0 3 6 10 1
0.11584100E+02 0.16729000E-01
0.72487900E+01 -0.69558000E-01
0.19366200E+01 0.30343700E+00
0.89874800E+00 0.45487800E+00
0.38693100E+00 0.33680800E+00
0.15046600E+00 0.11301600E+00
0 3 1 0 1
0.15046600E+00 0.10000000E+01
252 6
input
6. 0 2 4 2 2 0
2.656483 50.217674 0
2.281974 1.982941 0
2.946988 39.938015 0
2.790001 79.873384 0
1.750168 -0.651126 0
1.909579 -1.288332 0
1.107233 5.059096 0
1.084059 7.498701 0
1.992613 -7.997183 0
1.968281 -10.464938 0
0 0 3 2 1
4.620870 -0.076259
3.407086 0.222163
1.353795 -0.541514
0 0 1 0 1
0.278218 1.0
0 0 1 0 1
0.128403 1.0
0 2 3 4 1
4.772823 -0.038412

S79
3.508559 0.112992
1.653984 -0.229605
0 2 1 0 1
0.326880 1.0
0 2 1 0 1
0.139746 1.0
99 0
dft
uhf
b3pw
eoh
biesplit
10
tolinteg
7 7 7 7 14
end
dmaxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
SnTe

crystal
0 0 0
225
6.318
2
250 0.000 0.000 0.000
252 0.5 0.5 0.5
printout
basisset
end
end
250 9
input
22. 0 2 4 4 2 0
17.420414 279.988682 0
7.631155 62.377810 0
16.131024 66.162523 0
15.628077 132.174396 0
7.325608 16.339417 0
6.942519 32.488959 0
15.514976 36.387441 0
15.188160 54.507841 0
5.456024 8.696823 0
5.363105 12.840208 0
12.282348 -12.576333 0
12.272150 -16.595944 0
0 0 8 2 1
380.366 0.001165
28.5822 -0.026006
17.8892 0.166043
6.92862 -0.658914
1.78391 0.869336
0.843138 0.452132
0.205228 0.012973
0.076636 -0.002403
0 0 8 2 1
380.366 -0.000442
28.5822 0.005702
17.8892 -0.052894
6.92862 0.252087
1.78391 -0.470343
0.843138 -0.316144
0.205228 0.720625
0.076636 0.511114
0 0 1 0 1
0.205228 1
0 0 1 0 1
0.076636 1
0 2 6 6 1
18.5489 0.037021
9.56696 -0.193866
2.21861 0.657594
0.921459 0.455506
0.217858 0.027216
0.069320 -0.004604
0 2 6 2 1
18.5489 -0.009052
9.56696 0.051762
2.21861 -0.221743
0.921459 -0.124279
0.217858 0.521853
0.069320 0.609937
0 2 1 0 1
0.069320 1
0 3 6 10 1
38.5626 0.004261
21.7613 -0.006897
3.66111 0.276277
1.55833 0.514323
0.609523 0.344559
0.1897 0.051594
0 3 1 0 1
0.1897 1
252 6
input
6 0 2 4 2 2 0
2.656483 50.217674 0
2.281974 1.982941 0
2.946988 39.938015 0
2.790001 79.873384 0
1.750168 -0.651126 0
1.909579 -1.288332 0
1.107233 5.059096 0
1.084059 7.498701 0
1.992613 -7.997183 0
1.968281 -10.464938 0
0 0 3 2 1
S82
4.620870 -0.076259
3.407086 0.222163
1.353795 -0.541514
0 0 1 0 1
0.278218 1.0
0 0 1 0 1
0.128403 1.0
0 2 3 4 1
4.772823 -0.038412
3.508559 0.112992
1.653984 -0.229605
0 2 1 0 1
0.326880 1.0
0 2 1 0 1
0.139746 1.0
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
InAs

crystal
0 0 0
216
6.058
2
249 0. 0. 0.
233 0.25 0.25 0.25
printout
basisset
end
end
249 9
input
21. 0 2 4 4 2
15.392822 281.122350 0
8.055864 61.901470 0
13.928672 67.462154 0
13.347234 134.949250 0
7.614132 14.746140 0
7.318365 29.639262 0
14.034715 35.493254 0
14.511616 53.178773 0
5.550550 9.177281 0
5.059415 12.392410 0
12.539056 -13.728078 0
12.552561 -18.206866 0
0 0 8 2 1
265.131 0.000770
25.5694 -0.052791
16.0041 0.259343
6.81885 -0.739289
1.66676 0.885773
0.769232 0.442592
0.167045 -0.001574
0.1 -0.002451
0 0 8 2 1
265.131 -0.000230
25.5694 0.014088
16.0041 -0.078615
6.81885 0.252864
1.66676 -0.415545
0.769232 -0.296647
<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.170415</td>
<td>0.678578</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>14.4691</td>
<td>0.090177</td>
<td>9.28083</td>
</tr>
<tr>
<td>2.08201</td>
<td>0.664483</td>
<td>0.844314</td>
</tr>
<tr>
<td>0.186900</td>
<td>0.027059</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>14.4691</td>
<td>-0.019023</td>
<td>9.28083</td>
</tr>
<tr>
<td>2.08201</td>
<td>-0.180749</td>
<td>0.844314</td>
</tr>
<tr>
<td>0.186900</td>
<td>0.440739</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>30.7879</td>
<td>0.005766</td>
<td>19.2555</td>
</tr>
<tr>
<td>3.19662</td>
<td>0.293860</td>
<td>1.33210</td>
</tr>
<tr>
<td>0.504619</td>
<td>0.341519</td>
<td>0.1498</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0.1498</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

input

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>28.725122</td>
<td>370.114025</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.767681</td>
<td>9.349296</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.331064</td>
<td>99.142103</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.767415</td>
<td>198.307880</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.539090</td>
<td>28.383073</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.973471</td>
<td>56.871464</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.057152</td>
<td>-18.485145</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.151340</td>
<td>-28.113530</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.108936</td>
<td>-1.223895</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.672223</td>
<td>-1.345765</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.851927</td>
<td>0.101757</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>3.813502</td>
<td>0.170338</td>
<td>0</td>
<td>11.940584</td>
<td>-0.775230</td>
</tr>
<tr>
<td>0 0 8 2 1</td>
<td>2542.81</td>
<td>0.001137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>381.169</td>
<td>0.006055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.2342</td>
<td>0.084125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.1217</td>
<td>-0.405285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.20189</td>
<td>0.712926</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.42096</td>
<td>0.473376</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.321443</td>
<td>0.018013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.116735</td>
<td>-0.003720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 8 2 1</td>
<td>2542.81</td>
<td>-0.000390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>381.169</td>
<td>-0.002190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.2342</td>
<td>-0.026853</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.1217</td>
<td>0.136878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.20189</td>
<td>-0.320457</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.42096</td>
<td>-0.337391</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.321443</td>
<td>0.676384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.116735</td>
<td>0.534980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 1</td>
<td>0.321443</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 1</td>
<td>0.116735</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 7 6 1</td>
<td>99.5349</td>
<td>0.003857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.1195</td>
<td>-0.085101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.84196</td>
<td>0.404762</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.56010</td>
<td>0.531478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.09308</td>
<td>0.184012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.318424</td>
<td>0.005764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100972</td>
<td>-0.000352</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 7 3 1</td>
<td>99.5349</td>
<td>-0.000772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.1195</td>
<td>0.019941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.84196</td>
<td>-0.107210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.56010</td>
<td>-0.172259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.09308</td>
<td>0.008761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.318424</td>
<td>0.569744</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.100972</td>
<td>0.535653</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 1 0 1</td>
<td>0.100972</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 3 7 10 1</td>
<td>113.509</td>
<td>0.011980</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
36.8872 0.079544
13.6893 0.236755
5.38964 0.401534
2.08046 0.406686
0.737568 0.173162
0.3078 0.008730
0 3 1 0 1
0.3078 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.001
end
VO2

CRYSTAL
0 0 0
14
5.3480 4.5170 5.3750 115.235
3
223 0.2580 0.0250 0.2830
8 0.60 0.21 0.4
8 0.11 0.31 0.4
PRINTOUT
BASISSET
END
END
223 10
INPUT
13. 0 2 2 2 0 0
14.490000 178.447971 0
6.524000 19.831375 0
14.300000 109.529763 0
6.021000 12.570310 0
17.480000 -19.219657 0
5.709000 -0.642775 0
0 0 3 2 1
12.8432080 1.1406430
11.3757530 -1.2188030
5.4069740 -0.8929030
0 0 1 2 1
1.4659270 1.0
0 0 1 0 1
0.5980800 1.0
0 0 1 0 1
0.0887900 1.0
0 2 2 6 1
31.8898680 0.0394070
8.2371780 -1.0226030
0 2 2 0 1
4.3283730 0.1927560
1.5405260 0.8511680
0 2 1 0 1
0.5280810 1.0
0 2 1 0 1
0.0899620 1.0
0 3 4 3 1

S88
22.6804330 0.0362930
6.8613120 0.1773010
2.2754450 0.4304290
0.7319220 0.5893030
0 3 1 0 1
0.2007460 1.0
8 4
0 0 6 2 1
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEGR
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
END
InN

InN (wurtzite) – Powder Diffraction (2003) 18, p114-p121

crystal
0 0 0
186
3.5377 5.7037
2
249 0.3333 0.6667 0.0
7 0.3333 0.6667 0.3769

printout
basisset
end
end
249 9
input
21. 0 2 4 4 2
15.392822 281.122350 0
8.055864 61.901470 0
13.928672 67.462154 0
13.347234 134.949250 0
7.614132 14.746140 0
7.318365 29.639262 0
14.034715 35.493254 0
14.511616 53.178773 0
5.550550 9.177281 0
5.059415 12.392410 0
12.539056 -13.728078 0
12.552561 -18.206866 0
0 0 8 2 1
265.131 0.000770
25.5694 -0.052791
16.0041 0.259343
6.81885 -0.739289
1.66676 0.885773
0.769232 0.442592
0.170415 0.011574
0.1 -0.002451
0 0 8 2 1
265.131 -0.000230
25.5694 0.014088
16.0041 -0.078615
6.81885 0.252864
1.66676 -0.415545
0.769232 -0.296647

S91
0.170415 0.678578
0.1 0.527129
0 0 1 0 1
0.170415 1
0 0 1 0 1
0.1 1
0 2 6 6 1
14.4691 0.090177
9.28083 -0.267642
2.08201 0.664483
0.844314 0.461690
0.186900 0.027059
0.1 -0.004677
0 2 6 1 1
14.4691 -0.019023
9.28083 0.059157
2.08201 -0.180749
0.844314 -0.114582
0.186900 0.440739
0.1 0.687789
0 2 1 0 1
0.1 1
0 3 6 10 1
30.7879 0.005766
19.2555 -0.010708
3.19662 0.293860
1.33210 0.510869
0.504619 0.341519
0.1498 0.052465
0 3 1 0 1
0.1498 1
7 5
0 0 6 2 1
6293.480000 0.00196979
949.044000 0.0149613
218.776000 0.0735006
63.691600 0.2489370
18.828200 0.6024600
2.7202300 0.2562020
0 1 3 5 1
30.633100 0.1119060 0.0383119
7.0261400 0.9216660 0.2374030
2.1120500 -0.00256919 0.8175920
0 1 1 0 1
0.6840090 1.0000000 1.0000000

S92
0 1 1 0 1
0.2008780 1.0000000 1.0000000
0 3 1 0 1
0.9130000 1.0000000
99 0
end
dft
d3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
Ge

crystal
0 0 0
227
5.6568
1
232 0.1250 0.1250 0.1250
printout
basisset
end
end
232 9
input
22. 0 2 4 6 2
27.242225 370.236090 0
7.467948 9.214629 0
45.567991 99.135034 0
45.517505 198.271454 0
18.245769 28.388121 0
17.651078 56.803471 0
52.760598 -17.967085 0
53.136663 -26.815539 0
14.564079 -1.383893 0
12.631857 -2.072663 0
3.923042 0.080334 0
3.738774 0.238529 0
11.407378 -0.705680 0
18.429054 -2.475951 0
0 0 8 2 1
2611.74 0.000656
390.030 0.003595
34.2279 0.100126
15.1072 -0.434959
2.92774 0.735500
1.27159 0.458592
0.262497 0.015064
0.094306 -0.003504
0 0 8 2 1
2611.74 -0.000201
390.030 -0.001176
34.2279 -0.029187
15.1072 0.134027
2.92774 -0.295806
1.27159 -0.308730
0.262497 0.660266
0.094306 0.529644
0 0 1 0 1
0.262497 1
0 0 1 0 1
0.094306 1
0 2 7 6 1
108.379 0.002678
22.6697 -0.080763
5.36897 0.398676
2.36025 0.523026
1.00458 0.198456
0.260840 0.007404
0.1 -0.000728
0 2 7 2 1
108.379 -0.000461
22.6697 0.016658
5.36897 -0.091791
2.36025 -0.148559
1.00458 0.000308
0.260840 0.538550
0.1 0.571224
0 2 1 0 1
0.1 1
0 3 7 10 1
98.8248 0.013096
32.0078 0.081149
11.8456 0.243246
4.62772 0.401474
1.75844 0.402437
0.609192 0.178540
0.2425 0.010049
0 3 1 0 1
0.2425 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14

S95
end
12 0 24
maxcycle
60
tolscf
7 7
fmxing
60
broyden
0.0001
end
GaSb

crystal
0 0 0
216
6.1347
2
231 0. 0. 0.
251 0.25 0.25 0.25
printout
basisset
end
end
231 9
input
21. 0 2 4 6 2 0
25.880361 370.273040 0
7.901295 9.190615 0
45.149190 99.144001 0
44.979981 198.295512 0
17.224251 28.445653 0
16.747329 56.949705 0
51.968812 -18.168797 0
51.629117 -27.380273 0
15.241738 -1.587022 0
15.320193 -2.516292 0
4.918589 0.083166 0
4.755103 0.202198 0
10.762263 -0.616990 0
19.852939 -3.138584 0
0 0 8 2 1
2848.20 0.000362
420.664 0.002117
29.8118 0.118964
14.2207 -0.461723
2.67643 0.751559
1.13353 0.447202
0.207220 0.012746
0.1 -0.003358
0 0 8 2 1
2848.20 -0.000097
420.664 -0.000614
29.8118 -0.031069
14.2207 0.126784

S97
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.67643</td>
<td>-0.264288</td>
<td>1.13353</td>
<td>-0.275471</td>
<td>0.207220</td>
<td>0.633842</td>
</tr>
<tr>
<td>0.1</td>
<td>0.531681</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.1</td>
</tr>
<tr>
<td>0.207220</td>
<td>1</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2761</td>
<td>1</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.1</td>
</tr>
<tr>
<td>109.624</td>
<td>0.002101</td>
<td>21.0855</td>
<td>-0.080196</td>
<td>4.92260</td>
<td>0.396415</td>
</tr>
<tr>
<td>2.15591</td>
<td>0.519076</td>
<td>0.901913</td>
<td>0.207520</td>
<td>0.202004</td>
<td>0.007825</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.001129</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2711</td>
<td>1</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.1</td>
</tr>
<tr>
<td>85.7978</td>
<td>0.014668</td>
<td>27.6822</td>
<td>0.085621</td>
<td>10.1760</td>
<td>0.248336</td>
</tr>
<tr>
<td>3.92208</td>
<td>0.401414</td>
<td>1.45858</td>
<td>0.398604</td>
<td>0.488760</td>
<td>0.186898</td>
</tr>
<tr>
<td>0.1772</td>
<td>0.012331</td>
<td>0.3101</td>
<td>0.1772</td>
<td>1</td>
<td>251.9</td>
</tr>
<tr>
<td>input</td>
<td>23</td>
<td>0.24420</td>
<td>16.330865</td>
<td>281.071581</td>
<td>0.0101</td>
</tr>
<tr>
<td></td>
<td>8.556542</td>
<td>61.716604</td>
<td>0</td>
<td>14.470337</td>
<td>67.457380</td>
</tr>
<tr>
<td></td>
<td>13.816194</td>
<td>134.933503</td>
<td>0</td>
<td>8.424924</td>
<td>14.716344</td>
</tr>
<tr>
<td></td>
<td>8.092728</td>
<td>29.518512</td>
<td>0</td>
<td>8.98</td>
<td></td>
</tr>
</tbody>
</table>
14.886331 35.447815 0
15.146319 53.143466 0
5.908267 9.179223 0
5.594322 13.240253 0
14.444978 -15.366801 0
14.449295 -20.296138 0
0 0 8 2. 1
371.584 0.001591
26.5392 -0.041684
16.6213 0.273343
7.73551 -0.767685
1.89234 0.899496
0.910431 0.431387
0.244231 0.012837
0.092397 -0.002173
0 0 8 2. 1
371.584 0.000654
26.5392 -0.010962
16.6213 0.093833
7.73551 -0.304009
1.89234 0.508409
0.910431 0.339239
0.244231 -0.734772
0.092397 -0.526134
0 0 1 0. 1
0.244231 1
0 0 1 0. 1
0.092397 1
0 2 6 6. 1
16.0509 0.092157
10.2621 -0.275559
2.42832 0.65864
1.03360 0.466892
0.25944 0.028511
0.086108 -0.005155
0 2 6 3. 1
16.0509 -0.025313
10.2621 0.079796
2.42832 -0.242094
1.03360 -0.148605
0.25944 0.548944
0.086108 0.589291
0 2 1 0. 1
0.086108 1
0 3 6 10. 1

S99
<table>
<thead>
<tr>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.4785</td>
<td>0.003259</td>
<td></td>
</tr>
<tr>
<td>18.5114</td>
<td>-0.005497</td>
<td></td>
</tr>
<tr>
<td>3.9160</td>
<td>0.279953</td>
<td></td>
</tr>
<tr>
<td>1.71482</td>
<td>0.512751</td>
<td></td>
</tr>
<tr>
<td>0.697319</td>
<td>0.332872</td>
<td></td>
</tr>
<tr>
<td>0.2304</td>
<td>0.048843</td>
<td></td>
</tr>
<tr>
<td>0.2304</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>uhf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b3pw</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>biesplit</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>tolinteg</td>
<td>7 7 7 7 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0 24</td>
<td></td>
</tr>
<tr>
<td>maxcycle</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>tolscf</td>
<td>7 7</td>
<td></td>
</tr>
<tr>
<td>fmixing</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>broyden</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
SnSe

crystal
0 0 0
62
11.5000 4.1540 4.4460
2
250 0.1180 0.2500 0.1043
234 0.3559 0.2500 0.0164
printout
basisset
end
end
250 5
input
4. 0 2 4 2 2 0
2.081778 67.925555 0
1.070042 -7.309665 0
2.094274 18.867005 0
2.020067 37.732449 0
0.998866 -0.725179 0
1.095504 -1.466610 0
0.754006 2.602362 0
0.741783 3.923355 0
1.231292 -4.332527 0
1.229112 -5.776780 0
0 0 3 2 1
1.564000 0.809442
1.147943 -1.641437
0.844112 0.489837
0 0 1 0 1
0.183681 1.0
0 0 1 0 1
0.079194 1.0
0 2 3 2 1
1.897761 0.127301
1.405749 -0.245617
0.260882 0.290765
0 2 1 0 1
0.1 1.0
234 9
input
24. 0 2 4 6 2 0
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
11.950867 -0.766262 0
17.810780 -2.102742 0
0 0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0 0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0 0 1 0. 1
0.3830 1
0 0 1 0. 1
0.1399 1
0 2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
0 2 7 4.0 1
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0 2 1 0. 1
0.1137 1
0 3 6 10. 1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0 3 1 0. 1
0.3656 1
99 0
dft
uhf
d3pw
e10
b3pw
e10
tolinteg
7 7 7 7 14
d12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
d0
Si

