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ABSTRACT Even seemingly simple systems can produce complex dynamics, which leads management
professionals to develop tools for training, monitoring, and improving performance. Management simulators
provide useful insights about human behavior and interactions, while computational and informational
decision support tools offer opportunities to reduce inconsistencies, errors, and non-optimal human choices,
particularly for complex systems that involve multiple decision makers, uncertainty, variability, and time.
We use the context of a popular management simulator that teaches students about the bullwhip effect
(i.e., the beer distribution game) to explore an integrated decision analytic, control theory, and system
dynamics approach to the game that recognizes the value of available (imperfect) information and considers
the value of perfect information to provide the optimal strategy. Using a discrete event simulation, we
characterize optimal decisions and overall team scores for the situation of actual available information
and perfect information. We describe our implementation of the strategy in the field to win the 2007 beer
game world championship played at the 25th conference of the International System Dynamics Society. This
paper seeks to demonstrate that better understanding of the system and use of available information leads
to significantly lower expected costs than identified in prior studies. Understanding complex systems and
using information optimally may increase system stability and significantly improve performance, in some
cases even without better information than already available.

INDEX TERMS Value of information, beer distribution game, decision analysis, system dynamics, control
theory.

I. INTRODUCTION
Even seemingly simple systems can produce complex
dynamics [1]. The integration ofmultiple analytical toolsmay
provide the best strategies for developing robust solutions
in complex systems that involve multiple decision makers,
particularly for decisions and games that involve uncertainty,
variability, and time [2].

The large global economy and growing population depend
on management of complex supply chains. Nonetheless,
those responsible for managing supply chains remain largely
invisible to most consumers, except in times of failure
(i.e., shortages, gluts, major disruptions). The survival and
growth of large companies depend on how they manage
their supply chains, with companies likeWal-mart recognized
for logistics leadership and their use of information [3] and

innovations like cross-docking to minimize inventory holding
times [4]. Major disruptions combined with poor manage-
ment and poor use of information can lead to significant costs,
and sometimes to enterprise failure [5].

The simplest supply chain involves one producer pro-
viding a single product exclusively sold by one retailer
(i.e., a supply chain with 2 nodes), although most supply
chains involve many more nodes and significant dynamic
complexity. The complexity leads management professionals
to develop tools to monitor and improve performance.
Computational and informational decision support tools
(including data collection and management systems and
algorithms) offer opportunities to reduce the potential for
inconsistencies, errors, and non-optimal human choices, and
management simulators can provide useful insights about
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FIGURE 1. Schematic of the beer distribution game board and initial conditions for the four positions of retailer, wholesaler, distributor, and
factory, the shipping and production delays, and the initial orders of 4 for the training rounds shown face up although the orders in the
real game are face down.

human behavior and interactions to help train managers and
students [6]–[8].

Over 50 years ago, Professor Jay Forrester created the
beer distribution game and introduced the concept of the
‘‘bullwhip effect’’ [9]. The beer game is in the public domain,
with materials and instructions available from the Interna-
tional System Dynamics Society [10]. Figure 1 shows the
configuration of the game, which involves a supply chain
with four players: the retailer, wholesaler, distributor, and
factory [11]. Briefly, each player fills incoming orders from
its inventory, which typically starts with 12 units, with the
initial face-down ‘‘incoming orders’’ and ‘‘orders placed’’
slips all equal to 4 and a pre-determined deck of customer
‘‘order cards’’ for all rounds (i.e., simulated weeks) of game
play placed for the retailer to draw one from the top for each
round. The factory determines how much beer to produce
each round, and shipping and production delays slow the
movement of beer through the system. During the game,
players can observe the full board, but not the face-down
order cards or slips, such that only the retailer knows the
customer order for the current round (and prior rounds) with
certainty, and customer orders for future rounds remain
uncertain until received. The game play involves training
for the first 4 rounds, during which time the players receive
orders for 4 units and instructions to always order 4 units,
except at the end of round 4 when players can order whatever
they choose. With the order slips face down (i.e., normal
game play), at the end of the training rounds the board looks
identical to the initial set up. Teams receive information about
the costs of inventory and backlog (i.e., the inputs to the
cost function) and instructions to seek the minimum total
team costs (i.e., for the entire supply chain). At the end of
each round (including the 4 training rounds), players record
their current inventory or backlog (i.e., negative inventory
representing the cumulative unfilled orders received). Each
unit of inventory for each player held at the end of the round
incurs a cost of $0.5, while each unit of backlog incurs a cost
of $1, with the minimum cost per round of $0 assigned if
the inventory and backlog equal zero. Customers waiting for
orders continue to wait, such that backlog accumulates until
filled. A seminal paper on the beer distribution game provides

