Hygroscopicity of nucleated nanoparticles in CLOUD 7 experiments
Jaeseok Kim, Helmi Keskinen, Petri Vaattovaara, Pasi Miettinen, Jorma Joutsensaari, Annele Virtanen, and
CLOUD Collaboration

Citation: AIP Conference Proceedings 1527, 306 (2013); doi: 10.1063/1.4803264
View online: http://dx.doi.org/10.1063/1.4803264
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1527?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Multi-species nucleation rates in CLOUD

Molecular steps of neutral sulfuric acid and dimethylamine nucleation in CLOUD

Measuring composition and growth of ion clusters of sulfuric acid, ammonia, amines and oxidized organics as
first steps of nucleation in the CLOUD experiment

Particle nucleation events at the high Alpine station Jungfraujoch

Modelling new particle formation from Jülich plant atmosphere chamber and CERN CLOUD chamber
measurements
Hygroscopicity of Nucleated Nanoparticles in CLOUD 7 Experiments

Jaeseok Kima, Helmi Keskinena, Petri Vaattovaaraa, Pasi Miettinena, Jorma Joutsensaaria, Annele Virtanena, and CLOUD collaboration

aDepartment of Applied physics, University of Eastern Finland, Kuopio campus, P.O. Box 1627, FIN-70211 Kuopio, Finland

Abstract. We investigated hygroscopicity of nucleated nanoparticles derived from dimethylamine and \textgreek{a}-pinene with sulfuric acid during CLOUD 7 (Cosmic Leaving OUtdoor Droplets) campaign at CERN. The hygroscopicity of nucleated nanoparticles from 10 to 20 nm in mobility diameter was measured with a nano tandem differential mobility analyzer (nano-TDMA). Here, we present preliminary results from the CLOUD 7 experiments.

Keywords: CLOUD, CERN, Nanoparticles, Hygroscopicity, nano-TDMA
PACS: 92.60.Mt

INTRODUCTION

Nanoparticles in the ambient atmosphere are emitted from natural and anthropogenic sources (i.e., primary aerosols) and generated by homogenous reactions among various vapors (i.e., secondary aerosols). It is necessary to determine their physicochemical properties in order to understand the effect of aerosols on Earth’s climate change.1 In the current study, we focus on hygroscopicity of nucleated nanoparticles produced by dimethylamine and \textgreek{a}-pinene with sulfuric acid during CLOUD 7 experiments at CERN.2 Results from this study can give indirect size-resolved chemical composition information of nucleated nanoparticles.3

METHODS

Nano-TDMA System

The nano tandem differential mobility analyzer (nano-TDMA) was used to measure hygroscopicity of nanoparticles generated inside the CLOUD chamber. The nano-TDMA4 consisted of two nano-DMAs5 (differential mobility analyzer; TSI 3085), a CPC (condensation particle counter; TSI 3785), and humidifiers as shown in Figure 1. The nucleated nanoparticles were dried and then charged by a bipolar diffusion charger (85\textgreek{Kr}, TSI) before entering first DMA. In the first DMA, particles with certain size (10, 15, and 20 nm) were selected from the charged polydisperse nanoparticles. The selected nanoparticles passed through an aerosol humidifier consisting of...
GoreTex tubing. After humidifying, size distribution of nanoparticles was measured with second DMA and CPC.

Before and after CLOUD 7 experiments, we measured hygroscopic growth factor (HGF) and deliquescence relative humidity (DRH) using sodium chloride (NaCl) and ammonium sulfate ((NH₄)₂SO₄) particles of 10 and 20 nm to calibrate our nano-TDMA system.

Hygroscopicity of Nucleated Nanoparticles

Here the hygroscopicity of nucleated nanoparticles was represented by hygroscopic growth factor (HGF) and kappa (κ) value. The HGF was defined as the ratio of geometric mean diameter at humidified condition to that at dry condition. In this study, relative humidity (RH) at humidified and dry condition was around 90% and less than 5% RH, respectively.

\[
HGF = \frac{d^{\text{GMD}}(\text{humidified})}{d^{\text{GMD}}(\text{dry})}
\] \(1\)

Also, κ value could be calculated based on Eq. 2:

\[
\kappa = \left(\text{HGF}^3 - 1\right) \left[\frac{1}{S} \cdot \exp \left(\frac{4\sigma_w M_w}{RT \rho_v d_{\text{GMD}} HGF} \right) - 1 \right]
\] \(2\)

where \(S\) is the saturation ratio, \(\sigma_w\) is the water surface tension at room temperature, \(M_w\) is the molecular weight of water, \(R\) is the ideal gas constant, \(T\) is the room temperature, \(\rho_v\) is the density of liquid water.
PRELIMINARY RESULTS

We present preliminary results from this study. We observed several size and composition dependent features in hygroscopic behavior of the particles. As particle size increased from 10 nm to 20 nm, hygroscopicity decreased regardless of experimental condition. It indicates that chemical composition of nanoparticles was changing with size. According to our observation, nanoparticles generated by dimethylamine-H$_2$SO$_4$ were more hygroscopic than those produced by α-pinene-dimethylamine-H$_2$SO$_4$. This is expected as the hygroscopicity of α-pinene is smaller than that of dimethylamine and sulfuric acid. Also, in the presence of α-pinene in the chamber, the hygroscopicity decreased with increasing size indicating increasing fraction of organics in the particles.

ACKNOWLEDGMENTS

We would like to thank CERN for supporting CLOUD with important technical and financial resources, and for providing a particle beam from the CERN Proton Synchrotron. This research has received funding from the EC Seventh Framework Programme (Marie Curie Initial Training Network "CLOUD-ITN" no. 215072, MC-ITN "CLOUD-TRAIN" no. 316662, and ERC-Advanced "ATMNUCLE" grant no. 227463), the German Federal Ministry of Education and Research (project nos. 01LK0902A and 01LK1222A), the Swiss National Science Foundation (project nos. 200020_135307 and 206620_130527), the Academy of Finland (Center of Excellence project no. 1118615), the Academy of Finland (135054, 133872, 251427, 139656, 139995, 137749, 141217, 141451), the Finnish Funding Agency for Technology and Innovation, the Nessling Foundation, the Austrian Science Fund (FWF; project no. P19546 and L593), the Portuguese Foundation for Science and Technology (project no. CERN/FP/116387/2010), the Swedish Research Council, Vetenskapsrådet (grant 2011-5120), the Presidium of the Russian Academy of Sciences and Russian Foundation for Basic Research (grants 08-02-91006-CERN and 12-02-91522-CERN), and the U.S. National Science Foundation (grants AGS1136479 and CHE1012293).

REFERENCES