Si– Materials Science Forum (2001) 378, p288-p293

<table>
<thead>
<tr>
<th>CRYSTAL</th>
<th>0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td>5.4305</td>
</tr>
<tr>
<td>1</td>
<td>14 0.1250 0.1250 0.1250</td>
</tr>
<tr>
<td>PRINTOUT</td>
<td>\</td>
</tr>
<tr>
<td>BASISSET</td>
<td>END</td>
</tr>
<tr>
<td>END</td>
<td>14 12</td>
</tr>
<tr>
<td>0 0 6 2 1</td>
<td></td>
</tr>
<tr>
<td>69379.2300000 0.0007570</td>
<td></td>
</tr>
<tr>
<td>10354.9400000 0.0059320</td>
<td></td>
</tr>
<tr>
<td>2333.8796000 0.0310880</td>
<td></td>
</tr>
<tr>
<td>657.1429500 0.1249670</td>
<td></td>
</tr>
<tr>
<td>214.3011300 0.3868970</td>
<td></td>
</tr>
<tr>
<td>77.6291680 0.5548880</td>
<td></td>
</tr>
<tr>
<td>0 0 3 2 1</td>
<td></td>
</tr>
<tr>
<td>77.6291680 0.1778810</td>
<td></td>
</tr>
<tr>
<td>30.6308070 0.6277650</td>
<td></td>
</tr>
<tr>
<td>12.8012950 0.2476230</td>
<td></td>
</tr>
<tr>
<td>0 0 1 2 1</td>
<td></td>
</tr>
<tr>
<td>3.9268660 1.0000000</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>1.4523430 1.0000000</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>0.2562340 1.0000000</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>0.1 1.0000000</td>
<td></td>
</tr>
<tr>
<td>0 2 4 6 1</td>
<td></td>
</tr>
<tr>
<td>335.4831900 0.0088660</td>
<td></td>
</tr>
<tr>
<td>78.9003660 0.0682990</td>
<td></td>
</tr>
<tr>
<td>24.9881500 0.2909580</td>
<td></td>
</tr>
<tr>
<td>9.2197110 0.7321170</td>
<td></td>
</tr>
<tr>
<td>0 2 2 2 1</td>
<td></td>
</tr>
<tr>
<td>3.6211400 0.6198790</td>
<td></td>
</tr>
<tr>
<td>1.4513100 0.4391480</td>
<td></td>
</tr>
<tr>
<td>0 2 1 0 1</td>
<td></td>
</tr>
<tr>
<td>0.5049770 1.0000000</td>
<td></td>
</tr>
<tr>
<td>0 2 1 0 1</td>
<td></td>
</tr>
<tr>
<td>0.1863170 1.0000000</td>
<td></td>
</tr>
</tbody>
</table>
0 2 1 0 1
0.1 1.0000000
0 3 1 0 1
0.4500000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEGR 7 7 7 7 14
TOLDEE 7
SHRINK 12 0 24
SCFDIR
BIPOSEIZE 30000000
EXCHSIZE 30000000
MAXCYCLE 50
FMIXING 60
ANDERSON PPAN
NODIRECT
END
MoS2

crystal
0 0 0
194
3.1602 12.2940
2
242 0.33333333 0.66666667 0.2500
16 0.33333333 0.66666667 0.6210

printout
basisset
end
end
242 10
input
14. 0 2 4 4 2 0
10.097000 180.076853 0
4.375670 24.715920 0
9.126564 41.227678 0
8.863223 82.452670 0
4.044948 6.345092 0
3.866657 12.458423 0
7.535754 19.308744 0
7.278976 28.977674 0
2.763205 3.189516 0
2.772085 4.700169 0
6.306633 -7.178888 0
6.356448 -9.745978 0
0 0 6 2 1
0.10697800E+03 0.73500000E-03
0.18882400E+02 -0.35090000E-01
0.11807700E+02 0.14734800E+00
0.40211800E+01 -0.58336300E+00
0.95681600E+00 0.82563500E+00
0.43569200E+00 0.45231100E+00
0 0 6 2 1
0.10697800E+03 -0.17600000E-03
0.18882400E+02 0.93320000E-02
0.11807700E+02 -0.43811000E-01
0.40211800E+01 0.19723200E+00
0.95681600E+00 -0.37731100E+00
0.43569200E+00 -0.29396700E+00
0 0 6 0 1
0.10697800E+03 0.11660000E-02
0.18882400E+02 -0.37607000E-01
0.11807700E+02 0.12598000E+00
0.40211800E+01 -0.47523700E+00
0.95681600E+00 0.14989830E+01
0 1 0 1
0.12 0.10000000E+01
0 2 5 6 1
0.11411800E+02 0.25345000E-01
0.52453500E+01 -0.17521300E+00
0.13188400E+01 0.48127200E+00
0.62298300E+00 0.49726100E+00
0.27910800E+00 0.15955500E+00
0 2 5 0 1
0.11411800E+02 -0.70220000E-02
0.52453500E+01 0.53339000E-01
0.13188400E+01 -0.17564300E+00
0.62298300E+00 -0.21621300E+00
0.27910800E+00 0.67958000E-01
0 2 1 0 1
0.12 0.10000000E+01
0 3 5 4 1
0.52576100E+01 -0.14761000E-01
0.21046200E+01 0.13198200E+00
0.95820100E+00 0.34708600E+00
0.41404700E+00 0.40547100E+00
0.16845000E+00 0.28805800E+00
0 3 5 0 1
0.52576100E+01 0.15439000E-01
0.21046200E+01 -0.16062100E+00
0.95820100E+00 -0.42322900E+00
0.41404700E+00 -0.19233900E+00
0.16845000E+00 0.53145900E+00
0 3 1 0 1
0.12 0.10000000E+01
16 12
0 0 6 2 1
93413.4000000 0.0007430
13961.7000000 0.0057930
3169.9100000 0.0299540
902.4560000 0.1190280
297.1580000 0.3684320
108.7020000 0.5772990
0 0 3 2 1
S107
108.7020000 0.1431860
43.1553000 0.6244650
18.1079000 0.2833660
0 0 1 2 1
5.5600900 1.0000000
0 0 1 0 1
2.1318300 1.0000000
0 0 1 0 1
0.4204030 1.0000000
0 0 1 0 1
0.1360450 1.0000000
0 2 4 6 1
495.0400000 0.0083090
117.2210000 0.0640240
37.7749000 0.2776140
14.0584000 0.7450760
0 2 2 4 1
5.5657400 0.6137120
2.2629700 0.4438180
0 2 1 0 1
0.8079940 1.0000000
0 2 1 0 1
0.2774600 1.0000000
0 2 1 0 1
0.12 1.
0 3 1 0 1
0.6500000 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 9 30
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
InP

crystal

0 0 0
216
5.869
2
249 0. 0. 0.
15 0.25 0.25 0.25

printout
basisset
end
end
249 9

input
21. 0 2 4 4 2
15.392822 281.122350 0
8.055864 61.901470 0
13.928672 67.462154 0
13.347234 134.949250 0
7.614132 14.746140 0
7.318365 29.639262 0
14.034715 35.493254 0
14.511616 53.178773 0
5.550550 9.177281 0
5.059415 12.392410 0
12.539056 -13.728078 0
12.552561 -18.206866 0
0 0 8 2 1
265.131 0.000770
25.5694 -0.052791
16.0041 0.259343
6.81885 -0.739289
1.66676 0.885773
0.769232 -0.296647
0.170415 0.011574
0.1 -0.002451
0 0 8 2 1
265.131 -0.000230
25.5694 0.014088
16.0041 -0.078615
6.81885 0.252864
1.66676 -0.415545
0.769232 -0.296647
0.170415 0.678578
0.1 0.527129
0 0 1 0 1
0.170415 1
0 0 1 0 1
0.1 1
0 2 6 6 1
14.4691 0.090177
9.28083 -0.267642
2.08201 0.664483
0.844314 0.461690
0.186900 0.027059
0.1 -0.004677
0 2 6 1 1
14.4691 -0.019023
9.28083 0.059157
2.08201 -0.180749
0.844314 -0.114582
0.186900 0.440739
0.1 0.687789
0 2 1 0 1
0.1 1
0 3 6 10 1
30.7879 0.005766
19.2555 -0.010708
3.19662 0.293860
1.33210 0.510869
0.504619 0.341519
0.1498 0.052465
0 3 1 0 1
0.1498 1
15 12
0 0 6 2 1
77492.4000000 0.0007810
11605.8000000 0.0060680
2645.9600000 0.0311600
754.9760000 0.1234310
248.7550000 0.3782090
91.1565000 0.5632620
0 0 3 2 1
91.1565000 0.1602550
36.2257000 0.6276470
15.2113000 0.2638490
0 0 1 2 1
4.7941700 1.0000000

S111
0 0 1 0 1
1.8079300 1.0000000
0 0 1 0 1
0.3568160 1.0000000
0 0 1 0 1
0.1147830 1.0000000
0 2 4 6 1
384.8430000 0.0092060
90.5521000 0.0698740
29.1339000 0.2924700
10.8862000 0.7281030
0 2 2 3 1
4.3525900 0.6283490
1.7770600 0.4280440
0 2 1 0 1
0.6970050 1.0000000
0 2 1 0 1
0.2535320 1.0000000
0 2 1 0 1
0.1 1.0000000
0 3 1 0 1
0.5500000 1.0000000
99 0
dend
uhf
dft
b3pw
dend
biesplit
10
tolinteg
7 7 7 7 14
dend
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.01
dend

S112
GaAs

crystal

0 0 0
216
5.6521
2
231 0 0 0
233 0.25 0.25 0.25

printout

basisset

end

end

231 9

input

21 0 2 4 6 2 0
25.880361 370.273040 0
7.901295 9.190615 0
45.149190 99.144001 0
44.979981 198.295512 0
17.224251 28.445653 0
16.747329 56.949705 0
51.968812 -18.168797 0
51.629117 -27.380273 0
15.241738 -1.587022 0
15.320193 -2.516292 0
4.918589 0.083166 0
4.755103 0.202198 0
1.13353 0.447202
10.762263 -0.616990 0
19.852939 -3.138584 0
0 0 8 2 1
2848.20 0.000362
420.664 0.002117
29.8118 0.118964
14.2207 -0.461723
2.67643 0.751559
1.13353 0.447202
0.207220 0.012746
0.1 -0.003358
0 0 8 2 1
2848.20 -0.000097
420.664 -0.000614
29.8118 -0.031069

S113
14.2207 0.126784
2.67643 -0.264288
1.13353 -0.275471
0.207220 0.633842
0.1 0.531681
0 0 1 0 1
0.207220 1
0 0 1 0 1
0.1 1
0 2 7 6 1
109.624 0.002101
21.0855 -0.080196
4.92260 0.396415
2.15591 0.519076
0.901913 0.207520
0.202004 0.007825
0.1 -0.001129
0 2 7 1 1
109.624 -0.000288
21.0855 0.013555
4.92260 -0.073629
2.15591 -0.120860
0.901913 -0.001960
0.202004 0.493206
0.1 0.620604
0 2 1 0 1
0.1 1
0 3 7 10 1
85.7978 0.014668
27.6822 0.085621
10.1760 0.248336
3.92208 0.401414
1.45858 0.398604
0.488760 0.186898
0.1772 0.012331
0 3 1 0 1
0.1772 1
233 9
input
23 0 2 4 6 2
28.725122 370.114025 0
6.767681 9.349296 0
45.331064 99.142103 0
44.767415 198.307880 0
19.539090 28.383073 0
18.973471 56.871464 0
51.057152 -18.485145 0
50.151340 -28.113530 0
16.108936 -1.223895 0
14.672223 -1.345765 0
3.851927 0.101757 0
3.813502 0.170338 0
11.940584 -0.775230 0
17.761160 -2.157259 0
0 0 8 2 1
2542.81 0.001137
381.169 0.006055
40.2342 0.084125
16.1217 -0.405285
3.20189 0.712926
1.42096 0.473376
0.321443 0.018013
0.116735 -0.003720
0 0 8 2 1
2542.81 -0.000390
381.169 -0.002190
40.2342 -0.026853
16.1217 0.136878
3.20189 -0.320457
1.42096 -0.337391
0.321443 0.676384
0.116735 0.534980
0 0 1 0 1
0.321443 1
0 0 1 0 1
0.116735 1
0 2 7 6 1
99.5349 0.003857
24.1195 -0.085101
5.84196 0.404762
2.56010 0.531478
1.09308 0.184012
0.318424 0.005764
0.100972 -0.000352
0 2 7 3 1
99.5349 -0.000772
24.1195 0.019941
5.84196 -0.107210
2.56010 -0.172259
1.09308 0.008761

S115
0.318424 0.569744
0.100972 0.535653
0 2 1 0 1
0.100972 1
0 3 7 10 1
113.509 0.011980
36.8872 0.079544
13.6893 0.236755
5.38964 0.401534
2.08046 0.406686
0.737568 0.173162
0.3078 0.008730
0 3 1 0 1
0.3078 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmxing
80
broyden
0.01
end
CdTe

CdTe – Kristallografiya (2001) 46, (4) p703-p709

Crystal

0 0 0
216
6.4827
2
248 0.000 0.000 0.000
252 0.25 0.25 0.25

printout

basisset
end

end
248 10

input
20. 0 2 4 4 2 0
13.355176 270.039448 0
7.308378 38.877766 0
12.659728 64.607470 0
12.289639 129.219445 0
6.786176 10.622558 0
6.400743 21.265046 0
11.161722 31.663965 0
11.219615 47.489216 0
4.537733 5.186200 0
4.335727 7.566063 0
11.478986 -12.632785 0
11.487027 -16.760171 0
0 0 7 2 1
0.22385300e+03 0.87100000e-03
0.23094800e+02 -0.64307000e-01
0.14652200e+02 0.30131600e+00
0.65704440e+01 -0.76052400e+00
0.15378300e+01 0.89407100e+00
0.69098400e+00 0.42787900e+00
0.13491300e+00 0.10188000e-01
0 0 7 2 1
0.22385300e+03 -0.22900000e-03
0.23094800e+02 0.15594000e-01
0.14652200e+02 -0.81047000e-01
0.65704440e+01 0.22725100e+00
0.15378300e+01 -0.36256300e+00
0.69098400e+00 -0.25078300e+00
0.13491300e+00 0.61353300e+00

S117
0 0 7 0 1
0.22385300e+03 0.10770000e-02
0.23094800e+02 -0.71649000e-01
0.14652200e+02 0.28897500e+00
0.65704440e+01 -0.73154600e+00
0.15378300e+01 0.19768990e+01
0.69098400e+00 -0.73154600e+00
0.13491300e+00 -0.11186740e+01
0 0 1 0 1
0.07 0.10000000e+01
0 2 6 6 1
0.13717500e+02 0.77616000e-01
0.84632200e+01 -0.25794300e+00
0.21182000e+01 0.53527400e+00
0.98926200e+00 0.49636200e+00
0.43178100e+00 0.12310900e+00
0.13916000e+00 0.32100000e-02
0 2 6 0 1
0.13717500e+02 -0.30730000e-01
0.84632200e+01 0.10874400e+00
0.21182000e+01 -0.27823100e+00
0.98926200e+00 -0.32939000e+00
0.43178100e+00 0.35463000e+00
0.13916000e+00 0.78145800e+00
0 2 1 0 1
0.09 0.10000000e+01
0 3 6 1 0
0.31669700e+02 0.31630000e-02
0.12221400e+02 -0.11791000e-01
0.31219900e+01 0.24119400e+00
0.13894100e+01 0.44898000e+00
0.57320300e+00 0.38021100e+00
0.21170800e+00 0.14453000e+00
0 3 6 0 1
0.31669700e+02 -0.48710000e-02
0.12221400e+02 0.18582000e-01
0.31219900e+01 -0.47667300e+00
0.13894100e+01 -0.45760400e+00
0.57320300e+00 0.57146200e+00
0.21170800e+00 0.49738000e+00
0 3 1 0 1
0.21170800e+00 0.10000000e+01
252 9
input
24. 0 2 4 4 2 0
<table>
<thead>
<tr>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.814473</td>
<td>281.045843</td>
<td>0</td>
<td>8.793526</td>
<td>61.620656</td>
<td>0</td>
<td>14.877801</td>
<td>67.449464</td>
<td>0</td>
</tr>
<tr>
<td>14.269731</td>
<td>134.904304</td>
<td>0</td>
<td>8.724435</td>
<td>14.689547</td>
<td>0</td>
<td>8.291515</td>
<td>29.415063</td>
<td>0</td>
</tr>
<tr>
<td>15.205006</td>
<td>35.432057</td>
<td>0</td>
<td>15.225848</td>
<td>53.135687</td>
<td>0</td>
<td>6.071769</td>
<td>9.069802</td>
<td>0</td>
</tr>
<tr>
<td>5.804760</td>
<td>13.122304</td>
<td>0</td>
<td>15.206168</td>
<td>-15.745450</td>
<td>0</td>
<td>15.201702</td>
<td>-20.742448</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2111.19</td>
<td>0.000612</td>
<td>311.691</td>
<td>0.003207</td>
<td>0</td>
</tr>
<tr>
<td>13.8226</td>
<td>0.405512</td>
<td>8</td>
<td>8.71748</td>
<td>-0.932588</td>
<td>1</td>
<td>1.98303</td>
<td>0.919657</td>
<td>0</td>
</tr>
<tr>
<td>0.970377</td>
<td>0.404671</td>
<td>0</td>
<td>0.279765</td>
<td>0.012366</td>
<td>0.106776</td>
<td>-0.001604</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2111.19</td>
<td>0.000251</td>
<td>311.691</td>
<td>0.001457</td>
<td>0</td>
</tr>
<tr>
<td>13.8226</td>
<td>0.163702</td>
<td>8</td>
<td>8.71748</td>
<td>-0.398455</td>
<td>1</td>
<td>1.98303</td>
<td>0.578074</td>
<td>0</td>
</tr>
<tr>
<td>0.970377</td>
<td>0.327124</td>
<td>0</td>
<td>0.279765</td>
<td>-0.784654</td>
<td>0.106776</td>
<td>-0.499451</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.279765</td>
<td>1</td>
<td>0</td>
<td>0.106776</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
<td>6.1</td>
<td>17.0629</td>
<td>0.089340</td>
<td>10.8306</td>
<td>-0.271168</td>
<td>0</td>
</tr>
<tr>
<td>2.59380</td>
<td>0.662023</td>
<td>1</td>
<td>1.12676</td>
<td>0.460744</td>
<td>0</td>
<td>0.300176</td>
<td>0.028809</td>
<td>0</td>
</tr>
<tr>
<td>0.097551</td>
<td>-0.003863</td>
<td>0</td>
<td>0.279765</td>
<td>-0.499451</td>
<td>0</td>
<td>0.106776</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
<td>4.1</td>
<td>17.0629</td>
<td>-0.026861</td>
<td>10.8306</td>
<td>0.086304</td>
<td>0</td>
</tr>
<tr>
<td>2.59380</td>
<td>-0.273502</td>
<td>0</td>
<td>S119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.12676 -0.151390
0.300176 0.583976
0.097551 0.565014
 0 2 1 0. 1
0.097551 1
0 3 6 10. 1
50.9106 0.003354
18.4647 -0.003642
4.27617 0.278080
1.89770 0.516348
0.786480 0.326571
0.2638 0.045152
 0 3 1 0. 1
0.2638 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
 7 7 7 7 14
end
12 0 24
maxcycle
 100
tolscf
 7 7
fmixing
 80
broyden
 0.0001
end
AlSb

crystal
0 0 0
216
6.0959
2
13 0. 0. 0.
251 0.25 0.25 0.25
printout
basisset
end
end
13 5
0 0 6 2 1
13983.100000 0.00194267
2098.750000 0.0148599
477.7050000 0.0728494
134.3600000 0.2468300
42.8709000 0.4872580
14.5189000 0.3234960
0 1 6 8 1
239.6680000 -0.00292619 0.00460285
57.4419000 -0.0374080 0.0331990
18.2859000 -0.1144870 0.1362820
6.5991400 0.1156350 0.3304760
2.4904900 0.6125950 0.4491460
0.9445400 0.3937990 0.2657040
0 1 1 0 1
0.1 1. 1.
0 1 3 3 1
1.2779000 -0.2276060 -0.0175130
0.3975900 0.00144583 0.2445330
0.1600950 1.0927900 0.8049340
0 3 1 0 1
0.325 1.0
251 9
input
23. 0 2 4 4 2 0
16.330865 281.071581 0
8.556542 61.716604 0
14.470337 67.457380 0
13.816194 134.933503 0
8.424924 14.716344 0