details of game play, documents the typical poor performance
of actual teamswith the game, and provides a systems dynam-
ics ‘‘order-up-to’’ solution that offers a benchmark team score
of $204 for the standard deck of order cards [11]. Subsequent
studies [12]–[14] explored other strategies that led to sim-
ilar benchmark team scores as low as $196 [13]. A recent
study further highlights the key attributes of the beer game
that make it a highly simplified supply chain, including ‘‘no
random shocks in supply or demand, no capacity constraints
on production, . . . no price variations, . . . no horizontal com-
petition to trigger shortage gaming, and no cancellation of
orders’’ [15].

In parallel over 50 years ago, decision analysts devel-
oped the concept of the value of information when
faced with uncertain choices [16]–[19]. Numerous reviews
demonstrate the benefits of consideration of the value of
information in high-stakes decisions in a wide range of
applications [20]–[24]. As the literature on supply chain man-
agement developed, an abundance of studies emerged related
to characterizing the value of information in supply chains,
including studies on information sharing and the bullwhip
effect [25]–[28]. However, to date no prior studies considered
an integrated decision analytic, system dynamics, and control
theory approach to identify the optimal solution for the beer
game considering the value of information.

In this analysis, we consider the incentives that motivate
the decisions of the individual players and the potential
optimal performance of the team from the perspective of
decision analysis considering the value of information and
the perspective of control theory assuming a single controller.
We consider the information available during actual game
play, such that all players can see the numbers of units in the
different parts of the supply chain (if any), but they cannot
communicate directly about orders, cancel orders, or observe
the extent of backlog (i.e., negative units remain unobserv-
able). Our analysis seeks to identify the optimal strategy for
the beer game. The following section discusses the theory
underlying our approach. We then discuss the methods we
used to calculate the optimal orders and scores, our experi-
ence with field implementation of the optimal strategy, and
our findings and insights.
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II. THEORY
Recognizing the value of the imperfect information avail-
able and taking an integrated analytical approach leads to
several observations. During each round, each player must
decide whether to order 0 or some integer number of units
from the upstream player on the right (or in the case of
the factory how many units to produce), while remaining
uncertain about the order that will arrive from the down-
stream player on the left with a one-round delay (or in the
case of the retailer from the top card on the customer order
deck). In the context of considering the value of perfect
information, we begin by asking the question: what should
each player order in the context of perfect information? This
leads to the realization that orders placed by the retailer,
wholesaler, and distributor represent the source of uncer-
tainty for the wholesaler, distributor, and factory, respec-
tively, and that the retailer, wholesaler, and distributor can
place orders that maintain 0 inventory for the wholesaler,
distributor, and factory, respectively. We then also recog-
nize that given the unit costs and incentives, the location of
inventory in the system does not matter.
Observation 1: From an inventory unit cost perspective, the

location of any inventory in the supply chain does not matter.
Let the inventory held in the retailer for round r be

R [r], the wholesaler W [r], the distributor D [r] and the
factory F [r]. The total inventory, T [r], is given by:
T [r] = R [r] + W [r] + D [r] + F[r], with total inventory
costs,C [r] = 0.5T [r]+B [r], where B [r] is the total system
backlog. In the standard game play, inventory costs the same
in every inventory position on the board while units of beer
cost nothing while in shipping or production delays, so the
desirable location of any inventory in the system does not
depend on the unit cost of inventory. For a constant value
of total inventory in the system, shifting inventory between
any of the inventory positions does not affect the total cost of
inventory for the team.
Theorem 1: Under a flat cost structure, all of the inventory

in the system should be held in the retailer.
For any round r , let the retailer customer demand be O[r].