S121
<table>
<thead>
<tr>
<th>S122</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.092728 29.518512 0</td>
</tr>
<tr>
<td>14.886331 35.447815 0</td>
</tr>
<tr>
<td>15.146319 53.143466 0</td>
</tr>
<tr>
<td>5.908267 9.179223 0</td>
</tr>
<tr>
<td>5.594322 13.240253 0</td>
</tr>
<tr>
<td>14.444978 -15.366801 0</td>
</tr>
<tr>
<td>14.449295 -20.296138 0</td>
</tr>
<tr>
<td>0 0 8 2. 1</td>
</tr>
<tr>
<td>371.584 0.001591</td>
</tr>
<tr>
<td>26.5392 -0.041684</td>
</tr>
<tr>
<td>16.6213 0.273343</td>
</tr>
<tr>
<td>7.73551 -0.767685</td>
</tr>
<tr>
<td>1.89234 0.899496</td>
</tr>
<tr>
<td>0.910431 0.431387</td>
</tr>
<tr>
<td>0.244231 0.012837</td>
</tr>
<tr>
<td>0.092397 -0.002173</td>
</tr>
<tr>
<td>0 0 8 2. 1</td>
</tr>
<tr>
<td>371.584 0.000654</td>
</tr>
<tr>
<td>26.5392 -0.010962</td>
</tr>
<tr>
<td>16.6213 0.093833</td>
</tr>
<tr>
<td>7.73551 -0.304009</td>
</tr>
<tr>
<td>1.89234 0.508409</td>
</tr>
<tr>
<td>0.910431 0.339239</td>
</tr>
<tr>
<td>0.244231 -0.734772</td>
</tr>
<tr>
<td>0.092397 -0.526134</td>
</tr>
<tr>
<td>0 0 1 0. 1</td>
</tr>
<tr>
<td>0.244231 1</td>
</tr>
<tr>
<td>0 0 1 0. 1</td>
</tr>
<tr>
<td>0.092397 1</td>
</tr>
<tr>
<td>0 2 6 6. 1</td>
</tr>
<tr>
<td>16.0509 0.092157</td>
</tr>
<tr>
<td>10.2621 -0.275559</td>
</tr>
<tr>
<td>2.42832 0.65864</td>
</tr>
<tr>
<td>1.03360 0.466892</td>
</tr>
<tr>
<td>0.25944 0.028511</td>
</tr>
<tr>
<td>0.086108 -0.005155</td>
</tr>
<tr>
<td>0 2 6 3. 1</td>
</tr>
<tr>
<td>16.0509 -0.025313</td>
</tr>
<tr>
<td>10.2621 0.079796</td>
</tr>
<tr>
<td>2.42832 -0.242094</td>
</tr>
<tr>
<td>1.03360 -0.148605</td>
</tr>
<tr>
<td>0.25944 0.548944</td>
</tr>
<tr>
<td>0.086108 0.589291</td>
</tr>
<tr>
<td>0 2 1 0. 1</td>
</tr>
<tr>
<td>0.086108 1</td>
</tr>
</tbody>
</table>
0 3 6 10. 1
45.4785 0.003259
18.5114 -0.005497
3.91600 0.279953
1.71482 0.512751
0.697319 0.332872
0.23040 0.048843
0 3 1 0. 1
0.23041
99
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
60
tolscf
7 7
fmixing
60
broyden
0.0001
end
CdSe

crystal
0 0 0
216
6.0770
2
248 0.000 0.000 0.000
234 0.25 0.25 0.25
printout
basisset
end
end
248 10
input
20. 0 2 4 4 2 0
13.355176 270.039448 0
7.308378 38.877766 0
12.659728 64.607470 0
12.289639 129.219445 0
6.786176 10.622558 0
6.400743 21.265046 0
11.161722 31.663965 0
11.219615 47.489216 0
4.537733 5.186200 0
4.335727 7.566063 0
11.478986 -12.632785 0
11.487027 -16.760171 0
0 0 7 2 1
0.22385300e+03 0.87100000e-03
0.23094800e+02 -0.64307000e-01
0.14652200e+02 0.30131600e+00
0.65704440e+01 -0.76052400e+00
0.15378300e+01 0.89407100e+00
0.69098400e+00 0.42787900e+00
12.289639 129.219445 0
6.786176 10.622558 0
6.400743 21.265046 0
11.161722 31.663965 0
11.219615 47.489216 0
4.537733 5.186200 0
4.335727 7.566063 0
11.478986 -12.632785 0
11.487027 -16.760171 0
0 0 7 2 1
0.22385300e+03 -0.22900000e-03
0.23094800e+02 0.15594000e-01
0.14652200e+02 -0.81047000e-01
0.65704440e+01 0.22725100e+00
0.15378300e+01 -0.36256300e+00
0.69098400e+00 -0.25078300e+00
0.13491300e+00 0.61353300e+00

S124
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
11.950867 -0.766262 0
17.810780 -2.102742 0
0 0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 -0.071606
16.8019 -0.383980
3.5149 -0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0 0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0 0 1 0. 1
0.3830 1
0 0 1 0. 1
0.1399 1
0 2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
0 2 7 4.0 1
S126
100.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.1137 0.499759
0.210.1
0.1137 1
0 3 7 10.1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0.3656 0.007754
0 3 1 0.1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
der
BP

CRYSTAL
0 0 0
216
4.538
2
5 0.0000 0.0000 0.0000
15 0.25 0.25 0.25
PRINTOUT
BASISSET
END
END
5 5
0 0 6 2 1
2858.8900000 0.00215375
428.1400000 0.0165823
97.5282000 0.0821870
27.9693000 0.2766180
8.2157700 0.6293160
1.1127800 0.1737700
0 1 3 3 1
13.2415000 0.1174430 0.0418100
3.0016600 0.9180020 0.2365750
0.9128560 -0.00265105 0.8162140
0 1 1 0 1
0.3154540 1.0000000 1.0000000
0 1 1 0 1
0.1 1.0000000 1.0000000
0 3 1 0 1
0.4010000 1.0000000
15 12
0 0 6 2 1
77492.4000000 0.0007810
11605.8000000 0.0060680
2645.9600000 0.0311600
754.9760000 0.1234310
248.7550000 0.3782090
91.1565000 0.5632620
0 0 3 2 1
91.1565000 0.1602550
36.2257000 0.6276470
15.2113000 0.2638490

S128

Cu$_2$O

crystal
0 0 0
224
4.2676
2
229 0.00 0.00 0.00
8 0.25 0.25 0.25
printout
basisset
end
end
229 10
input
19. 0 2 4 4 2 0
30.110543 355.750512 0
13.076310 70.930906 0
32.692614 77.969931 0
32.770339 155.927448 0
13.751067 18.021132 0
13.322166 36.094372 0
38.996511 -12.343410 0
39.539788 -18.273362 0
12.287511 -0.984705 0
11.459300 -1.318747 0
6.190102 -0.227264 0
8.118780 -0.468773 0
0 0 7 2 1
0.56008800e+03 0.63700000e-03
0.56648600e+02 -0.97350000e-02
0.35425800e+02 0.65793000e-01
0.11054600e+02 -0.41503500e+00
0.23068200e+01 0.74661100e+00
0.95142900e+00 0.46217300e+00
0.14518400e+00 0.15983000e-01
0 0 7 1 1
0.56008800e+03 -0.13600000e-03
0.56648600e+02 0.14010000e-02
0.35425800e+02 -0.13174000e-01
0.11054600e+02 0.95695000e-01
0.23068200e+01 -0.21187400e+00
0.95142900e+00 -0.23594400e+00
0.14518400e+00 0.50811500e+00

S131
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
AlAs

crystal
0 0 0
216
5.62
2
13 0. 0. 0.
233 0.25 0.25 0.25
printout
basisset
end
end
13 5
0 0 6 2 1
13983.1000000 0.00194267
2098.7500000 0.0148599
477.7050000 0.0728494
134.3600000 0.2468300
42.8709000 0.4872580
14.5189000 0.3234960
0 1 6 8 1
239.6680000 -0.00292619 0.00460285
57.4419000 -0.0374080 0.0331990
18.2859000 -0.1144870 0.1362820
6.5991400 0.1156350 0.3304760
2.4904900 0.6125950 0.4491460
0.9445400 0.3937990 0.2657040
0 1 1 0 1
0.1 1. 1.
0 1 3 3 1
1.2779000 -0.2276060 -0.0175130
0.3975900 0.00144583 0.2445330
0.1600950 1.0927900 0.8049340
0 3 1 0 1
0.325 1.0
233 9
input
23. 0 2 4 6 2
28.725122 370.114025 0
6.767681 9.349296 0
45.331064 99.142103 0
44.767415 198.307880 0

S134
19.539090 28.383073 0
18.973471 56.871464 0
51.057152 -18.485145 0
50.151340 -28.113530 0
16.108936 -1.223895 0
14.672223 -1.345765 0
3.851927 0.101757 0
3.813502 0.170338 0
11.940584 -0.775230 0
17.761160 -2.157259 0
0 0 8 2 1
2542.81 0.001137
381.169 0.006055
40.2342 0.084125
16.1217 -0.405285
3.20189 0.712926
1.42096 0.473376
0.321443 0.018013
0.116735 -0.003720
0 0 8 2 1
2542.81 -0.000390
381.169 -0.002190
40.2342 -0.026853
16.1217 0.136878
3.20189 -0.320457
1.42096 -0.337391
0.321443 0.676384
0.116735 0.534980
0 0 1 0 1
0.321443 1
0 0 1 0 1
0.116735 1
0 2 7 6 1
99.5349 0.003857
24.1195 -0.085101
5.84196 0.404762
2.56010 0.531478
1.09308 0.184012
0.318424 0.005764
0.100972 -0.00352
0 2 7 3 1
99.5349 -0.000772
24.1195 0.019941
5.84196 -0.107210
2.56010 -0.172259
S135
1.09308 0.008761
0.318424 0.569744
0.100972 0.535653
0 2 1 0 1
0.100972 1
0 3 7 10 1
113.509 0.011980
36.8872 0.079544
13.6893 0.236755
5.38964 0.401534
2.08046 0.406686
0.737568 0.173162
0.3078 0.008730
0 3 1 0 1
0.3078 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.01
end
GaP

Crystal

0 0 0
216
5.448
2
231 0 0 0
15 0.25 0.25 0.25

Printout

Basisset

End

231 9

Input

21 0 2 4 6 2 0
25.880361 370.273040 0
7.901295 9.190615 0
45.149190 99.144001 0
44.979981 198.295512 0
17.224251 28.445653 0
16.747329 56.949705 0
51.968812 -18.168797 0
51.629117 -27.380273 0
15.241738 -1.587022 0
15.320193 -2.516292 0
4.91589 0.083166 0
4.755103 0.202198 0
10.762263 -0.61699 0
19.852939 -3.138584 0
0 0 8 2 1
2848.20 0.000362
420.664 0.002117
29.8118 0.118964
14.2207 -0.461723
2.67643 0.751559
1.13353 0.447202
0.207220 0.012746
0.1 -0.003358
0 0 8 2 1
2848.20 -0.000097
420.664 -0.000614
29.8118 -0.031069
14.2207 0.126784
2.67643 -0.264288
1.13353 -0.275471
0.207220 0.633842
0.1 0.531681
0 0 1 0 1
0.207220 1
0 0 1 0 1
0.1 1
0 2 7 6 1
109.624 0.002101
21.0855 -0.080196
4.92260 0.396415
2.15591 0.519076
0.901913 0.207520
0.202004 0.007825
0.1 -0.001129
0 2 7 1 1
109.624 -0.000288
21.0855 0.013555
4.92260 -0.073629
2.15591 -0.120860
0.901913 -0.001960
0.202004 0.493206
0.1 0.620604
0 2 1 0 1
0.1 1
0 3 7 10 1
85.7978 0.014668
27.6822 0.085621
10.1760 0.248336
3.92208 0.401414
1.45858 0.398604
0.488760 0.186898
0.1772 0.012331
0 3 1 0 1
0.1772 1
15 12
0 0 6 2 1
77492.4000000 0.0007810
11605.8000000 0.0060680
754.9760000 0.1234310
248.7550000 0.3782090
91.1565000 0.5632620
0 0 3 2 1

S138
91.156500 0.160255
36.225700 0.627647
15.211300 0.263849
0 0 1 2 1
4.794170 1.000000
0 0 1 0 1
1.807930 1.000000
0 0 1 0 1
0.356816 1.000000
0 0 1 0 1
0.114783 1.000000
0 2 4 6 1
384.843000 0.009206
90.552100 0.069874
29.133900 0.292470
10.886200 0.728103
0 2 2 3 1
4.352590 0.628349
1.777060 0.428044
0 2 1 0 1
0.697005 1.000000
0 2 1 0 1
0.253532 1.000000
0 2 1 0 1
0.1 1.000000
0 3 1 0 1
0.550000 1.000000
99 0
end
ulhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.01
end
ZnTe

ZnTe – Kristallografiya (1995) 40, (3) p505-p510

Crystal
0 0 0
216
6.1060
2
230 0.000 0.000 0.000
252 0.25 0.25 0.25

Printout

Basisset
end
end
230 10
input
20 0 2 4 4 2 0
34.174001 399.986399 0
14.456371 85.489750 0
39.888683 92.381077 0
39.655017 184.771176 0
15.290546 23.002541 0
14.903524 46.057427 0
43.708296 -13.690734 0
43.698536 -20.543980 0
15.150718 -1.316154 0
15.282441 -1.838715 0
8.160014 -0.370360 0
12.228422 -1.062943 0
0 0 7 2 1
0.62912600e+03 0.55900000e-03
0.62963500e+02 -0.96800000e-02
0.39579100e+02 0.62354000e-01
0.11917300e+02 -0.41487900e+00
0.25082400e+01 0.75446600e+00
0.10301900e+01 0.45899600e+00
0.15400200e+00 0.11664000e-01
0 0 7 2 1
0.62912600e+03 -0.12100000e-03
0.62963500e+02 0.14890000e-02
0.39579100e+02 -0.12737000e-01
0.11917300e+02 0.97246000e-01
0.25082400e+01 -0.21991700e+00
0.10301900e+01 -0.23647400e+00
0.15400200e+00 0.58129100e+00

S141
0 0 7 0 1
0.62912600e+03 0.42100000e-03
0.62963500e+02 -0.51090000e-02
0.39579100e+02 0.41447000e-01
0.11917300e+02 -0.34164300e+00
0.25082400e+01 0.14386170e+01
0.10301900e+01 -0.98242900e+00
0.15400200e+00 -0.11876310e+01
0 0 1 0 1
0 1 0.10000000e+01
0 2 6 6 1
0.92903400e+02 0.24880000e-02
0.19745200e+02 -0.79136000e-01
0.45507300e+01 0.38805900e+00
0.20019000e+01 0.50935400e+00
0.84387900e+00 0.22457500e+00
0.20338100e+00 0.12680000e+00
0 2 6 0 1
0.92903400e+02 -0.53000000e-03
0.19745200e+02 0.24743000e-01
0.45507300e+01 -0.14278000e+00
0.20019000e+01 0.23403200e+00
0.84387900e+00 0.92187000e+01
0.20338100e+00 0.83777000e+00
0 2 1 0 1
0.59572000e-01 0.10000000e+01
0 3 6 1 0
0.71276600e+02 0.15895000e-01
0.22760400e+02 0.92454000e-01
0.83236900e+01 0.25947200e+00
0.31687500e+01 0.40331400e+00
0.11470300e+01 0.38783400e-01
0.36664300e+00 0.20258000e+00
0 3 6 0 1
0.71276600e+02 -0.22516000e-01
0.22760400e+02 0.13303000e-00
0.83236900e+01 -0.39325300e+00
0.31687500e+01 -0.35121400e+00
0.11470300e+01 0.40617100e+00
0.36664300e+00 0.57920500e+00
0 3 1 0 1
0.36664300e+00 0.10000000e+01
252 6
input
6. 0 2 4 2 2 0

S142
B3PW
uhf
dft
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
FeO

FeO – Journal of Chemical Physics (1933) 1, p29-p36

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CRYSTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>225</td>
<td>4.3410</td>
<td>2</td>
</tr>
<tr>
<td>26 0. 0. 0.</td>
<td>8 0.5 0.5</td>
<td>0.5</td>
<td>PRINTOUT</td>
</tr>
<tr>
<td>BASISSET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERCEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0. 1. 1. 0. 1. 1. 1. 0.</td>
<td>END</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 6 2 1</td>
<td>5484.6717000 0.0018311</td>
<td>825.2349500 0.0139501</td>
<td>188.0469600 0.0684451</td>
</tr>
<tr>
<td>52.9645000 0.2327143</td>
<td>16.8975700 0.4701930</td>
<td>5.7996353 0.3585209</td>
<td></td>
</tr>
<tr>
<td>0 1 3 8 1</td>
<td>15.5396160 -0.1107775 0.0708743</td>
<td>3.5999336 -0.1480263 0.3397528</td>
<td></td>
</tr>
<tr>
<td>1.0137618 1.1307670 0.7271586</td>
<td>0 1 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2700058 1.0000000 1.0000000</td>
<td>0 3 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8 1.0000000</td>
<td>26 6</td>
<td>0 0 6 2 1</td>
<td></td>
</tr>
<tr>
<td>61132.6200000 1.766111E-03</td>
<td>9179.3420000 1.353038E-02</td>
<td>2090.8570000 6.673128E-02</td>
<td></td>
</tr>
<tr>
<td>589.2479000 2.314823E-01</td>
<td>188.7543000 4.797058E-01</td>
<td>64.4462900 3.501976E-01</td>
<td></td>
</tr>
<tr>
<td>0 1 6 8 1</td>
<td>1259.9800000 2.438014E-03 4.028019E-03</td>
<td>299.8761000 3.224048E-02 3.144647E-02</td>
<td></td>
</tr>
<tr>
<td>96.8491700 1.265724E-01 1.368317E-01</td>
<td>36.3102000 -3.139902E-02 3.487236E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.7299600 -6.207593E-01 4.617931E-01
6.0660750 -4.502914E-01 2.043058E-01
0 1 6 8 1
50.4348500 -3.873256E-03 -7.017128E-03
16.8392900 7.196598E-02 -2.877660E-02
7.1920860 2.556591E-01 6.181383E-02
3.0534200 -2.882837E-01 3.954946E-01
1.2736430 -7.342822E-01 4.989059E-01
0.5040910 -2.049353E-01 1.791251E-01
0 1 3 1 1
1.9503160 0.05694869 -0.4593796
0.7367210 0.2882915 0.2852139
0.1141770 -1.1381590 0.9076485
0 3 3 5 1
23.1499400 8.876935E-02
6.1223680 3.896319E-01
1.8466010 7.014816E-01
0 3 1 0 1
0.5043610 1.00
99 0
END
UHF
DFT
B3PW
END
SHRINK
16 24
TOLINTEG
7 7 7 7 14
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
TOLDEE
7
MAXCYCLE
100
FMIXING
60
ANDERSON
PPAN
GUESSP
END
BiVO4

crystal
0 0 0
15
7.2532 11.7020 5.0960 134.234
4
283 0.0000 0.6337 0.2500
223 0.0000 0.1352 0.2500
8 0.1490 0.2100 0.1430
8 0.2580 0.4510 0.3790
printout
basisset
end
end
283 9
input
23. 0 2 4 4 2
13.043090 283.264227 0
8.221682 62.471959 0
10.467777 72.001499 0
9.118901 144.002277 0
6.754791 5.007945 0
6.25592 9.991550 0
8.081474 36.396259 0
7.890595 54.597664 0
4.955556 9.984294 0
4.704559 14.981485 0
4.214546 13.713383 0
4.133400 18.194308 0
0 0 8 2 1
211.821 0.001088
21.3262 -0.105862
13.3654 0.530808
6.94610 -1.050265
1.71229 0.995856
0.839107 0.398952
0.255364 0.011778
0.096700 -0.001470
0 0 8 2 1
211.821 0.000122
21.3262 -0.038537
13.3654 0.217238
6.94610 -0.481097

S147
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.71229</td>
<td>0.701595</td>
<td>0.839107</td>
<td>0.290520</td>
<td>0.255364</td>
<td>-0.799778</td>
</tr>
<tr>
<td>0.096700</td>
<td>-0.496131</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.255364</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.096700</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>11.0644</td>
<td>0.167249</td>
<td>7.45000</td>
<td>-0.425262</td>
<td>2.01069</td>
<td>0.692525</td>
</tr>
<tr>
<td>0.888321</td>
<td>0.475374</td>
<td>0.236369</td>
<td>0.029859</td>
<td>0.079290</td>
<td>-0.004493</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11.0644</td>
<td>-0.052201</td>
<td>7.45000</td>
<td>0.139083</td>
<td>2.01069</td>
<td>-0.293556</td>
</tr>
<tr>
<td>0.888321</td>
<td>-0.158574</td>
<td>0.236369</td>
<td>0.574362</td>
<td>0.079290</td>
<td>0.572678</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.079290</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>16.2461</td>
<td>0.007808</td>
<td>6.98363</td>
<td>-0.066831</td>
<td>2.37476</td>
<td>0.324140</td>
</tr>
<tr>
<td>1.15372</td>
<td>0.485831</td>
<td>0.525974</td>
<td>0.301056</td>
<td>0.2151</td>
<td>0.063196</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.2151</td>
<td>1</td>
<td>223</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>14.490000</td>
<td>178.447971</td>
<td>0</td>
<td>6.524000</td>
<td>19.831375</td>
<td>0</td>
</tr>
<tr>
<td>14.300000</td>
<td>109.529763</td>
<td>0</td>
<td>6.021000</td>
<td>12.570310</td>
<td>0</td>
</tr>
<tr>
<td>17.480000</td>
<td>-19.219657</td>
<td>0</td>
<td>5.709000</td>
<td>-0.642775</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12.8432080</td>
<td>1.1406430</td>
<td>11.3757530</td>
<td>-1.2188030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4069740 -0.8929030
0 0 1 2 1
1.4659270 1.0
0 0 1 0 1
0.5980800 1.0
0 0 1 0 1
0.0887900 1.0
0 2 2 6 1
31.8898680 0.0394070
8.2371780 -1.0226030
0 2 2 0 1
4.3283730 0.1927560
1.5405260 0.8511680
0 2 1 0 1
0.5280810 1.0
0 2 1 0 1
0.0899620 1.0
0 3 4 3 1
22.6804330 0.0362930
6.8613120 0.1773010
2.2754450 0.4304290
0.7319220 0.5893030
0 3 1 0 1
0.2007460 1.0
8 4
0 0 6 2 1
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5993336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
99 0
cend
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
6 0 12
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
SiC (3C)

CRYSTAL
0 0 0
216
4.3581
2
14 0 0 0
6 0.250 0.250 0.250
PRINTOUT
BASISSET
END
END
14 5
0 0 6 2 1
16115.9000000 0.00195948
2425.5800000 0.01492880
553.8670000 0.07284780
156.3400000 0.24613000
50.0683000 0.48591400
17.0178000 0.3250200
0 1 6 8 1
292.7180000 -0.00278094 0.00443826
69.8731000 -0.03571460 0.03266790
22.3363000 -0.11498500 0.13472100
8.1503900 0.09356340 0.32867800
3.1345800 0.60301700 0.44964000
1.2254300 0.41895900 0.26137200
0 1 3 4 1
1.7273800 -0.24463000 -0.01779510
0.5729220 0.00431572 0.25353900
0.2221920 1.09818000 0.80066900
0 1 1 0 1
0.12 1.00000000 1.00000000
0 3 1 0 1
0.4500000 1.00000000
6 5
0 0 6 2 1
4563.2400000 0.00196665
682.0240000 0.0152306
154.9730000 0.0761269
44.4530000 0.2608010
13.0290000 0.6164620
1.8277300 0.2210060
0 1 3 4 1
20.9642000 0.1146600 0.0402487
4.8033100 0.9199990 0.2375940
1.4593300 -0.00303068 0.8158540
0 1 1 0 1
0.4834560 1.0000000 1.0000000
0 1 1 0 1
0.1455850 1.0000000 1.0000000
0 3 1 0 1
0.6260000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
20
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
CRYSTAL
0 0 0
216
5.4210
2
13 0.0000 0.0000 0.0000
15 0.2500 0.2500 0.2500
PRINTOUT
BASISSET
END
END
13 5
0 0 6 2 1
13983.100000 0.00194267
2098.7500000 0.0148599
477.7050000 0.0728494
134.3600000 0.2468300
42.8709000 0.4872580
14.5189000 0.3234960
0 1 6 8 1
239.6680000 -0.00292619 0.00460285
57.4419000 -0.0374080 0.0331990
18.2859000 -0.1144870 0.1362820
6.5991400 0.1156350 0.3304760
2.4904900 0.6125950 0.4491460
0.9445400 0.3937990 0.2657040
0 1 3 3 1
1.2779000 -0.2276060 -0.0175130
0.3975900 0.00144583 0.2445330
0.1600950 1.0927900 0.8049340
0 1 1 0 1
0.1 1. 1.
0 3 1 0 1
0.325 1.0
15 12
0 0 6 2 1
77492.4000000 0.0007810
11605.8000000 0.0060680
2645.9600000 0.0311600
754.9760000 0.1234310
248.7550000 0.3782090
91.1565000 0.5632620
0 0 3 2 1
91.1565000 0.1602550
36.2257000 0.6276470
15.2113000 0.2638490
0 0 1 2 1
4.7941700 1.0000000
0 0 1 0 1
1.8079300 1.0000000
0 0 1 0 1
0.3568160 1.0000000
0 0 1 0 1
0.1147830 1.0000000
0 2 4 6 1
384.8430000 0.0092060
90.5521000 0.0698740
29.1339000 0.2924700
10.8862000 0.7281030
0 2 2 3 1
4.3525900 0.6283490
1.7770600 0.4280440
0 2 1 0 1
0.6970050 1.0000000
0 2 1 0 1
0.2535320 1.0000000
0 2 1 0 1
0.1 1.0000000
0 3 1 0 1
0.5500000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE

S154
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
CdS

crystal
0 0 0
216
5.8304
2
248 0 0 0
16 0.25 0.25 0.25
printout
basisset
end
end
248 10
input
20. 0 2 4 4 2 0
13.355176 270.039448 0
7.308378 38.877766 0
12.659728 64.607470 0
12.289639 129.219445 0
6.786176 10.622558 0
6.400743 21.265046 0
11.161722 31.663965 0
11.219615 47.489216 0
4.537733 5.186200 0
4.335727 7.566063 0
11.478986 -12.632785 0
11.487027 -16.760171 0
0 0 7 2 1
0.22385300e+03 0.87100000e-03
0.23094800e+02 -0.64307000e-01
0.14652200e+02 0.30131600e+00
0.65704440e+01 -0.76052400e+00
0.15378300e+01 0.89407100e+00
0.69098400e+00 0.42787900e+00
0.13491300e+00 0.10188000e-01
0 0 7 2 1
0.22385300e+03 -0.22900000e-03
0.23094800e+02 0.15594000e-01
0.14652200e+02 -0.81047000e-01
0.65704440e+01 0.22751000e+00
0.15378300e+01 -0.36256300e+00
0.69098400e+00 -0.25078300e+00
0.13491300e+00 0.61353300e+00

S156
<table>
<thead>
<tr>
<th>Row</th>
<th>Columns</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 7 0 1</td>
<td>0 0 6 2 1</td>
<td>0.07 0.10000000e+01</td>
</tr>
<tr>
<td>0 2 6 6 1</td>
<td>0 2 1 0 1</td>
<td>0.13717500e+02 0.77616000e-01</td>
</tr>
<tr>
<td>0 2 6 0 1</td>
<td>0 2 1 0 1</td>
<td>0.13717500e+02 -0.30730000e-01</td>
</tr>
<tr>
<td>0 2 6 1</td>
<td>0 3 6 1</td>
<td>0.13717500e+02 0.77616000e-01</td>
</tr>
<tr>
<td>0 2 6 0 1</td>
<td>0 3 6 1</td>
<td>0.13717500e+02 -0.30730000e-01</td>
</tr>
<tr>
<td>0 3 6 1</td>
<td>0 0 6 2 1</td>
<td>93413.4000000 0.0007430</td>
</tr>
</tbody>
</table>

Notes:
- The numbers represent coefficients in a mathematical expression or equation.
- The format suggests this might be part of a larger dataset or table.
- The values are likely to be part of a numerical analysis or algebraic system.
13961.700000 0.0057930
3169.910000 0.0299540
902.456000 0.1190280
297.158000 0.3684320
108.702000 0.5772990
0 0 3 2 1
108.702000 0.1431860
43.155300 0.6244650
18.107900 0.2833660
0 0 1 2 1
5.560090 1.0000000
0 0 1 0 1
2.131830 1.0000000
0 0 1 0 1
0.420430 1.0000000
0 0 1 0 1
0.1360450 1.0000000
0 2 4 6 1
495.040000 0.0083090
117.221000 0.0640240
37.774900 0.2776140
14.058400 0.7450760
0 2 2 4 1
5.565740 0.6137120
2.262970 0.4438180
0 2 1 0 1
0.8079940 1.0000000
0 2 1 0 1
0.277460 1.0000000
0 2 1 0 1
0.1 1.
0 3 1 0 1
0.650000 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
777714
end
10 0 20
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
AgBr

Crystal

0 0 0
225
5.7721
2
247 0.00 0.00 0.00
235 0.5 0.5 0.5
printout
basisset
end
end
247 11
input
19. 0 2 4 4 2 0
12.567714 255.054771 0
6.997662 36.983393 0
11.316496 60.715705 0
10.958063 121.443889 0
7.111400 10.171866 0
6.773319 20.486564 0
8.928437 29.504938 0
11.102567 44.018736 0
5.543212 5.368333 0
3.92835 7.408375 0
11.012913 -12.63403 0
11.019898 -16.764327 0
0 0 7 2 1
0.18007500E+03 0.84900000E-03
0.21898700E+02 -0.65450000E-01
0.13867000E+02 0.29776500E+00
0.61426300E+01 -0.75312100E+00
0.14381400E+01 0.88117500E+00
0.64838200E+00 -0.25597800E+00
0.12888200E+00 0.14738000E-01
0 0 7 2 1
0.18007500E+03 -0.20300000E-03
0.21898700E+02 0.15723000E-01
0.13867000E+02 -0.79229000E-01
0.61426300E+01 0.22634000E+00
0.14381400E+01 -0.34916000E+00
0.64838200E+00 -0.25597800E+00
0.12888200E+00 0.54866600E+00
0 0 7 0 1
0.18007500E+03 -0.86200000E-03
0.21898700E+02 0.52546000E-01
0.13867000E+02 -0.20810000E+00
0.61426300E+01 0.52497200E+00
0.12888200E+00 0.16533910E+01
0 0 1 0 1
0.12 0.10000000E+01
0 2 6 6 1
0.11875100E+02 0.11624800E+00
0.80024500E+01 -0.30728600E+00
0.20176600E+01 0.51573600E+00
0.95423000E+00 0.50310400E+00
0.42311800E+00 0.14209500E+00
0.13588500E+00 0.51530000E-02
0 2 6 0 1
0.11875100E+02 -0.28284000E-01
0.80024500E+01 0.78347000E-01
0.20176600E+01 -0.15674100E+00
0.95423000E+00 -0.18862500E+00
0.42311800E+00 0.63565000E-01
0.13588500E+00 0.58177800E+00
0 2 6 0 1
0.11875100E+02 -0.52857000E-01
0.80024500E+01 0.14703900E+00
0.20176600E+01 -0.31297300E+00
0.95423000E+00 -0.37082800E+00
0.42311800E+00 0.42362900E+00
0.13588500E+00 0.75365500E+00
0 2 1 0 1
0.12 0.10000000E+01
0 3 6 9 1
0.26432000E+02 0.34790000E-02
0.11034500E+02 -0.13848000E+01
0.27378000E+01 0.25499900E+00
0.11957500E+01 0.44984900E+00
0.48204200E+00 0.37573800E+00
0.17290600E+00 0.14587900E+00
0 3 6 0 1
0.26432000E+02 -0.47330000E-02
0.11034500E+02 0.19070000E-01
0.27378700E+01 -0.43329800E+00
0.11957500E+01 -0.44456800E+00

S161
0.48204200E+00 0.49144200E+00
0.17290800E+00 0.57286600E+00
0 3 1 0 1
0.17290800E+00 0.10000000E+01
235 9
input
25. 0 3 4 6 2 0
70.024257 49.962834 0
31.178412 370.014205 0
7.156593 10.241439 0
46.773471 99.112244 0
46.184120 198.253046 0
21.713858 28.261740 0
20.941792 56.623366 0
50.698839 -18.605853 0
50.644764 -27.923280 0
15.447509 -0.379693 0
15.500259 -0.780583 0
2.800391 0.035968 0
1.077480 0.094397 0
14.465606 -1.091269 0
21.234065 -2.887691 0
0 0 8 2 1
2808.60 0.001606
421.180 0.008393
50.3457 0.069578
17.9133 -0.389908
3.80531 0.694497
1.74968 0.491354
0.448555 0.022637
0.164498 -0.003723
0 0 8 2 1
2808.60 -0.000635
421.180 -0.003492
50.3457 -0.025195
17.9133 0.150113
3.80531 -0.366226
1.74968 -0.383422
0.448555 0.714468
0.164498 0.535253
0 0 1 0 1
0.448555 1
0 0 1 0 1
0.164498 1
0 2 7 6 1
105.752 0.005341
27.6368 -0.083084
6.59656 0.447766
2.78522 0.550617
1.07812 0.123500
0.393537 -0.003771
0.127469 0.002278
0 2 7 5 1
105.752 -0.001308
27.6368 0.022921
6.59656 -0.145029
2.78522 -0.209037
1.07812 0.093730
0.393537 0.605021
0.127469 0.457123
0 2 1 0 1
0.127469 1
0 3 6 10 1
143.865 0.010237
46.1163 0.076083
17.3694 0.229807
6.95107 0.403347
2.75607 0.409728
1.01178 0.162790
0 3 1 0 1
0.4291 1
99 0
dend
uhf
dft
b3pw
dend
biesplit
10
tolinteg
7 7 7 7 14
sorestart
dend
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80