With R[r] and T[r] greater than zero at initialization of the
game (i.e., when r = 0), the initial backlog in this system
equals 0, and we can use the flat cost function from
Observation 1. Two possible cases exist for values of O[r]
relative to R[r]:

1) O[r] ≤ R[r]: R[r+1] and T[r+1] will both reduce
by O[r], without creating backlog. Cost for this round
changes by −0.5 O[r].

2) O[r]>R[r]:R[r+1]will go to 0, T[r+1] reduces byR[r]
and creates O[r]−R[r] in backlog. Cost for this round
changes by O [r]− 1.5R[r].

The change in cost for Case 1 does not depend on inventory
distribution, but the change in cost for Case 2 does. We can
minimize the cost for Case 2 by maximizing R, which occurs
when R = T . This inventory distribution does not change
for backlog B[r] > 0, because we can treat backlog as part
of O[r], and the same cases exist for O[r]+ B[r].

Given Observation 1 and Theorem 1, we observe that all
inventory in the supply chain incurs costs from the time of
production until exiting as part of a customer order filled by
the retailer, except while moving in shipping and production
delays. While the team players maintain responsibility for the
orders that they place, the customer orders coming into the
retailer remain exogenous and uncertain. Although the loca-
tion of inventory in the supply chain does not matter from a
unit cost of inventory perspective, insufficient inventory to fill
a customer order in the retailer position creates unobservable
and expensive backlog. Thus, moving inventory to the retailer
makes it available for fulfilling uncertain customer demand.
Theorem 2: The cost-minimizing strategy for the retailer,

wholesaler, and distributor is to place orders that achieve and
maintain 0 inventory for the upstream players to their right
(i.e., the wholesaler, distributor, and factory, respectively,
see Figure 1).

Given Observation 1 and Theorem 1, the team shouldmove
all existing inventory in the system to the retailer, recognizing
that inventory and backlog accumulate every turn. To achieve
this, the retailer, wholesaler, and distributor should make
ordering decisions each round that drop the inventory of the
upstream player to 0 and maintain this 0 inventory, and they
can do so independent of their incoming orders. By acting
as a pass-through of goods from the factory to the retailer
and effectively cross-docking all supply, these players simply
move the inventory in the system to the point of use and they
do not create unnecessary dynamics in the system. Thus, the
optimal strategy recognizes that the retailer, wholesaler, and
distributor can easily and rationally observe the inventory
and amount of units in the shipping or production delay of
the upstream player and determine their appropriate orders
to maintain 0 inventory for the distributor, wholesaler, and
factory.

For example, at the first opportunity (i.e., the end of the
4th training round), each of these three players should order
16 units for the standard game play (i.e., clear out the 12 units
currently in the inventory of the upstream player plus the
4 units that will come in from the rightmost shipping delay or
production delay of the upstream player prior to order filling).
After placing an order that will clear any existing inventory
of the upstream player, the retailer, wholesaler, and distributor
should continue to order the amount in the rightmost shipping
or production delay of the upstream player.

By incentivizing the retailer, wholesaler, and factory to
minimize the cost of the inventory that their decisions actually
control, these players each contribute the minimum possible
to the overall team score (i.e., $0) for the upstream player
after the training rounds. This occurs because the system of
the retailer, wholesaler, and distributor represents a closed
system from a control theory perspective, with one input and
one externally-controlled output (Figure 2). These players
cannot control the amount of incoming orders received, but
completely control the inventory (and backlog) of their sup-
pliers. Thus, these players control the location of the total
inventory in the supply chain, and they can also generate

VOLUME 3, 2015 2679



K. M. Thompson, N. D. Badizadegan: Valuing Information in Complex Systems

FIGURE 2. System block diagram showing system elements and their
Z-transforms for the factory problem.

backlog for the factory, distributor, and wholesaler by
over-ordering [15], but only the factory controls the total
amount of inventory in the system. With these three players
using a pass-through of inventory from factory to retailer
strategy, from a control theory perspective, the factory,
a single player, essentially controls an eighth-order linear
system (Figure 2). We emphasize that this strategy contrasts
with the concept of pass-through of orders upstream from the
customer to the factory, which focuses on passing customer
order information up the chain without any consideration of
existing inventory downstream in the supply chain or the
consequences of delays.
Observation 2: The training phase of the game implies

fixed costs of $96.
For standard play, the exogenous retailer customer orders

4 units each round for the first 4 rounds, which means the
retailer sees and fills orders of 4 units. The delay in order slips
(and initial order slips of 4 units on the board at the time the
game starts) also implies that all other players receive orders
for 4 units in rounds 1-4. Thus, for each of the first 4 rounds,
each player begins and ends with 12 units in inventory. This
leads to team costs of $96 associated with training.
Theorem 3: Obtaining the minimum team score in standard

game play requires the factory to drain the existing inventory,
then produce exactly the number of units that will make
inventory match expected customer orders.