S163
broyden
0.0001
end
ZnSe

ZnSe – Kristallografiya (1997) 42, p649-p659

crystal
0 0 0
216
5.6740
2
230 0.000 0.000 0.000
234 0.25 0.25 0.25
printout
basisset
end
end
230 10
input
20 0 2 4 4 2 0
34.174001 399.986399 0
14.456371 85.489750 0
39.888683 92.381077 0
39.655017 184.771176 0
15.290546 23.002541 0
14.903524 46.057427 0
43.708296 -13.690734 0
43.698536 -20.543980 0
15.150718 -1.316154 0
15.282441 -1.838715 0
8.160014 -0.370360 0
12.228422 -1.062943 0
0 0 7 2 1
0.62912600e+03 0.55900000e-03
0.62963500e+02 -0.96800000e-02
0.39579100e+02 0.62354000e-01
0.11917300e+02 -0.41487900e-00
0.25082400e+01 0.75446600e+00
0.10301900e+01 0.45899600e+00
0.15400200e+00 0.11664000e-01
0 0 7 2 1
0.62912600e+03 -0.12100000e-03
0.62963500e+02 0.14890000e-02
0.39579100e+02 -0.12737000e-01
0.11917300e+02 0.97246000e-01
0.25082400e+01 -0.21991700e+00
0.10301900e+01 -0.23647400e+00
0.15400200e+00 0.58129100e+00
0.0701
0.62912600e+03 0.42100000e-03
0.62963500e+02 -0.51090000e-02
0.39579100e+02 0.41447000e-01
0.11917300e+02 -0.34164300e+00
0.25082400e+01 0.14836170e+01
0.10301900e+01 -0.98242900e+00
0.15400200e+00 -0.11876310e+01
0.010101
0.1 0.10000000e+01
0.2661
0.92903400e+02 0.24880000e-02
0.19745200e+02 -0.79136000e-01
0.45507300e+01 0.38805900e+00
0.20019000e+01 0.50935400e+00
0.84387900e+00 0.22457500e+00
0.20338100e+00 0.12680000e+01
0.2601
0.92903400e+02 -0.53000000e-03
0.19745200e+02 0.24743000e-01
0.45507300e+01 -0.14247800e+00
0.20019000e+01 -0.23403200e+00
0.84387900e+00 0.92187000e-01
0.20338100e+00 0.83777000e+00
0.2101
0.59572000e-01 0.10000000e+01
0.3661
0.71276600e+02 0.15895000e-01
0.22760400e+02 0.92454000e-01
0.83236900e+01 0.25947200e+00
0.31687500e+01 0.40331400e+00
0.11470300e+01 0.38783400e+00
0.36643000e+00 0.20225800e+00
0.3601
0.71276600e+02 -0.22516000e-01
0.22760400e+02 -0.13330300e+00
0.83236900e+01 -0.39325300e+00
0.31687500e+01 -0.35121400e+00
0.11470300e+01 0.40617100e+00
0.36643000e+00 0.57920500e+00
0.3101
0.36643000e+00 0.10000000e+01
2349
input
24.024620
30.046990 370.122888 0
6.918688 10.456168 0
45.773014 99.135059 0
45.294642 198.292483 0
20.739648 28.338747 0
20.028601 56.749747 0
50.941768 -18.526556 0
49.594740 -28.334921 0
16.323522 -0.696089 0
14.465196 -1.167891 0
3.775330 0.041443 0
3.501953 0.235583 0
11.950867 -0.766262 0
17.810780 -2.102742 0
0 0 8 2.0 1
2609.7204 0.001829
391.5228 0.009706
48.2893 0.071606
16.8019 -0.383980
3.5149 0.691926
1.5894 0.491893
0.3830 0.021091
0.1399 -0.003916
0 0 8 2.0 1
2609.7204 -0.000694
391.5228 -0.003866
48.2893 -0.024839
16.8019 0.140207
3.5149 -0.342280
1.5894 -0.364598
0.3830 0.698440
0.1399 0.532390
0 0 1 0. 1
0.3830 1
0 0 1 0. 1
0.1399 1
0 2 7 6.0 1
100.0192 0.004761
25.8909 -0.084899
6.2093 0.428655
2.6613 0.543060
1.0929 0.149283
0.3597 0.001071
0.1137 0.001019
0 2 7 4.0 1
0.0192 -0.001058
25.8909 0.021709
6.2093 -0.126243
2.6613 -0.193545
1.0929 0.047373
0.3597 0.591806
0.1137 0.499759
0.210.1
0.1137 1
0.36 10.1
128.508 0.011011
41.5212 0.077856
15.5182 0.232819
6.16082 0.401788
2.41134 0.408946
0.871936 0.168093
0.310.1
0.3656 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
777714
end
12024
maxcycle
100
tolscf
77
fmixing
80
broyden
0.001
end
AgI

crystal
0 0 0
216
6.4991
2
247 0.25 0.25 0.25
253 0.00 0.00 0.00

printout
basisset
end
end
247 11

input
19. 0 2 4 4 2 0
12.567714 255.054771 0
6.997662 36.983393 0
11.316496 60.715705 0
10.958063 121.443889 0
7.111400 10.171866 0
6.773319 20.486564 0
8.928437 29.504938 0
11.102567 44.018736 0
5.543212 5.368333 0
3.928835 7.408375 0
11.012913 -12.623403 0
11.019898 -16.764327 0
0 0 7 2 1
0.18007500E+03 0.84900000E-03
0.21898700E+02 -0.65450000E-01
0.13867000E+02 0.29776500E+00
0.61426300E+01 -0.75312100E+00
0.14381400E+01 0.88117500E+00
0.64838200E+00 0.43517600E+00
0.12888200E+00 0.14738000E-01
0 0 7 2 1
0.18007500E+03 -0.20300000E-03
0.21898700E+02 0.15723000E-01
0.13867000E+02 -0.79229000E-01
0.61426300E+01 0.22263400E+00
0.14381400E+01 -0.34919600E+00
0.64838200E+00 -0.25597800E+00
0.12888200E+00 0.54866600E+00

S169
0.48204200E+00 0.49144200E+00
0.17290800E+00 0.57286600E+00
0 3 1 0 1
0.17290800E+00 0.10000000E+01
253 9
input
25. 0 3 4 4 4 0
40.033376 49.989649 0
17.300576 281.006556 0
8.851720 61.416739 0
15.720141 67.416239 0
15.208222 134.807696 0
8.294186 14.566548 0
7.753949 28.968422 0
13.817751 35.538756 0
13.587805 53.339759 0
6.947630 9.716466 0
6.960099 14.977500 0
18.522950 -20.176618 0
18.251035 -26.088077 0
7.557901 -0.220434 0
7.597404 -0.221646 0
0 0 8 2 1
0.24497900e+04 0.41900000e-03
0.35980800e+03 0.22400000e-02
0.14405800e+02 0.39722300e+00
0.90763200e+01 -0.93224900e+00
0.20881000e+01 0.93713800e+00
0.10349800e+01 0.39208600e+00
0.31628400e+00 0.12485000e-01
0.12171900e+00 -0.13290000e-02
0 0 8 2 1
0.24497900e+04 0.17500000e-03
0.35980800e+03 0.10570000e-02
0.14405800e+02 0.16900000e+00
0.90763200e+01 -0.42179300e+00
0.20881000e+01 0.63886400e+00
0.10349800e+01 0.32011500e+00
0.31628400e+00 -0.81442800e+00
0.12171900e+00 -0.48979800e+00
0 0 1 0 1
0.31628400e+00 0.10000000e+01
0 0 1 0 1
0.12171900e+00 0.10000000e+01
0 2 6 6 1
S171
0.19530100e+02 0.58934000e-01
0.11088200e+02 -0.23093000e+00
0.27156300e+01 0.66480100e+00
0.12043000e+01 0.45067300e+00
0.33994500e+00 0.28980000e-01
0.11088100e+00 -0.28890000e-02
0 2 6 5 1
0.19530100e+02 -0.18836000e-01
0.11088200e+02 0.80006000e-01
0.27156300e+01 -0.30665200e+00
0.12043000e+01 -0.14759400e+00
0.33994500e+00 0.60750600e+00
0.11088100e+00 0.54704900e+00
0 2 1 0 1
0.11088100e+00 0.10000000e+01
0 3 6 10 1
0.45476500e+02 0.42660000e-02
0.13192800e+02 -0.13625000e-01
0.42274100e+01 0.30975600e+00
0.19428000e+01 0.50977200e+00
0.83977100e+00 0.29746100e+00
0.30000000e+00 0.40164000e-01
0 3 1 0 1
0.30000000e+00 0.10000000e+01
99 0
der
uhf
dft
b3pw
der
biesplit
10
tolinteg
7 7 7 7 14
der
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
der
SiC (6H)

SiC (6H) – American Mineralogist (2007) 92, p403-p407

CRYSTAL
0 0 0
186
3.0810 15.1248
6
14 0 0 0 0 0.0
14 0.3333333 0.6666667 0.3336
14 0.3333333 0.6666667 0.6671
6 0.3333333 0.6666667 0.4588
6 0.0 0.0 0.1254
6 0.3333333 0.6666667 0.7920
PRINTOUT
BASISSET
END
END
14 5
0 0 6 2 1
16115.9000000 0.00195948
2425.5800000 0.01492880
553.8670000 0.07284780
156.3400000 0.24613000
50.0683000 0.48591400
17.0178000 0.32500200
0 1 6 8 1
292.7180000 -0.00278094 0.00443826
69.8731000 -0.03571460 0.03266790
22.3363000 -0.11498500 0.13472100
8.1503900 0.09356340 0.32867800
3.1345800 0.60301700 0.44964000
1.2254300 0.41895900 0.26137200
0 1 3 4 1
1.7273800 -0.24463000 -0.01779510
0.5729220 0.00431572 0.25353900
0.2221920 1.09818000 0.80066900
0 1 1 0 1
0.12 1.00000000 1.00000000
0 3 1 0 1
0.4500000 1.00000000
6 5
0 0 6 2 1
4563.2400000 0.00196665
682.0240000 0.0152306

S174
S175
CuBr

CuBr – Journal of the American Chemical Society (1922) 44, p30-p36

crystal
0 0 0
216
5.82
2
229 0.00 0.00 0.00
235 0.25 0.25 0.25
printout
basisset
end
end
229 10
input
19. 0 2 4 4 2 0
30.110543 355.750512 0
13.076310 70.930906 0
32.692614 77.969931 0
32.770339 155.927448 0
13.751067 18.021132 0
13.322166 36.094372 0
38.996511 -12.343410 0
39.539788 -18.273362 0
12.287511 -0.984705 0
11.459300 -1.318747 0
6.190102 -0.227264 0
8.118780 -0.468773 0
0 0 7 2 1
0.56008800e+03 0.63700000e-03
0.56648600e+02 -0.97350000e-02
0.35425800e+02 0.65793000e-01
0.11054600e+02 -0.41503500e+00
0.23068200e+01 0.74661100e+00
0.14518400e+00 0.15983000e+00
0 0 7 1 1
0.56008800e+03 -0.13600000e-03
0.56648600e+02 0.14010000e-02
0.35425800e+02 -0.13174000e-01
0.11054600e+02 0.95695000e-01
0.23068200e+01 -0.21187400e+00
0.95142900e+00 -0.23594400e+00
0.14518400e+00 0.50811500e+00
0.70973900e+02 0.36820000e-02
0.17851000e+02 -0.82128000e-01
0.42467900e+01 0.37537900e+00
0.18776000e+01 0.50840900e+00
0.79333500e+00 0.23909500e+00
0.19347600e+00 0.15850000e+01
0.12 0.10000000e+01
0.70973900e+02 -0.62800000e-03
0.17851000e+02 0.16563000e-01
0.42467900e+01 -0.84572000e-01
0.18776000e+01 -0.14128300e+00
0.79333500e+00 -0.35710000e-02
0.19347600e+00 0.51900500e+00
0.12 0.10000000e+01
0.60380400e+02 0.17564000e-01
0.19112100e+02 0.99134000e-01
0.69528800e+01 0.27117100e+00
0.26099400e+01 0.40618000e+00
0.92256700e+00 0.38142700e+00
0.28364200e+00 0.20062600e+00
0.12 0.10000000e+01
0.60380400e+02 -0.22286000e-01
0.19112100e+02 -0.12827400e+00
0.69528800e+01 -0.36279700e+00
0.26099400e+01 -0.32572200e+00
0.92256700e+00 0.32708700e+00
0.28364200e+00 0.65680900e+00
0.31 0.10000000e+01
0.28364200e+00 0.10000000e+01
input
25. 0 3 4 6 2 0
70.024257 49.962834 0
31.178412 370.014205 0
7.156593 10.241439 0
46.773471 99.112244 0
46.184120 198.253046 0
21.713858 28.261740 0
20.941792 56.623366 0
50.698839 -18.605853 0
50.644764 -27.923280 0
15.447509 -0.379693 0
15.500259 -0.780583 0
2.800391 0.035968 0
1.077480 0.094397 0
14.465606 -1.091269 0
21.234065 -2.887691 0
0 0 8 2 1
2808.60 0.001606
421.180 0.008393
50.3457 0.069578
17.9133 -0.389908
3.80531 0.694497
1.74968 0.491354
0.448555 0.022637
0.164498 -0.003723
0 0 8 2 1
2808.60 -0.000635
421.180 -0.003492
50.3457 -0.025195
17.9133 0.150113
3.80531 -0.366226
1.74968 -0.383422
0.448555 0.714468
0.164498 0.535253
0 0 1 0 1
0.448555 1
0 0 1 0 1
0.164498 1
0 2 7 6 1
105.752 0.005341
27.6368 -0.083084
6.59656 0.447766
2.78522 0.550617
1.07812 0.123500
0.393537 -0.003771
0.127469 0.002278

S178
0 2 7 5 1
105.752 -0.001308
27.6368 0.022921
6.59656 -0.145029
2.78522 -0.209037
1.07812 0.093730
0.393537 0.605021
0.127469 0.457123
0 2 1 0 1
0.127469 1
0 3 6 10 1
143.865 0.010237
46.1163 0.076083
17.3694 0.229807
6.95107 0.403347
2.75607 0.409728
1.01178 0.162790
0 3 1 0 1
0.4291 1
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
CuI

CuI – Canadian Mineralogist (1997) 35, p785-p786

crystal
0 0 0
216
6.063
2
229 0.25 0.25 0.25
253 0.00 0.00 0.00
printout
basisset
end
end
229 10
input
19. 0 2 4 4 2 0
30.110543 355.750512 0
13.076310 70.930906 0
32.692614 77.969931 0
32.770339 155.927448 0
13.751067 18.021132 0
13.322166 36.094372 0
38.996511 -12.343410 0
39.539788 -18.273362 0
12.287511 -0.984705 0
11.459300 -1.318747 0
6.190102 -0.227264 0
8.118780 -0.468773 0
0 0 7 2 1
0.56008800e+03 0.63700000e-03
0.56648600e+02 -0.97350000e-02
0.35425800e+02 0.65793000e-01
0.11054600e+02 -0.41503500e+00
0.23068200e+01 0.74661100e+00
0.95142900e+00 0.46217300e+00
0.14518400e+00 0.50811500e+00
0 0 7 1 1
0.56008800e+03 -0.13600000e-03
0.56648600e+02 0.14010000e-02
0.35425800e+02 -0.13174000e-01
0.11054600e+02 0.95695000e-01
0.23068200e+01 -0.21187400e+00
0.95142900e+00 -0.23594400e+00
0.14518400e+00 0.50811500e+00

S180
| 0 0 7 0 1 | 0.56008800e+03 -0.33300000e-03 |
| 0.56648600e+02 0.59300000e-02 |
| 0.35425800e+02 -0.32549000e-01 |
| 0.11054600e+02 0.21107100e+00 |
| 0.23068200e+01 -0.73055600e+00 |
| 0.11054600e+02 0.21107100e+00 |
| 0.14518400e+00 0.17148730e+01 |
| 0 0 1 0 1 | 0.12 0.10000000e+01 |
| 0 2 6 6 1 | 0.70973900e+02 0.36820000e-02 |
| 0.17851000e+02 -0.82128000e-01 |
| 0.42467900e+02 0.37537900e+00 |
| 0.18776000e+01 0.50840900e+00 |
| 0.79333500e+00 0.23909500e+00 |
| 0.19347600e+00 0.15850000e+1 |
| 0 2 6 0 1 | 0.70973900e+02 -0.62800000e-03 |
| 0.17851000e+02 0.16563000e+01 |
| 0.42467900e+01 -0.84572000e-01 |
| 0.18776000e+01 -0.14128300e+00 |
| 0.79333500e+00 -0.35710000e-02 |
| 0.19347600e+00 0.51905000e+00 |
| 0 2 1 0 1 | 0.12 0.10000000e+01 |
| 0 3 6 10 1 | 0.60380400e+02 0.17564000e+01 |
| 0.19112100e+02 0.99134000e+01 |
| 0.69528800e+01 0.27117100e+00 |
| 0.26099400e+01 0.40618000e+00 |
| 0.92256700e+00 0.38142700e+00 |
| 0.28364200e+00 0.20062600e+00 |
| 0 3 6 0 1 | 0.60380400e+02 -0.22286000e-01 |
| 0.19112100e+02 -0.12827400e+00 |
| 0.69528800e+01 -0.36279700e+00 |
| 0.26099400e+01 -0.32572200e+00 |
| 0.92256700e+00 0.32708700e+00 |
| 0.28364200e+00 0.65680900e+00 |
| 0 3 1 0 1 | 0.28364200e+00 0.10000000e+01 |
| 253 9 | input |
| 25. 0 3 4 4 4 0 |
40.033376 49.989649 0
17.300576 281.006556 0
8.851720 61.416739 0
15.720141 67.416239 0
15.208222 134.807696 0
8.294186 14.566548 0
7.753949 28.968422 0
13.817751 35.538756 0
13.587805 53.339759 0
6.947630 9.716466 0
6.960099 14.977500 0
18.522950 -20.176618 0
18.251035 -26.088077 0
7.557901 -0.220434 0
7.597404 -0.221646 0
0 0 8 2 1
0.24497900e+04 0.41900000e-03
0.35980800e+03 0.22400000e-02
0.14405800e+02 0.39722300e+00
0.90763200e+01 -0.93224900e+00
0.20881000e+01 0.93713800e+00
0.10349800e+01 0.39208600e+00
0.31628400e+00 0.12485000e-01
0.12171900e+00 -0.13290000e-02
0 0 8 2 1
0.24497900e+04 0.17500000e-03
0.35980800e+03 0.10570000e-02
0.14405800e+02 0.16900000e+00
0.90763200e+01 -0.42179300e+00
0.20881000e+01 0.63886400e+00
0.10349800e+01 0.32011500e+00
0.31628400e+00 -0.81442800e+00
0 0 1 0 1
0.31628400e+00 0.10000000e+01
0 0 1 0 1
0.12171900e+00 0.10000000e+01
0 2 6 6 1
0.19530100e+02 0.58934000e-01
0.11088200e+02 -0.23093000e+00
0.27156300e+01 0.66480100e+00
0.12043000e+01 0.45067300e+00
0.33994500e+00 0.28980000e-01
0.11088100e+00 -0.28890000e-02
0 2 6 5 1

S182
0.19530100e+02 -0.18836000e-01
0.11088200e+02 0.80006000e-01
0.27156300e+01 -0.30665200e+00
0.12043000e+01 -0.14759400e+00
0.33995000e+00 0.60750600e+00
0.11088100e+00 0.54704900e+00
 0 2 1 0 1
0.11088100e+00 0.10000000e+01
 0 3 6 10 1
0.45476500e+02 -0.42660000e-02
0.13192800e+02 -0.13625000e-01
0.42274100e+01 0.30975600e+00
0.19428000e+01 0.50977200e+00
0.83977100e+00 0.29746100e+00
0.30000000e+00 0.40164000e-01
 0 3 1 0 1
0.30000000e+00 0.10000000e+01
 99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
CoO
CoO – Proceedings of the Japan Academy (1979) 55, p43-p48
CRYSTAL
0 0 0
225
4.2630
2
27 0 0 0.
8 0.5 0.5 0.5
PRINTOUT
BASISSET
END
SUPERCEL
0. 1. 1. 0. 1. 1. 1. 0.
END
8 4
0 0 6 2 1
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 8 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
27 8
0 0 6 2 1
66148.9900000 1.759787E-03
9933.0770000 1.348162E-02
2262.8160000 6.649342E-02
637.9154000 2.307939E-01
204.4122000 4.792919E-01
69.8253800 3.514097E-01
0 1 6 8 1
1378.8410000 2.376276E-03 3.971488E-03
328.2694000 3.167450E-02 3.108174E-02
106.0946000 1.262888E-01 1.357439E-01
39.8327500 -2.584552E-02 3.476827E-01