Since the goal of the game is to minimize total team cost,
and the other players act as a pass-through, this should be
self-evident.

As shown in the system diagram in Figure 2, after the
inventory drops to 0, the inputs to the inventory should
equal the outputs, which occurs when factory orders exactly
match what the customer will order in 8 rounds. The factory
must use the available information when forecasting demand.
Specifically, after the training rounds customer demand may
change (e.g., for standard play, the customer orders increase
according to a discrete time step function to 8 units per round
in round 5).We canmodel the basic deck of customer demand
for game play as:

O [r] = (k − O0)u [r − r0]+ O0

where k is a positive integer and u[x] denotes the discrete-
time unit step function with u[r] = 1 for x ≥ 0 and

u[r] = 0 for x < 0 (for the standard deck: k = 8, r0 = 5,
and O0 = 4). We focus on decisions for factory ordering,
starting at the time of placing orders autonomously at the end
of round 4. The factory player controls all of the inventory
in the system according to factory orders, f [r]. Based on
the cost function and the objective of cost minimization the
factory player should seek to maintain an inventory for the
retailer such that R [r] = 0. Thus, at the time of placing a
first production order in round 4, the factory should logically
order (i.e., start production on) 0 units, f [4] = 0, because the
system currently contains significant excess inventory
(i.e., 12 units in inventory for each player). At this point in
time, the factory should expect to continue to order 0 for some
time period to reduce the inventory in the system to adjust
for apparent low customer demand to date and based on an
a priori assumption of constant customer demand
(as occurred in the training rounds). However, customer
demand (i.e., O[r]) remains uncertain from a decision ana-
lytic perspective, and consequently additional information
about customer demand remains valuable.

With excess inventory in the system at the start of the
game, the factory can infer customer orders by monitoring
the retailer inventory (so long as the retailer possesses suf-
ficient inventory to fill customer orders, see Theorem 2).
With standard game play, the factory can observe the change
in customer demand as it occurs in round 5 for k < 17
(i.e., k > 16 drops the retailer to 0 in round 5, and thus the
factory would observe this as k ≥ 16).

Due to delays in the system, it takes 8 rounds for new
factory production to affect the retailer inventory. When
determining production orders for the factory, f [r > 3], the
factory must consider all of the inventory in the system and
seek to minimize the cost of system inventory based on the
following recurrence relation:

R [r] = R [r − 1]+ O [r]+ S [r]+ f [r − 8]

Where R [−1] = 12 represents the initial inventory in the
retailer, and S [r] represents the inventory in the system at
the time of initialization that will flow into to the retailer
after training, which equals: 4, 16, 4, 16, 4, 16, 4, 4 (i.e., the
stream of units in the system assuming the other players
optimally pass the inventory in the system up to the retailer)
and is only defined for rounds 1 through 8 (i.e., zero after
round 8). The factory order at the end of round 4 will affect
the inventory of the retailer when all of the stock defined by
S [r] reaches the retailer, at which time 80− 8k stock would
exists in the system if the factory did not add any additional
inventory (i.e., ordered production of 0 units). Thus, assuming
that any change in inventory will remain constant (stationary)
after the change, the factory player can calculate the expected
inventory or backlog of the system based on the inferred value
of k from monitoring changes in the retailer inventory. After
observing the value of k change in round 5, the factory player
can compute the appropriate amount of production to order
assuming a stream of subsequent customer orders of k units
per round. Thus, the strategy for the factory order depends on
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the value of k , which the factory should observe when r = r0
(round 5):
• For 8 < k ≤ 16, order 10k − 80 units in round 5 and
order k units for subsequent rounds (r > 5). If the retailer
filled an order of 16, the customer order may exceed 16,
but this remains unobserved and unobservable.