S184
16.1862200 -6.183491E-01 4.626340E-01
6.6677880 -4.567008E-01 2.051632E-01
0 1 6 8 1
54.5235500 -3.993004E-03 -7.290772E-03
18.2978300 7.409663E-02 -2.926027E-02
7.8673480 2.542000E-01 6.564150E-02
3.3405340 -2.921657E-01 4.000652E-01
1.3937560 -7.318703E-01 4.950236E-01
0.5513260 -2.040784E-01 1.758240E-01
0 1 3 2 1
2.1519470 0.05379843 -0.2165496
0.8110630 0.2759971 0.1240488
0.1210170 -1.1296920 0.9724064
0 1 1 0 1
0.12 1. 1
0 3 3 5 1
25.5930600 9.004748E-02
6.8009900 3.931703E-01
2.0516470 6.976844E-01
0 3 1 0 1
0.5556710 1.0000000
0 4 1 0 1
0.8 1.
99 0
END
UHF
DFT
B3PW
XLGRID
END
TOLINTEGR
7 7 7 7 14
TOLDEE
7
SHRINK
12 24
ATOMSPIN
2
1 1 2 -1
SPINLOCK
0 5
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
100
FMIXING
60
ANDERSON
PPAN
GUESSP
END
AgCl

crystal

0 0 0
225
5.5463
2
247 0.00 0.00 0.00
17 0.5 0.5 0.5

printout
basisset
dend
end

247 11
input
19. 0 2 4 4 2 0
12.567714 255.054771 0
6.997662 36.983393 0
11.316496 60.715705 0
10.958063 121.443889 0
7.111400 10.171866 0
6.773319 20.486564 0
8.928437 29.504938 0
11.102567 44.018736 0
5.543212 5.368333 0
3.928835 7.408375 0
11.012913 -12.623403 0
11.019898 -16.764327 0

0 0 7 2 1
0.18007500E+03 0.84900000E-03
0.21898700E+02 -0.65450000E-01
0.13867000E+02 0.29776500E+00
0.61426300E+01 -0.75312100E+00
0.14381400E+01 0.88117500E+00
0.64838200E+00 0.43517600E+00
0.12888200E+00 0.14738000E-01

0 0 7 2 1
0.18007500E+03 -0.20300000E-03
0.21898700E+02 0.15723000E-01
0.13867000E+02 -0.79229000E-01
0.61426300E+01 0.22263400E+00
0.14381400E+01 -0.34919600E+00
0.64838200E+00 -0.25597800E+00
0.12888200E+00 0.54866600E+00

S187
0.0701
0.18007500E+03 -0.86200000E-03
0.21898700E+02 0.52546000E-01
0.13867000E+02 -0.20810000E+00
0.61426300E+01 0.52497200E+00
0.14381400E+01 -0.12701730E+01
0.64838200E+00 0.53937300E+00
0.14381400E+01 -0.12701730E+01
0.64838200E+00 0.53937300E+00
0.13588500E+00 0.16533910E+01
0.12 0.10000000E+01
0.2661
0.11875100E+02 0.11624800E+00
0.80024500E+01 -0.30728600E+00
0.20176600E+01 0.51573600E+00
0.95423000E+00 0.50310400E+00
0.42311800E+00 0.14209500E+00
0.13588500E+00 0.51530000E-02
0.2601
0.11875100E+02 -0.28284000E-01
0.80024500E+01 0.78347000E-01
0.20176600E+01 -0.15674100E+00
0.95423000E+00 -0.18862500E+00
0.42311800E+00 0.63565000E-01
0.13588500E+00 0.58177800E+00
0.2601
0.11875100E+02 -0.52857000E-01
0.80024500E+01 0.14703900E-01
0.20176600E+01 -0.31297300E+00
0.95423000E+00 -0.37082800E+00
0.42311800E+00 0.42362900E+00
0.13588500E+00 0.75365500E+00
0.2101
0.12 0.10000000E+01
0.3691
0.26432000E+02 0.34790000E-02
0.11034500E+02 -0.13848000E-01
0.27378700E+01 0.25459900E+00
0.11957500E+01 0.44984900E+00
0.48204200E+00 0.37573800E+00
0.17290800E+00 0.14587900E+00
0.3601
0.26432000E+02 -0.47330000E-02
0.11034500E+02 0.19070000E+01
0.27378700E+01 -0.43329800E+00
0.11957500E+01 -0.44456800E+00

S188
0.48204200E+00 0.49144200E+00
0.17290800E+00 0.57286600E+00
0 3 1 0 1
0.17290800E+00 0.10000000E+01
17 12
0 0 6 2 1
105819.0000000 0.0007380
15872.0000000 0.0057180
3619.6500000 0.0294950
1030.8000000 0.1172860
339.9080000 0.3629490
124.5380000 0.5841490
0 0 3 2 1
124.5380000 0.1341770
49.5135000 0.6242500
20.8056000 0.2917560
0 0 1 2 1
6.5834600 1.0000000
0 0 1 0 1
2.5646800 1.0000000
0 0 1 0 1
0.5597630 1.0000000
0 0 1 0 1
0.1832730 1.0000000
0 2 5 6 1
589.7760000 0.0023910
139.8490000 0.0185040
45.1413000 0.0813770
16.8733000 0.2215520
6.7411000 0.7725690
0 2 2 5 1
6.7411000 -1.5722440
2.7715200 0.9923890
0 2 1 0 1
1.0238700 1.0000000
0 2 1 0 1
0.3813680 1.0000000
0 2 1 0 1
0.1094370 1.0000000
0 3 1 0 1
0.7500000 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
sorestart
end
12 0 24
maxcycle
30
tolscf
7 7
fmixing
80
broyden
0.01
end
SiC (4H)

SiC (4H) – Materials Research Bulletin (1978) 13, (2) p91-p96

CRYSTAL
0 0 0
186
3.0815 10.0614
4
14 0.0 0.0 0.1875
14 0.33333333 0.6666667 0.4375
6 0.0 0.0 0.0
6 0.33333333 0.6666667 0.25
PRINTOUT
BASISSET
END
END
14 5
0 0 6 2 1
16115.9000000 0.00195948
2425.5800000 0.01492880
553.8670000 0.07284780
156.3400000 0.24613000
50.0683000 0.48591400
17.0178000 0.3250200
0 1 6 8 1
292.7180000 -0.00278094 0.00443826
69.8731000 -0.03571460 0.03266790
22.3363000 -0.11498500 0.13472100
8.1503900 0.09356340 0.32867800
3.1345800 0.60301700 0.44964000
1.2254300 0.41895900 0.26137200
0 1 3 4 1
1.7273800 -0.24463000 -0.01779510
0.5729220 0.00431572 0.25353900
0.2221920 1.09818000 0.80066900
0 1 1 0 1
0.12 1.00000000 1.00000000
0 3 1 0 1
0.4500000 1.0000000
6 5
0 0 6 2 1
4563.2400000 0.00196665
682.0240000 0.0152306
154.9730000 0.0761269
44.4553000 0.2608010

S191
GaN (zincblende)

beta-gan – Madelung

crystal
0 0 0
216
4.531
2
231 0.25 0.25 0.25
7 0. 0. 0.
printout
basisset
end
end
231 9

input
21. 0 2 4 6 2 0
25.880361 370.273040 0
7.901295 9.190615 0
45.149190 99.144001 0
44.979981 198.295512 0
17.224251 28.445653 0
16.747329 56.949705 0
51.968812 -18.168797 0
51.629117 -27.380273 0
15.241738 -1.587022 0
15.320193 -2.516292 0
4.918589 0.083166 0
4.755103 0.202198 0
10.762263 -0.616990 0
19.852939 -3.138584 0
0 0 8 2 1
2848.20 0.000362
420.664 0.002117
29.8118 0.118964
14.2207 -0.461723
2.67643 0.751559
1.13353 0.447202
0.207220 0.012746
0.12 -0.003358
0 0 8 2 1
2848.20 -0.000097
420.664 -0.000614
29.8118 -0.031069
14.2207 0.126784

S193
2.67643 -0.264288
1.13353 -0.275471
0.207220 0.633842
0.12 0.531681
0 0 1 0 1
0.207220 1
0 0 1 0 1
0.12 1
0 2 7 6 1
109.624 0.002101
21.0855 -0.080196
4.92260 0.396415
2.15591 0.519076
0.901913 0.207520
0.202004 0.007825
0.12 -0.001129
0 2 7 1 1
109.624 -0.000288
21.0855 0.013555
4.92260 -0.073629
2.15591 -0.120860
0.901913 -0.001960
0.202004 0.493206
0.12 0.620604
0 2 1 0 1
0.12 1
0 3 7 10 1
85.7978 0.014668
27.6822 0.085621
10.1760 0.248336
3.92208 0.401414
1.45858 0.398604
0.488760 0.186898
0.1772 0.012331
0 3 1 0 1
0.1772 1
0.1772 1
7 5
0 0 6 2.0 1.0
6293.4800000 0.00196979
949.0440000 0.0149613
218.7760000 0.0735006
63.6916000 0.2489370
18.8282000 0.6024600
2.7202300 0.2562020
0 1 3 5.0 1.0

S194
30.6331000 0.1119060 0.0383119
7.0261400 0.9216660 0.2374030
2.1120500 -0.00256919 0.8175920
0 1 1 0.0 1.0
0.6840090 1.0000000 1.0000000
0 1 1 0.0 1.0
0.2008780 1.0000000 1.0000000
0 3 1 0.0 1.0
0.9130000 1.0000000
99 0
derivate
uhf
dft
b3pw
derivative
biesplit
10
tolinteg
7 7 7 7 14
derivative
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
derivative
SrTiO₃

CRYSTAL

0 0 0
221
3.901
3
238 0.500 0.500 0.5000
222 0 0 0
8 0.5 0 0

PRINTOUT

BASISSET

END

END

238 12

INPUT

10. 0 2 4 4 2 0
6.933460990 135.271042909 0
4.114003832 17.944071402 0
7.216816623 29.438081345 0
7.173696172 58.880674863 0
3.022798817 4.936282692 0
2.865699030 9.723352071 0
6.321514600 11.907239187 0
6.391499495 17.859551440 0
1.769726597 2.199180226 0
1.636771665 2.893570866 0
4.24198396 -5.509333254 0
4.229164471 -7.304641693 0
0 0 7 2 1
328.348319 -0.000056
140.487794 0.000569
63.335426 -0.001642
27.720360 0.006027
12.766925 -0.044662
6.370362 0.332885
3.403661 -0.738465
0 0 1 2 1
1.429397 1.0
0 0 1 0 1
0.471399 1.0
0 0 1 0 1
0.165689 1.0
0 2 4 6 1

S196
49.172539 0.001205
23.366706 -0.005223
10.429117 0.028513
4.892132 -0.097735
0 2 1 0 1
2.129628 1.0
0 2 1 0 1
0.806850 1.0
0 2 1 0 1
0.311271 1.0
0 2 1 0 1
0.127049 1.0
0 3 1 0 1
1.429397 1.0
0 3 1 0 1
0.471399 1.0
0 3 1 0 1
0.165689 1.0
222 10
INPUT
12. 0 2 2 2 0 0
13.010000 158.241593 0
5.862000 17.511824 0
12.460000 95.235127 0
5.217000 10.047856 0
15.350000 -17.568861 0
4.980000 -0.587256 0
0 0 3 2 1
10.7803650 1.7838920
9.7170130 -2.0006890
4.5077550 -0.7563330
0 0 1 2 1
1.2467080 1.0
0 0 1 0 1
0.5087070 1.0
0 0 1 0 1
0.0734380 1.0
0 2 2 6 1
17.5663810 0.0886010
7.7058440 -1.0707460
0 2 2 0 1
3.3291380 0.2001090
1.3081040 0.8379860
0 2 1 0 1
0.4544820 1.0
S197
0 2 1 0 1
0.0717720 1.0
0 3 4 2 1
19.5191940 0.0358140
5.8646130 0.1723730
1.9280380 0.4251360
0.6065630 0.6025950
0 3 1 0 1
0.1639610 1.0
8 4
0 0 6 2 0 1.0
0.5484671660D+04 0.1831074430D-02
0.8252349460D+03 0.1395017220D-01
0.1880469580D+03 0.684507810D-01
0.5296450000D+02 0.2327143360D+00
0.1689757040D+02 0.4701928980D+00
0.5799635340D+01 0.3585208530D+00
0 1 3 6.0 1.0
0.1553961625D+02 -0.1107775490D+00 0.7087426820D-01
0.3599933586D+01 -0.1480262620D+00 0.3397528390D+00
0.1013761750D+01 0.1130767010D+01 0.7271585770D+00
0 1 1 0.0 1.0
0.2742D+00 0.1000000000D+01 .1000000000D+01
0 3 1 0.0 1.0
0.538D+00 0.1000000000D+01

99 0
END
UHF
DFT
B3PW
END
BIPOSIZE
8000000
EXCHSIZE
8000000
SHRINK
10 20
TOLINTEG
7 7 7 7 14
MAXCYCLE
30
FMIXING
60
ANDERSON
PPAN
TiO$_2$ (Rutile)

CRYSTAL

0 0 0
136
4.59308 2.95889
2
222 0.000 0.0 0.0
8 0.3048 0.3048 0.0
PRINTOUT
BASISSET
END
END
222 10
INPUT
12. 0 2 2 2 0 0
13.010000 158.241593 0
5.862000 17.511824 0
12.460000 95.235127 0
5.217000 10.047856 0
15.350000 -17.568861 0
4.980000 -0.587256 0
0 0 3 2 1
10.7803650 1.7838920
9.7170130 -2.0006890
4.5077550 -0.7563330
0 0 1 2 1
1.2467080 1.0
0 0 1 0 1
0.5087070 1.0
0 0 1 0 1
0.0734380 1.0
0 2 2 6 1
17.5663810 0.0886010
7.7058440 -1.0707460
0 2 2 0 1
3.3291380 0.2000190
1.3081040 0.8379860
0 2 1 0 1
0.4544820 1.0
0 2 1 0 1
0.0717720 1.0
0 3 4 2 1
19.5191940 0.0358140

S200
5.8646130 0.1723730
1.9280380 0.4251360
0.6065630 0.6025950
0 3 1 0 1
0.1639610 1.0
8 4
0 0 6 2.0 1.0
0.5484671660D+04 0.1831074430D-02
0.8252349460D+03 0.1395017220D-01
0.1880469580D+03 0.6844507810D-01
0.5296450000D+02 0.2327143360D+00
0.1689757040D+02 0.4701928980D+00
0.5799635340D+01 0.3585208530D+00
0 1 3 6.0 1.0
0.1553961625D+02 -0.1107775490D+00 0.7087426820D-01
0.359993586D+01 -0.1480262620D+00 0.3397528390D+00
0.1013761750D+01 0.1130767010D+01 0.7271585770D+00
0 1 1 0.0 1.0
0.2742D+00 0.1000000000D+01 99 0
END
UHF
DFT
B3PW
END
BIPOSIZE
8000000
EXCHSIZE
8000000
SHRINK
10 20
TOLINTEG
7 7 7 7 14
MAXCYCLE
30
FMIXING
80
ANDERSON
PPAN
END
SiC (2H)

SiC (2H) – Solid State Communications (1979) 32, p783-p785
CRYSTAL
0 0 0
186
3.0790 5.0530
2
14 0.33333333 0.66666667 0.00000
6 0.33333333 0.66666667 0.3760
PRINTOUT
BASISSET
END
END
14 5
0 0 6 2 1
16115.9000000 0.00195948
2425.5800000 0.01492880
553.8670000 0.07284780
156.3400000 0.24613000
50.0683000 0.48591400
17.0178000 0.32502200
0 1 6 8 1
292.7180000 -0.00278094 0.00443826
69.8731000 -0.03571460 0.03266790
22.3363000 -0.11498500 0.13472100
8.1503900 0.09356340 0.32867800
3.1345800 0.60301700 0.44964000
1.2254300 0.41895900 0.26137200
0 1 3 4 1
1.7273800 -0.24463000 -0.01779510
0.5729220 0.00431572 0.25353900
0.2221920 1.09818000 0.80066900
0 1 1 0 1
0.12 1.00000000 1.00000000
0 3 1 0 1
0.4500000 1.00000000
6 5
0 0 6 2 1
4563.2400000 0.00196665
682.0240000 0.0152306
154.9730000 0.0761269
44.4530000 0.2608010
13.0290000 0.6164620
1.8277300 0.2210060

S202
0 1 3 4 1
20.9642000 0.1146600 0.0402487
4.8033100 0.9199990 0.2375940
1.4593300 -0.00303068 0.8158540
0 1 1 0 1
0.4834560 1.0000000 1.0000000
0 1 1 0 1
0.1455850 1.0000000 1.0000000
0 3 1 0 1
0.6260000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
20
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
CuCl

CuCl – Journal of the American Chemical Society (1922) 44, p30-p36
crystal
0 0 0
216
5.501
2
229 0.00 0.00 0.00
17 0.25 0.25 0.25
printout
basisset
end
end
229 10
input
19. 0 2 4 4 2 0
30.110543 355.750512 0
13.076310 70.930906 0
32.692614 77.969931 0
32.770339 155.927448 0
13.751067 18.021132 0
13.322166 36.094372 0
38.996511 -12.343410 0
39.539788 -18.273362 0
12.287511 -0.984705 0
11.459300 -1.318747 0
6.190102 -0.227264 0
8.118780 -0.468773 0
0 0 7 2 1
0.56008800e+03 0.63700000e-03
0.56648600e+02 -0.97350000e-02
0.35425800e+02 0.65793000e-01
0.11054600e+02 -0.41503500e+00
0.23068200e+01 0.74661100e+00
0.95142900e+00 0.46217300e+00
0.14518400e+00 0.15983000e-01
0 0 7 1 1
0.56008800e+03 -0.13600000e-03
0.56648600e+02 0.14010000e-02
0.35425800e+02 -0.13174000e-01
0.11054600e+02 0.95695000e-01
0.23068200e+01 -0.21187400e+00
0.95142900e+00 -0.23594400e+00
0.14518400e+00 0.50811500e+00

S204
0 0 7 0 1
0.56008800e+03 -0.33300000e-03
0.56648600e+02 0.59300000e-02
0.35425800e+02 -0.32549000e-01
0.11054600e+02 0.21107100e+00
0.23068200e+01 -0.73055600e+00
0.95142900e+00 0.17724200e+00
0.14518400e+00 0.17148730e+01
0 0 1 0 1
0.12 0.10000000e+01
0 2 6 6 1
0.70973900e+02 0.36820000e-02
0.17851000e+02 -0.82128000e-01
0.42467900e+01 0.37537900e+00
0.18776000e+01 0.50849000e+00
0.79333500e+00 0.23909500e+00
0.19347600e+00 0.15850000e+01
0 2 6 0 1
0.70973900e+02 -0.62800000e-03
0.17851000e+02 0.16563000e-01
0.42467900e+01 -0.84572000e-01
0.18776000e+01 -0.14128300e+00
0.79333500e+00 -0.35710000e-02
0.19347600e+00 0.51905000e+00
0 2 1 0 1
0.12 0.10000000e+01
0 3 6 10 1
0.60380400e+02 0.17564000e-01
0.19112100e+02 0.99134000e-01
0.69528800e+01 0.27117100e+00
0.26099400e+01 0.40618000e+00
0.92256700e+00 0.38142700e+00
0.28364200e+00 0.20062600e+00
0 3 6 0 1
0.60380400e+02 -0.22286000e-01
0.19112100e+02 -0.12827400e+00
0.69528800e+01 -0.36279700e+00
0.26099400e+01 -0.32572200e+00
0.92256700e+00 0.32708700e+00
0.28364200e+00 0.65680900e+00
0 3 1 0 1
0.28364200e+00 0.10000000e+01
17 12
0 0 6 2 1
105819.000000 0.0007380

S205
15872.0000000 0.0057180
3619.6500000 0.0294950
1030.8000000 0.1172860
339.9080000 0.3629490
124.5380000 0.5841490
0 0 3 2 1
124.5380000 0.1341770
49.5135000 0.6242500
20.8056000 0.2917560
0 0 1 2 1
6.5834600 1.0000000
0 0 1 0 1
2.5646800 1.0000000
0 0 1 0 1
0.5597630 1.0000000
0 0 1 0 1
0.1832730 1.0000000
0 2 5 6 1
589.7760000 0.0023910
139.8490000 0.0185040
45.1413000 0.0813770
16.8733000 0.2215520
6.7411000 0.7725690
0 2 2 5 1
6.7411000 -1.5722440
2.7715200 0.9923890
0 2 1 0 1
1.0238700 1.0000000
0 2 1 0 1
0.3813680 1.0000000
0 2 1 0 1
0.1094370 1.0000000
0 3 1 0 1
0.7500000 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle 100
tolscf 7 7
fmixing 80
broyden 0.0001
end
TiO$_2$ (Anatase)

CRYSTAL
0 0 0
141
3.78479 9.51237
2
222 0.000 0.250 0.3750
8 0.000 0.250 0.1669
PRINTOUT
BASISSET
END
END
222 10
INPUT
12. 0 2 2 2 0 0
13.010000 158.241593 0
5.862000 17.511824 0
12.460000 95.235127 0
5.217000 10.047856 0
15.350000 -17.568861 0
4.980000 -0.587256 0
0 0 3 2 1
10.7803650 1.7838920
9.7170130 -2.0006890
4.5077550 -0.7563330
0 0 1 2 1
1.2467080 1.0
0 0 1 0 1
0.5087070 1.0
0 0 1 0 1
0.0734380 1.0
0 2 2 6 1
17.5663810 0.0886010
7.7058440 -1.0707460
0 2 2 0 1
3.3291380 0.2001090
1.3081040 0.8379860
0 2 1 0 1
0.4544820 1.0
0 2 1 0 1
0.0717720 1.0
0 3 4 2 1
19.5191940 0.0358140
5.8646130 0.1723730
1.9280380 0.4251360
0.6065630 0.6025950
0 3 1 0 1
0.1639610 1.0
8 4
0 0 6 2.0 1.0
0.5484671660D+04 0.1831074430D-02
0.8252349460D+03 0.1395017220D-01
0.1880469580D+03 0.684507810D-01
0.5296450000D+02 0.2327143360D+00
0.1689757040D+02 0.4701928980D+00
0.5799635340D+01 0.3585208530D+00
0 1 3 6.0 1.0
0.1553961625D+02 -0.1107775490D+00 0.7087426820D-01
0.359993586D+01 -0.1480262620D+00 0.3397528390D+00
0.1013761750D+01 0.1130767010D+01 0.7271585770D+00
0 1 1 0.0 1.0
0.2742D+00 0.1000000000D+00 .1000000000D+01
0 3 1 0.0 1.0
0.538D+00 0.1000000000D+01
99 0
END
UHF
DFT
B3PW
END
BIPOSIZE
8000000
EXCHSIZE
8000000
SHRINK
10 20
TOLINTEGR
7 7 7 7 14
MAXCYCLE
30
FMIXING
60
ANDERSON
PPAN
END
ZnO

crystal
0 0 0
186
3.2499 5.2066
2
230 0.33333333 0.66666667 0.0000
8 0.33333333 0.66666667 0.6800
printout
basisset
end
end
230 10
input
20. 0 2 4 4 2 0
34.174001 399.986399 0
14.456371 85.489750 0
39.888683 92.381077 0
39.655017 184.771176 0
15.290546 23.002541 0
14.903524 46.057427 0
43.708296 -13.690734 0
43.698536 -20.543980 0
15.150718 -1.316154 0
15.282441 -1.838715 0
8.160014 -0.370360 0
12.228422 -1.062943 0
0 0 7 2 1
0.62912600e+03 0.55900000e-03
0.62963500e+02 -0.96800000e-02
0.39579100e+02 0.62354000e-01
0.11917300e+02 -0.41487900e+00
0.25082400e+01 0.75446600e+00
0.10301900e+01 0.45899600e+00
0.15400200e+00 0.11664000e-01
0 0 7 2 1
0.62912600e+03 -0.12100000e-03
0.62963500e+02 0.14890000e-02
0.39579100e+02 -0.12737000e-01
0.11917300e+02 0.97246000e-01
0.25082400e+01 -0.21991700e+00
0.10301900e+01 -0.23647400e+00
0.15400200e+00 0.58129100e+00

S210
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
sorestart
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
6 6
fmixing
80
broyden
0.0001
end
GaN

crystal
0 0 0
186
3.1900 5.1890
2
231 0.33333333 0.66666667 0.0000
7 0.33333333 0.66666667 0.6230

printout

basisset

end
end

231 9

input

21. 0 2 4 6 0
25.880361 370.273040 0
7.901295 9.190615 0
45.149190 99.144001 0
44.979981 198.295512 0
17.224251 28.445653 0
16.747329 56.949705 0
51.968812 -18.168797 0
51.629117 -27.380273 0
15.241738 -1.587022 0
15.320193 -2.516292 0
4.918589 0.083166 0
4.755103 0.202198 0
10.762263 -0.616990 0
19.852939 -3.138584 0
0 0 8 2 1
2848.20 0.000362
420.664 0.002117
29.8118 0.118964
14.2207 -0.461723
2.67643 0.751559
1.13353 0.447202
0.207220 0.012746
0.12 -0.003358
0 0 8 2 1
2848.20 -0.000097
420.664 -0.000614
29.8118 -0.031069
14.2207 0.126784
2.67643 -0.264288
1.13353 -0.275471
0.207220 0.633842
0.12 0.531681
0 0 1 0 1
0.207220 1
0 0 1 0 1
0.12 1
0 2 7 6 1
109.624 0.002101
21.0855 -0.080196
4.92260 0.396415
2.15591 0.519076
0.901913 0.207520
0.202004 0.007825
0.12 -0.001129
0 2 7 1 1
109.624 -0.000288
21.0855 0.013555
4.92260 -0.073629
2.15591 -0.120860
0.901913 -0.001960
0.202004 0.493206
0.12 0.620604
0 2 1 0 1
0.12 1
0 3 7 10 1
85.7978 0.014668
27.6822 0.085621
10.1760 0.248336
3.92208 0.401414
1.45858 0.398604
0.488760 0.186898
0.1772 0.012331
0 3 1 0 1
0.1772 1
7 5
0 0 6 2.0 1.0
6293.4800000 0.00196979
949.0440000 0.0149613
218.7760000 0.0735006
63.6016000 0.2489370
18.8282000 0.6024600
2.7202300 0.2562020
0 1 3 5.0 1.0
30.6331000 0.1119060 0.0383119
7.0261400 0.9216660 0.2374030
2.1120500 -0.00256919 0.8175920
0 1 1 0.0 1.0
0.6840090 1.0000000 1.0000000
0 1 1 0.0 1.0
0.2008780 1.0000000 1.0000000
0 3 1 0.0 1.0
0.9130000 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmixing
80
broyden
0.0001
end
MnO

MnO – Proceedings of the Japan Academy (1979) 55, p43-p48

CRYSTAL
0 0 0
225
4.4461
2
25 0. 0. 0.
8 0.5 0.5 0.5
PRINTOUT
BASISSET
END
SUPERCEL
0. 1. 1. 0. 1. 1. 0.
END
8 4
0 0 6 2 1
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8000000 1.0000000
25 8
0 0 6 2 1
56347.1400000 1.771580E-03
8460.9430000 1.357081E-02
1927.3250000 6.690605E-02
543.2343000 2.318541E-01
173.9905000 4.799046E-01
59.3600500 3.495737E-01
0 1 6 8 1
1165.4120000 2.388751E-03 3.977318E-03
277.3276000 3.181708E-02 3.103112E-02
89.4727800 1.254670E-01 1.351894E-01
33.4825600 -2.955431E-02 3.457387E-01

S216
13.5403700 -6.175160E-01 4.629205E-01
5.5579720 -4.544458E-01 2.090592E-01
0 1 6 8 1
45.8353200 -3.665856E-03 -6.887578E-03
15.1877700 7.231971E-02 -2.846816E-02
6.5007100 2.544486E-01 6.031832E-02
2.7515830 -2.910380E-01 3.938961E-01
1.1454040 -7.359860E-01 5.013769E-01
0.4536870 -1.997617E-01 1.792264E-01
0 1 3 2 1
1.7579990 0.05628572 -0.5035024
0.6670220 0.2897491 0.2345011
0.1051290 -1.1406530 0.9141257
0 1 1 0 1
0.1 1.000000E+00 1.00000000
0 3 3 5 1
20.9435500 8.672702E-02
5.5104860 3.841883E-01
1.6650380 7.069071E-01
0 3 1 0 1
0.4617330 1.0000000
0 4 1 0 1
0.8 1.
99 0
END
UHF
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
ATOMSPIN
2
1 1 2 -1
SPINLOCK
0 4
SCFDIR
BIPOSIZE
30000000
EXCHSIZE

S217
30000000
MAXCYCLE
100
FMIXING
60
ANDERSON
PPAN
END
MgTe

crystal
0 0 0
216
6.517
2
12 0. 0. 0.
252 0.25 0.25 0.25
printout
basisset
end
end
12 11
0 0 6 2 1
43866.5000000 0.0009180
6605.3700000 0.0070470
1513.2600000 0.0359410
432.3170000 0.1414610
142.1490000 0.4267640
51.3983000 0.4979750
0 0 3 2 1
51.3983000 0.2513550
19.9196000 0.6186710
8.0247400 0.1884170
0 0 1 2 1
2.5081700 1.0000000
0 0 1 0 1
0.8715310 1.0000000
0 0 1 0 1
0.1081880 1.0000000
0 0 1 0 1
0.08 1.
0 2 4 6 1
193.8540000 0.0101880
45.4420000 0.0753600
14.1864000 0.3074190
5.0575100 0.7175750
0 2 2 0 1
1.8886100 0.6673390
0.7226520 0.3946490
0 2 1 0 1
0.2364170 1.0000000
0 2 1 0 1

S219
0.0933580 1.0000000
0 3 1 0 1
0.1750000 1.0000000
252 6
input
6. 0 2 4 2 2 0
2.656483 50.217674 0
2.281974 1.982941 0
2.946988 39.938015 0
2.790001 79.873384 0
1.750168 -0.651126 0
1.909579 -1.288332 0
1.107233 5.059096 0
1.084059 7.498701 0
1.992613 -7.997183 0
1.968281 -10.464938 0
0 0 3 2 1
4.620870 -0.076259
3.407086 0.222163
1.353795 -0.541514
0 0 1 0 1
0.278218 1.0
0 0 1 0 1
0.128403 1.0
0 2 3 4 1
4.772823 -0.038412
3.508559 0.112992
1.653984 -0.229605
0 2 1 0 1
0.326880 1.0
0 2 1 0 1
0.139746 1.0
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
7 7 7 7 14
end
12 0 24
maxcycle
100
tolscf
7 7
fmmixing
80
broyden
0.0001
end
ZnS

Crystal

0 0 0
2
216
5.3829
2
230 0. 0. 0.
16 0.25 0.25 0.25

printout
basisset
end
end
230 10
input
20. 0 2 4 4 2 0
34.174001 399.986399 0
14.456371 85.489750 0
39.886863 92.381077 0
39.655017 184.771176 0
15.290546 23.002541 0
14.903524 46.057427 0
43.708296 -13.690734 0
43.698536 -20.543980 0
15.150718 -1.316154 0
15.282441 -1.838715 0
8.160014 -0.370360 0
12.228422 -1.062943 0
0 0 7 2 1

0.62912600e+03 0.55900000e-03
0.62963500e+02 -0.96800000e-02
0.39579100e+02 0.62354000e-01
0.11917300e+02 -0.41487900e+00
0.25082400e+01 0.75446600e+00
0.10301900e+01 0.45899600e+00
0.15400200e+00 0.11664000e-01
0 0 7 2 1

0.62912600e+03 -0.12100000e-03
0.62963500e+02 0.14890000e-02
0.39579100e+02 -0.12737000e-01
0.11917300e+02 0.97246000e-01
0.25082400e+01 -0.21991700e+00
0.10301900e+01 -0.23647400e+00
0.15400200e+00 0.58129100e+00
13961.700000 0.0057930
3169.910000 0.0299540
902.456000 0.1190280
297.158000 0.3684320
108.702000 0.5772990
 0 3 2 1
108.702000 0.1431860
43.1553000 0.6244650
18.1079000 0.2833660
 0 1 2 1
5.5600900 1.0000000
 0 1 0 1
2.1318300 1.0000000
 0 1 0 1
0.420430 1.0000000
 0 1 0 1
0.1360450 1.0000000
 0 2 4 6 1
495.040000 0.0083090
117.2210000 0.0640240
37.7749000 0.2776140
14.0584000 0.7450760
 0 2 2 4 1
5.5657400 0.6137120
2.2629700 0.4438180
 0 2 1 0 1
0.8079940 1.0000000
 0 2 1 0 1
0.2774600 1.0000000
 0 2 1 0 1
0.1 1.
 0 3 1 0 1
0.6500000 1.0000000
99 0
end
uhf
dft
b3pw
end
biesplit
10
tolinteg
 7 7 7 7 14
end
12 0 24
maxcycle
100
fmixing
80
tolscf
7 7
broyden
0.0001
end
CuSCN

crystal
0 0 0
160
3.856 32.905
8
229 0.0000 0.0000 0.0000
229 0.0000 0.0000 0.5000
7 0.0000 0.0000 0.0585
7 0.0000 0.0000 0.5585
6 0.0000 0.0000 0.0934
6 0.0000 0.0000 0.5934
16 0.0000 0.0000 0.1445
16 0.0000 0.0000 0.6445
printout
basisset
end
dend
229 10
input
19. 0 2 4 4 2 0
30.110543 355.750512 0
13.076310 70.930906 0
32.692614 77.969931 0
32.770339 155.927448 0
13.751067 18.021132 0
13.322166 36.094372 0
38.996511 -12.343410 0
39.539788 -18.273362 0
12.287511 -0.984705 0
11.459300 -1.318747 0
6.190102 -0.227264 0
8.118780 -0.468773 0
0 0 7 2 1
0.56008800e+03 0.63700000e-03
0.56648600e+02 -0.97350000e-02
0.35425800e+02 0.65793000e-01
0.11054600e+02 -0.41503500e+00
0.23068200e+01 0.74661100e+00
0.95142900e+00 0.46217300e+00
0.14518400e+00 0.15983000e-01
0 0 7 1 1
0.56008800e+03 -0.13600000e-03

S226
0.56648600e+02 0.14010000e-02
0.35425800e+02 -0.13174000e-01
0.11054600e+02 0.95695000e-01
0.23068200e+01 -0.21187400e+00
0.95142900e+00 -0.23594400e+00
0.14518400e+00 0.50811500e+00
0 0 7 0 1
0.56008800e+03 -0.33300000e-03
0.56648600e+02 0.59300000e-02
0.35425800e+02 -0.32549000e-01
0.11054600e+02 0.21107100e+00
0.23068200e+01 -0.73055600e+00
0.95142900e+00 0.17724200e+00
0.14518400e+00 0.17148730e+01
0 0 1 0 1
0.12 0.10000000e+01
0 2 6 6 1
0.70973900e+02 0.36820000e-02
0.17851000e+02 -0.82128000e-01
0.42467900e+01 0.37537900e+00
0.18776000e+01 0.50840900e+00
0.79333500e+00 0.23995000e+00
0.19347600e+00 0.15850000e+01
0 2 6 0 1
0.70973900e+02 -0.62800000e-03
0.17851000e+02 0.16563000e-01
0.42467900e+01 -0.84572000e-01
0.18776000e+01 -0.14128300e+00
0.79333500e+00 -0.35710000e-02
0.19347600e+00 0.51905000e+00
0 2 1 0 1
0.12 0.10000000e+01
0 3 6 10 1
0.60380400e+02 0.17564000e-01
0.19112100e+02 0.99134000e-01
0.69528800e+01 0.27117100e+00
0.26099400e+01 0.40618000e+00
0.92256700e+00 0.38147000e+00
0.28364200e+00 0.20062600e+00
0 3 6 0 1
0.60380400e+02 -0.22260000e-01
0.19112100e+02 -0.12827400e+00
0.69528800e+01 -0.36279700e+00
0.26099400e+01 -0.32572200e+00
0.92256700e+00 0.32708700e+00
0.28364200e+00 0.65680900e+00
0 3 1 0 1
0.28364200e+00 0.10000000e+01
16 11
0 0 6 2 1
93413.4000000 0.0007430
13961.7000000 0.0057930
3169.9100000 0.0299540
902.4560000 0.1190280
297.1580000 0.3684320
108.7020000 0.5772990
0 0 3 2 1
108.7020000 0.1431860
43.1553000 0.6244650
18.1079000 0.2833660
0 0 1 2 1
5.5600900 1.0000000
0 0 1 0 1
2.1318300 1.0000000
0 0 1 0 1
0.4204030 1.0000000
0 0 1 0 1
0.1360450 1.0000000
0 2 4 6 1
495.0400000 0.0083090
117.2210000 0.0640240
37.7749000 0.2776140
14.0584000 0.7450760
0 2 2 4 1
5.5657400 0.6137120
2.2629700 0.4438180
0 2 1 0 1
0.8079940 1.0000000
0 2 1 0 1
0.2774600 1.0000000
0 3 1 0 1
0.6500000 1.0000000
6 5
0 0 6 2 0 1.0
4563.2400000 0.00196665
682.0240000 0.0152306
154.9730000 0.0761269
44.4553000 0.2608010
13.0290000 0.6164620
1.8277300 0.2210060

S228
0 1 3 4.0 1.0
20.9642000 0.1146600 0.0402487
4.8033100 0.9199990 0.2375940
1.4593300 -0.00303068 0.8158540
0 1 1 0.0 1.0
0.4834560 1.0000000 1.0000000
0 1 1 0.0 1.0
0.1455850 1.0000000 1.0000000
0 3 1 0.0 1.0
0.6260000 1.0000000
7 5
0 0 6 2.0 1.0
6293.4800000 0.00196979
949.0440000 0.0149613
218.7760000 0.0735006
63.6916000 0.2489370
18.8282000 0.6024600
2.7202300 0.2562020
0 1 3 5.0 1.0
30.6331000 0.1119060 0.0383119
7.0261400 0.9216660 0.2374030
2.1120500 -0.00256919 0.8175920
0 1 1 0.0 1.0
0.6840090 1.0000000 1.0000000
0 1 1 0.0 1.0
0.2008780 1.0000000 1.0000000
0 3 1 0.0 1.0
0.9130000 1.0000000
99 0
end
uhf
dft
b3pw
end
tolinteg
7 7 7 7 14
end
6 0 12
maxcycle
60
tolscf
7 7
fmixing
80
broyden
0.01
end
NiO

NiO – Proceedings of the Japan Academy (1979) 55, p43-p48

CRYSTAL

0 0 0
225
4.178
2
28 0 0 0.
8 0.5 0.5 0.5

PRINTOUT

BASISSET

END

SUPERCEL

0. 1. 1. 0. 1. 1. 1. 0.