• For 2 < k ≤ 8, the factory needs to wait until the
supply chain contains 8k inventory before starting to
send k units per round. For values of k that do not
divide evenly into 80, the factory must add some extra
inventory to the system the turn before the supply chain
drops to 8k inventory so that the supply chain reaches
exactly 8k inventory on the next turn.

The factory should continue to monitor inventory levels in
the retailer (and thus infer customer orders filled each round).
This allows the factory to adjust and account for any signals
of non-constant demand. Given uncertainty and the potential
for customer orders to change at any time, the factory could
decide to maintain excess inventory at the retailer position
(i.e., one or more extra units) such that depletion of this stock
would provide a signal of an increase in customer orders,
although this strategy incurs some additional inventory
costs.
Theorem 3: With step-demand orders, perfect information

only facilitates a lower team score if the initial conditions do
not imply excess inventory required for k.

With perfect information (i.e., prior knowledge of k), the
factory can improve its strategy for k > 8, because instead
of ordering 0 units of production at the end of round 4, the
factory can send stock to the retailer at the first opportunity
to place an autonomous order, and thus reduce the backlog
generated by the one-turn delay in the factory. If the factory
player expects that k > 8 at the start of the game, the factory
player can anticipate the demand by sending more inventory
at turn 0, however, the training rounds do not motivate such
a priori anticipation.

We can define the best strategy for any set of customer
orders as the strategy that controls the system inventory at
0 for all rounds after depletion of the initial inventory asso-
ciated with the game set up and training rounds. In some
cases, a best strategy may not exist, because the factory
cannot maintain the retailer at 0 inventory, such as the case of
random customer demand. For very high customer demand
(e.g., k > 16 in the step demand case), the factory will
need to send a very large spike of inventory downstream and
observe the retailer stock once it arrives to determine the
amount of backlog filled and observe any pattern of demand.
To generalize our observations, we define n as the number of
rounds required to observe and predict a stationary or periodic
(i.e., non-random) pattern of customer demand.
Theorem 4: For a non-random customer demand function

characterized by n, the best strategy exists with an r0 ≥ n+8.
For a customer demand deck characterized by n, it takes

at least n rounds until the factory player can observe the
customer order pattern. After the factory player understands
the pattern, the factory player can construct a strategy that

controls retailer inventory at 0 (e.g., for a two-step function
as used in the beer game expert deck).

The factory order strategy presented for the step demand
deck holds for a very narrow demand function with n = 1.
However, we can generalize the factory strategy along the
same lines for a deck definedwith a transient, t[r], that settles
to a periodic function, P[r]:

O [r] = t [r]+ P[r]u[r − r0]

In this case, t[r] = 0 for all r ≥ r0. The strategy for the
factory relies on the ability of the factory to observe P[r],
and to observe the total stock depleted by the transient. In this
case, the factory must supply enough inventory to handle the
transient demand, and then quickly phase-lock to P[r] with a
fixed delay of eight rounds. In order to do this, the player at
the factory should initially supply enough inventory for the
maximum value of P[r], so that the retailer does not go into
backlog, because the cost function favors holding inventory
over backlog and excess inventory remains observable, while
backlog information remains censored.

Because of the generality of functions of this form, we
cannot identify a closed-form strategy for a deck in which
a periodic function follows a transient. However, the idea of
the strategy remains the same: hold enough inventory (all at
the retailer) to account for the transient component, and then
send exactly the customer demand when this becomes known
through observation of customer orders filled. Therefore, the
factory player operates in two stages: first, the player assumes
demand with large n during the transient while observing the
customer demand, and second the player switches to control-
ling inventory at 0 after identifying the best strategy. During
the second phase, the factory player can also maintain excess
inventory in the supply chain to manage unexpected increases
in demand. Because this is a linear system, any change in
demand can be controlled by treating the disturbance as a
second order function.

III. SIMULATION AND FIELD APPLICATION
We apply the strategies and equations developed in the prior
section to characterize the factory orders that minimize the
team score for our strategy for all customer order streams
that go from a constant of 4 units per round for the initial
set up and during the training rounds to a constant integer
value (k) between 3 and 16 units per round for the remain-
ing rounds. We estimate the minimum team scores for each
k assuming 36 rounds total (including the training rounds) to
provide a consistent comparison with prior results (although
using our approach cumulative team scores for additional
rounds of 0 mean that these rounds do not change the overall
score). We constructed a discrete event simulation of the
game in Excel that allowed us to verify the results from
the equations above. To provide additional context, we also
characterize the overall team costs that result from strictly
passing the information about the customer orders up the
supply chain [14]. We also consider potential strategies that
would allow players, specifically the factory, to observe the
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FIGURE 3. Optimal factory orders, f [r ], by round r for different values of customer demand k , including
training for which the factory order 4 units for 3 rounds followed by an order of 0 units in round 4.

occurrence of a late change in the stream of retail customer
orders following depletion of the inventory in the system.
Uncertainty about actual customer orders may motivate the
factory to send a pulse of inventory to temporarily increase
retailer inventory or to leave one unit in excess inventory in
the retailer position that would signal a change if the retailer
used this small reserve. We further consider overall team
costs if the factory benefits from perfect information about
customer orders.

We field tested this strategy during the world beer
game championship held at the 25th Annual International
System Dynamics Society Conference in Cambridge,
MA in July 2007. At the beginning of the competition, we
met the other members who joined the team. We assumed
the roles of the factory and the retailer, and we asked the
other team members to play the game assuming that they
should seek to minimize the cost of the inventory of the
upstream player and assume responsibility for achieving and
maintaining zero inventory for the distributor and factory,
respectively.

IV. RESULTS
Figure 3 shows the stream of optimal factory orders, includ-
ing the training rounds, and assuming use of the available
imperfect information that minimizes the total team score for
values of k between 3 and 16. As shown, for k < 9, the factory
orders 0 when r = 5 and for various lengths of time (i.e., for
1 additional round for k = 8 up to 18 additional rounds for
k = 3). For k ≥ 8, Figure 3 shows the constant orders of k
beginning at r = 6.

Figure 4a shows the minimum team total scores that
correspond to the factory orders in Figure 3. We find
application of this optimal strategy for the standard game
(i.e., k = 8) leads to a total team score of $148, which repre-
sents a considerable improvement over previously published
benchmarks. We estimate the lowest possible overall team
costs given the initial set up of the game of $133, which occurs
with a k = 9.

The squares in Figure 4b show the lower overall team costs
associated with perfect information about customer orders
for the factory compared to the circles that show the optimal
strategy with the imperfect information available just from
observing the board (i.e., the results shown in Figure 4a).
The results show the same values for k < 9. This occurs
because perfect information makes no difference in the min-
imum overall team score if the supply chain starts out with
significant excess inventory. This implies an expected value
of perfect information of $0 for the standard game. For k > 8,
the ability to order optimally from the time of the first
autonomous order (i.e., when r = 4) instead of ordering 0
at that point based on an a priori assumption of expected
excess inventory slightly reduces the cost, with the difference
between the curves increasing with higher values of k . Even
for k = 16, the expected value of perfect information is
only $64. Table 1 summarizes the team costs with available
and perfect information, the expected value of perfect infor-
mation, and the team costs of the strategy of passing customer
order information up the supply chain, which leads to signifi-
cant backlog for all players and consequently to much higher
costs. For the beer game expert deck, our strategy gives an
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FIGURE 4. (a) Minimum overall team score including costs of training as a function of k for our optimal strategy with
available imperfect information. (b) Minimum overall team score including training as a
function of k for our optimal strategy with available imperfect information (circles) and with perfect information
(squares).

overall team score of $202 using available information and
a score of $178 with perfect information, which implies an
expected value of perfect information of $24.

During the field application of our strategy, the customer
orders used k = 4, implying a lowest possible minimum team
cost of $348. We won the competition using our strategy,
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TABLE 1. Minimum overall team cost including training as a function of k for our optimal strategy with available imperfect information, with perfect
information, and for customer orders passed up the chain, and the expected value of perfect information.

with a score of $372. During game play the retailer,
wholesaler, and distributor implemented the optimal strategy
of maintaining 0 inventory of the players to their right with-
out deviation and obtaining the expected costs. The factory
followed the strategy of ordering 0 units to deplete the supply
chain prior to ordering k units. Given uncertainty about the
customer orders, for the actual game after several rounds
with 0 inventory in the retailer, the factory sent a surge of
inventory (e.g., 16 units one round followed by 0 units for
3 subsequent rounds) at one time to ensure that the retailer
remained out of backlog. This approach provided confidence
that customer orders had remained steady at k = 4, which
added a small level of additional costs to the total team costs,
but still allowed the team to win by a considerable margin.