END

8 4
0 0 6 2 1
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
28 8
0 0 6 2 1
71396.3500000 1.753003E-03
10720.8400000 1.343122E-02
2442.1290000 6.627041E-02
688.4265000 2.302508E-01
220.6153000 4.790186E-01
75.3937300 3.523444E-01
0 1 6 8 1
1492.5320000 2.370714E-03 3.967554E-03
355.4013000 3.160566E-02 3.109479E-02
114.9534000 1.266335E-01 1.359517E-01
43.2204300 -2.417037E-02 3.485136E-01
17.5971000 -6.187775E-01 4.625498E-01
7.2577650 -4.576770E-01 2.035186E-01
0 1 6 8 1
59.3526100 -4.162002E-03 -7.421452E-03
20.0218100 7.425111E-02 -2.953410E-02
8.6145610 2.541360E-01 6.731852E-02
3.6605310 -2.903477E-01 4.016660E-01
1.5281110 -7.302121E-01 4.926623E-01
0.6040570 -2.076057E-01 1.756893E-01
0 1 3 2 1
2.3792760 0.05157888 -0.1887663
0.8858390 0.2707611 0.1015199
0.1285290 -1.1247700 0.9790906
0 1 1 0 1
0.1 1.000000E+00 1.00000000
0 3 3 8 1
28.1914700 9.098881E-02
7.5235840 3.958208E-01
2.2712280 6.947154E-01
0 3 1 0 1
0.611603 1.000000
0 4 1 0 1
0.8 1.
99 0
END
UHF
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
ATOMSPIN
2
1 1 2 -1
SPINLOCK
0 8
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
100
FMIXING
60
ANDERSON
PPAN
END
AlN (zincblende)

CRYSTAL
0 0 0
216
4.3420
2
13 0.00 0.00 0.0000
7 0.25 0.25 0.25
PRINTOUT
BASISSET
END
END
13 5
0 0 6 2 1
13983.1000000 0.00194267
2098.7500000 0.0148599
477.7050000 0.0728494
134.3600000 0.2468300
42.8709000 0.4872580
14.5189000 0.3234960
0 1 6 8 1
239.6680000 -0.00292619 0.00460285
57.4419000 -0.0374080 0.0331990
18.2859000 -0.1144870 0.1362820
6.5991400 0.1156350 0.3304760
2.4904900 0.6125950 0.4491460
0.9445400 0.3937990 0.2657040
0 1 3 3 1
1.2779000 -0.2276060 -0.0175130
0.3975900 0.00145453 0.2445330
0.1600950 1.0927900 0.8049340
0 1 1 0 1
0.1 1. 1.
0 3 1 0 1
0.325 1.0
7 5
0 0 6 2 1
6293.4800000 0.00196979
949.0400000 0.0149613
218.7760000 0.0735006
63.6916000 0.2489370
18.8282000 0.6024600

S234
2.7202300 0.2562020
0 1 3 5 1
30.6331000 0.1119060 0.0383119
7.0261400 0.9216660 0.2374030
2.1120500 -0.00256919 0.8175920
0 1 1 0 1
0.6840000 1.0000000 1.0000000
0 1 1 0 1
0.2008780 1.0000000 1.0000000
0 3 1 0 1
0.9130000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
C (Diamond)

CRYSTAL
0 0 0
227
3.5666
1
6 0.1250 0.1250 0.1250
PRINTOUT
BASISSET
END
END
6 5
0 0 6 2.0 1.0
4563.2400000 0.00196665
682.0240000 0.0152306
154.9730000 0.0761269
44.4530000 0.2608010
13.0290000 0.6164620
1.8277300 0.2210060
0 1 3 4.0 1.0
20.9642000 0.1146600 0.0402487
4.8033100 0.9199990 0.2375940
1.4593300 -0.00303068 0.8158540
0 1 1 0.0 1.0
0.4834560 1.0000000 1.0000000
0 1 1 0.0 1.0
0.1655850 1.0000000 1.0000000
0 3 1 0.0 1.0
0.6260000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 9 30
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIOPSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
PPAN
END
AlN (Wurtzite)

CRYSTAL

0 0 0
186
3.1100 4.9800
2
13 0.33333333 0.66666667 0.0000
7 0.33333333 0.66666667 0.6179

PRINTOUT

BASISSET

END

END

13 5
0 0 6 2 1
13983.1000000 0.00194267
2098.7500000 0.0148599
477.7050000 0.0728494
134.3600000 0.2468300
42.8709000 0.4872580
14.5189000 0.3234960
0 1 6 8 1
239.6680000 -0.00292619 0.00460285
57.4419000 -0.0374080 0.0331990
18.2859000 -0.1144870 0.1362820
6.5991400 0.1156350 0.3304760
2.4904900 0.6125950 0.4491460
0.9445400 0.3937990 0.2657040
0 1 3 3 1
1.2779000 -0.2276060 -0.0175130
0.3975900 0.00144583 0.2445330
0.1600950 1.0927900 0.8049340
0 1 1 0 1
0.1 1. 1.
0 3 1 0 1
0.325 1.0
7 5
0 0 6 2 1
6293.4800000 0.00196979
949.0440000 0.0149613
218.7760000 0.0735006
63.6916000 0.2468300
18.8282000 0.6024600
2.7202300 0.2562020
0 1 3 5 1
30.6331000 0.1119060 0.0383119
7.0261400 0.9216660 0.2374030
2.1120500 -0.00256919 0.8175920
0 1 1 0 1
0.6840090 1.0000000 1.0000000
0 1 1 0 1
0.2008780 1.0000000 1.0000000
0 3 1 0 1
0.9130000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
BN

CRYSTAL
0 0 0
216
3.616
2
5 0.0000 0.0000 0.0000
7 0.25 0.25 0.25
PRINTOUT
BASISSET
END
END
5 5
0 0 6 2 1
2858.8900000 0.00215375
428.1400000 0.0165823
97.5282000 0.0821870
27.9693000 0.2766180
8.2157700 0.6293160
1.1127800 0.1737700
0 1 3 3 1
13.2415000 0.1174430 0.0418100
3.0016600 0.9180020 0.2365750
0.9128560 -0.00265105 0.8162140
0 1 1 0 1
0.3154540 1.0000000 1.0000000
0 1 1 0 1
0.12 1.0000000 1.0000000
0 3 1 0 1
0.4010000 1.0000000
7 5
0 0 6 2.0 1.0
6293.4800000 0.00196979
949.0440000 0.0149613
218.7760000 0.0735006
63.6916000 0.2489370
18.8282000 0.6024600
2.7202300 0.2562020
0 1 3 5.0 1.0
30.6331000 0.1119060 0.0383119
7.0261400 0.9216660 0.2374030
2.1120500 -0.00256919 0.8175920
0 1 1 0.0 1.0
0.6840090 1.0000000 1.0000000
0 1 1 0.0 1.0
0.2008780 1.0000000 1.0000000
0 3 1 0.0 1.0
0.9130000 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEG
7 7 7 9 30
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
MgO

54, P8-P17
CRYSTAL
0 0 0
225
4.214
2
12 0. 0. 0.
8 0.5 0.5 0.5
PRINTOUT
BASISSET
END
END
12 10
0 0 6 2 1
43866.5000000 0.0009180
6605.3700000 0.0070470
1513.2600000 0.0359410
432.3170000 0.1414610
142.1490000 0.4267640
51.3983000 0.4979750
0 0 3 2 1
51.3983000 0.2513550
19.9196000 0.6186710
8.0247400 0.1884170
0 0 1 2 1
2.5081700 1.0000000
0 0 1 0 1
0.8715310 1.0000000
0 0 1 0 1
0.1081880 1.
0 2 4 6 1
193.8540000 0.0101880
45.4420000 0.0753600
14.1864000 0.3074190
5.0575100 0.7175750
0 2 2 0 1
1.8886100 0.6673390
0.7226520 0.3946490
0 2 1 0 1
0.2364170 1.0000000
0 2 1 0 1
0.1 1.
0 3 1 0 1
0.1750000 1.0000000
8 4
0 0 6 2 1
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
99 0
END
UHF
DFT
B3PW
END
TOLINTEGR
7 7 7 9 30
TOLDEE
7
SHRINK
12 0 24
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
PPAN
NODIRECT
END

S243
NaCl

NaCl – Inorganic Chemistry (2006) 45, P7367-P7371

CRYSTAL

0 0 0
225
5.6573
2

11 0.00 0.00 0.00
17 0.5 0.5 0.5

PRINTOUT

BASISSET

END

END

11 10
0 0 6 2 1
36166.4000000 0.0010320
5372.5800000 0.0080710
1213.2100000 0.0421290
339.6230000 0.1697890
109.5530000 0.5146210
38.7730000 0.3798170
0 0 3 2 1
38.7730000 0.3747620
14.5759000 0.5757690
5.2699300 0.1129330
0 0 1 1 1
1.8277700 1.0000000
0 0 1 0 1
0.6199480 1.0000000
0 0 1 0 1
0.10 1.0000000
0 2 4 6 1
144.6450000 0.0114850
33.9074000 0.0823830
10.6285000 0.3196580
3.8238900 0.7012950
0 2 2 0 1
1.4442900 0.6385060
0.5526210 0.4253650
0 2 1 0 1
0.1887200 1.0000000
0 2 1 0 1
0.10 1.0000000
0 3 1 0 1

S244
0.1750000 1.0000000
17 12
0 0 6 2 1
105819.0000000 0.0007380
15872.0000000 0.0057180
3619.6500000 0.0294950
1030.8000000 0.1172860
339.9080000 0.3629490
124.5380000 0.5814900
0 0 3 2 1
124.5380000 0.1341770
49.5135000 0.6242500
20.8056000 0.2917560
0 0 1 2 1
6.5834600 1.0000000
0 0 1 0 1
2.5646800 1.0000000
0 0 1 0 1
0.5597630 1.0000000
0 0 1 0 1
0.1832730 1.0000000
0 2 5 6 1
589.7760000 0.0023910
139.8490000 0.0185040
45.1413000 0.0813770
16.8733000 0.2215520
6.7411000 0.7725690
0 2 2 5 1
6.7411000 -1.5722440
2.7715200 0.9923890
0 2 1 0 1
1.0238700 1.0000000
0 2 1 0 1
0.3813680 1.0000000
0 2 1 0 1
0.1094370 1.0000000
0 3 1 0 1
0.7500000 1.0000000
99 0
END
DFT
B3PW
END
TOLINTEG
7 7 7 7 14
EXCHSIZE
8000000
BIPOSIZE
8000000
SHRINK
24 48
MAXCYCLE
200
FMIXING
60
ANDERSON
NODIRECT
END
SiO$_2$ (β-cristobalite)

CRYSTAL
0 0 0
227
7.12637
2
14 0.1250 0.1250 0.1250
8 0.0000 0.0000 0.0000
PRINTOUT
BASISSET
END
END
14 12
0 0 6 2 1
69379.2300000 0.0007570
10354.9400000 0.0059320
2333.8796000 0.0310880
657.1429500 0.1249670
214.3011300 0.3868970
77.6291680 0.5548880
0 0 3 2 1
77.6291680 0.1778810
30.6308070 0.6277650
12.8012950 0.2476230
0 0 1 2 1
3.9268660 1.0000000
0 0 1 0 1
1.4523430 1.0000000
0 0 1 0 1
0.2562340 1.0000000
0 0 1 0 1
0.12 1.0000000
0 2 4 6 1
335.4831900 0.0088660
78.9003660 0.0682990
24.9881500 0.2909580
9.2197110 0.7321170
0 2 2 2 1
3.6211400 0.6198790
1.4513100 0.4391480
0 2 1 0 1
0.5049770 1.0000000
0 2 1 0 1
0.1863170 1.0000000
0 2 1 0 1
0.12 1.0000000
0 3 1 0 1
0.4500000 1.0000000
8 4
0 0 6 2 1
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
0 1 3 6 1
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0 1 1 0 1
0.2700058 1.0000000 1.0000000
0 3 1 0 1
0.8 1.0000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEGR
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
50
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
LiCl

CRYSTAL

0 0 0
225
5.146
2
3 0.00 0.00 0.00
17 0.5 0.5 0.5

PRINTOUT

BASISSET

END

END

3 4
0 0 6 2 1
900.4600000 0.00228704
134.4330000 0.0176350
30.4365000 0.0873434
8.6239000 0.2809770
2.4833200 0.6587410
0.3031790 0.1187120
0 1 3 1 1
4.8689000 0.0933293 0.0327661
0.8569240 0.9430450 0.1597920
0.2432270 -0.00279827 0.8856670
0 1 1 0 1
0.12 1. 1.
0 3 1 0 1
0.2 1. 1.
17 12
0 0 6 2 1
105819.0000000 0.0007380
15872.0000000 0.0057180
3619.6500000 0.0294950
1030.8000000 0.1172860
339.9080000 0.3629490
124.5380000 0.5841490
0 0 3 2 1
124.5380000 0.1341770
49.5135000 0.6242500
20.8056000 0.2917560
0 0 1 2 1
6.5834600 1.0000000
0 0 1 0 1

S250
2.5646800 1.0000000
0 0 1 0 1
0.5597630 1.0000000
0 0 1 0 1
0.1832730 1.0000000
0 2 5 6 1
589.7760000 0.0023910
139.8490000 0.0185040
45.1413000 0.0813770
16.8733000 0.2215520
6.7411000 0.7725690
0 2 2 5 1
6.7411000 -1.5722440
2.7715200 0.9923890
0 2 1 0 1
1.0238700 1.0000000
0 2 1 0 1
0.3813680 1.0000000
0 2 1 0 1
0.1094370 1.0000000
0 3 1 0 1
0.7500000 1.0000000
99 0
END
DFT
B3PW
END
TOLINTEG
7 7 7 7 14
EXCHSIZE
8000000
BIPOSIZE
8000000
SHRINK
12 24
MAXCYCLE
200
FMIXING
60
ANDERSON
NODIRECT
END

S251
SiO2 (α-quartz)

CRYSTAL
0 0 0
152
4.9210 5.400
2
14 0.5280 0.0000 0.3333
8 0.4080 0.1430 0.1193
PRINTOUT
BASISSET
END
END
14 12
0 0 6 2 1
69379.2300000 0.0007570
10354.9400000 0.0059320
2333.8796000 0.0310880
657.1429500 0.1249670
214.3011300 0.3868970
77.6291680 0.5548880
0 0 3 2 1
77.6291680 0.1778810
30.6308070 0.6277650
12.8012950 0.2476230
0 0 1 2 1
3.9268660 1.0000000
0 0 1 0 1
1.4523430 1.0000000
0 0 1 0 1
0.2562340 1.0000000
0 0 1 0 1
0.12 1.0000000
0 2 4 6 1
335.4831900 0.0088660
78.9003660 0.0682990
24.9881500 0.2909580
9.2197110 0.7321170
0 2 2 1
3.6211400 0.6198790
1.4513100 0.4391480
0 2 1 0 1
0.5049770 1.0000000
0 2 1 0 1
0.1863170 1.000000
0.12 1.000000
0.4500000 1.000000
5484.6717000 0.0018311
825.2349500 0.0139501
188.0469600 0.0684451
52.9645000 0.2327143
16.8975700 0.4701930
5.7996353 0.3585209
15.5396160 -0.1107775 0.0708743
3.5999336 -0.1480263 0.3397528
1.0137618 1.1307670 0.7271586
0.270058 1.0000000 1.000000
0.8 1.000000
99 0
END
DFT
B3PW
XLGRID
END
TOLINTEGR
7 7 7 7 14
TOLDEE
7
SHRINK
12 0 24
SCFDIR
BIPOSIZE
30000000
EXCHSIZE
30000000
MAXCYCLE
15
FMIXING
60
ANDERSON
PPAN
NODIRECT
END
LiF

LiF – Kristallografiya (1988) 33, p90-p97
CRYSTAL
0 0 0
225
4.027
2
9 0.00 0.00 0.00
3 0.5 0.5 0.5
PRINTOUT
BASISSET
END
END
3 10
0 0 9 2 1
5988.0000000 0.0001330
898.9000000 0.0010250
205.9000000 0.0052720
59.2400000 0.0209290
19.8700000 0.0663400
7.4060000 0.1657750
2.9300000 0.3150380
1.1890000 0.3935230
0.4798000 0.1908700
0 0 9 1 1
5988.0000000 -0.0000210
898.9000000 -0.0001610
205.9000000 -0.0008200
59.2400000 -0.0033260
19.8700000 -0.0105190
7.4060000 -0.0280970
2.9300000 -0.0559360
1.1890000 -0.0992370
0.4798000 -0.1121890
0 0 1 0 1
1.9740000 1.0000000
0 0 1 0 1
0.6830000 1.0000000
0 2 3 0 1
3.2660000 0.0086300
0.6511000 0.0475380
0.1696000 0.2097720
0 2 1 0 1
7.3200000 1.0000000
0 2 1 0 1
1.875000 1.000000
0 3 1 0 1
0.187400 1.000000
0 3 1 0 1
4.912000 1.000000
0 4 1 0 1
0.182900 1.000000
9 4
0 0 6 2 1
7001.7130900 0.0018196169
1051.3660900 0.0139160796
239.2856900 0.0684053245
67.3974453 0.233185760
21.5199573 0.471267439
7.40310130 0.356618546
0 1 3 7 1
20.8479528 -0.108506975 0.0716287243
4.80830834 -0.146451658 0.3459121030
1.34406986 1.128688580 0.7224699570
0 1 1 0 1
0.358151393 1.0000000 1.000000
0 3 1 0 1
0.8000000 1.0000000
99 0
END
DFT
B3PW
END
TOLINTEG
7 7 7 7 14
TOLDEE
7 7
EXCHSIZE
8000000
BIPOSIZE
8000000
SHRINK
12 24
MAXCYCLE
30
FMIXING
60
ANDERSON
END