V. DISCUSSION
Despite decades of insights derived from the beer distribution
game, our analysis and experience demonstrate that simple
strategies for each player and better use of the available
information lead to significantly lower expected costs than
identified as benchmarks in prior studies. Teams can easily
implement this strategy in the context of game play without
any additional information, which we demonstrated in a real
situation. For this relatively simple supply chain, understand-
ing the system, decision options, and information available
from observation reduces the complexity significantly com-
pared to attempts by players to manage their own inventory
despite their limited control. In addition, the strategy requires
that only the factory player needs to make a priori assump-
tions about the retailer customer orders, and that the factory
player alone needs to carefully observe and control the total
inventory in the supply chain.

While this approach may appear unrealistic in real supply
chains, consistent with the unrealistic aspects of this stylized
game [8], [15], some aspects warrant consideration. First,
the importance of good information about customer orders

in managing supply chains continue to drive actual manager
behavior, and retailers can work directly with factories in
some cases to either help the factories produce appropriate
amounts of inventory to meet consumer demand or by setting
prices that can potentially influence consumer demand in
a way that matches factory production. Second, starting in
the 1970s, large retailers recognized a significant advantage
from buying directly from manufacturers and aggressively
managing information about their customer orders. Ironically,
Wal-Mart apparently began its efforts in this area out of
necessity, not from a conscious decision, but very early on
the senior management appreciated the ‘‘brilliance’’ of the
approach [3]. By managing all aspects of distribution within
their supply chains retailers can move inventory to sell it
faster, which allows them to use the revenue as interest-
generating capital for the time period between the sale of
the product and payment of the bill for the inventory pur-
chased from the factory. Third, within the construct of the
simulation game, players can operate as a team and avoid
the bullwhip effect, but this differs from acting to attempt to
optimize their own inventories, which they do not actually
control. The focus on operations can lead to deep change
and significant strategic advantage for companies [29], but it
requires truly understanding the system. Our analysis under-
scores the importance of understanding the impact of individ-
ual and collective decisions in supply chains (and complex
systems more broadly) and the extent to which participants
face incentives that will lead them to make better or worse
decisions for the parts that they control. Fourth, while we
cannot expect all players to behave rationally [11], [15], the
optimal strategy creates the right incentives. In real supply
chains, although individual players may receive rewards only
for the costs they incur and they may make decisions that
negatively impact others in the supply chain, from a societal
or welfare perspective the system costs and total supply chain
costs matter.

2684 VOLUME 3, 2015



K. M. Thompson, N. D. Badizadegan: Valuing Information in Complex Systems

The beer distribution game provides an interesting case
in which perfect information may not improve decisions
significantly or at all (i.e., for k < 9). Instead, optimal
performance requires using the available imperfect informa-
tion well and understanding the system. Following up on
seminal empirical work [11], more recent empirical stud-
ies of the beer game with stationary demand demonstrated
that teams given perfect information still made decisions
that induced the bullwhip effect, although somewhat damp-
ened for some experimental treatments [30], [31]. This sug-
gests that perfect information about demand is not the real
issue, and that poor performance results from failure to
understand the system and individual and organizational
behavior.

This analysis of a relatively simple game played over a
period of 50 years, for which prior publications all suggested
worse ‘‘best’’ scores than the optimal scores we identified
using our integrated analytical approach, reveals new insights
and contributes to the body of evidence that highlights the
opportunity for better performance by those who understand
the system, information available, and player/stakeholder
incentives. For example, in the last decade, individuals and
organizations that understand the dynamics of the financial
trading system identified optimal strategies for performance
that significantly changed the incentives for all stakeholders
in the market, [32] and sports teams use their understanding
of the system and players to field better teams and win
games [33]. The value of asking the question about what one
would and should do with perfect information may prove
more valuable with respect to motivating understanding of
the system and lead to better decisions and performance than
actually receiving the information itself.
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