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It has been reported that the inverse-square law of gravity is violated over a range of a few hun-
dred meters. I present a different method for the analysis of the data from that experiment. In this
method, the experimental error can be evaluated analytically and I confirm the previous analysis but
show that it is a 20 effect. The method can also be used to design new experiments that will yield

minimum errors for a fixed number of data points.

INTRODUCTION

Eckhardt, Jekeli, Lazarewicz, and Romaides! have
measured the acceleration of gravity at six locations on
the WTVD tower (Raleigh, North Carolina). They re-
port that these measurements do not agree with the
Newtonian prediction.of gravity that is derived by up-
wardly continuing (extrapolating) the gravity field mea-
sured on the surface of the Earth near the tower. In prin-
ciple, this is an elegant experiment because Green’s
theorem guarantees that they can calculate gravity above
the Earth if the gravitational potential is known every-
where on the surface of the Earth.

This is probably a more precise test of the inverse
square law of gravity than the existing borehole experi-
ments?~® because the borehole experiments compare
their measurements to a model of the Earth. (Downward
continuation of a surface gravity field is very difficult due
to the fact that an infinite number of source distributions
lead to identical surface potentials. Also, downward con-
tinuation necessarily amplifies the noise in the gravity
field measured at the surface. Upward continuation dam-
pens the noise.) If a completely accurate model of the
Earth was available, then a borehole experiment would be
precise. But usually there are insufficient data to build
the model. Only shallow mass anomalies out laterally
from the hole can be put in the model; mass anomalies
deep beneath the hole are simply unknown. All of the
published borehole experiments suffer from this problem
to one degree or another and the problem is not resolved
by performing an experiment in the ocean or in an ice

sheet. The deep-seated mass anomalies are still unknown.

UPWARD CONTINUATION

The goal is to measure the acceleration of gravity g (Z)
at several points on a tower and to compare these mea-
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surements to a Newtonian extrapolation of the surface
gravity field g(r,¢,Z). But g(Z) is not the experimental
observable; usually the vertical component of gravity
g,(Z) is measured with a relative instrument such as a
LaCoste Romberg gravimeter. And so one measures
gravity differences between two points where one of the
points must be common to all measurements (e.g., the
base of the tower). So in this paper I will derive the up-
ward continuation equations for these differences and the
vertical gravity gradient on the tower, I'(Z).

The mathematics of upward continuation is greatly
simplified if the gravity data are measured on a spherical
Earth with its surface passing through the base of the
tower. Since local topography makes this impossible, we
assume that a real survey can be extrapolated to this sur-
face without significant error. Then, a straightforward
application of Green’s theorem,” ® in a right-handed
spherical coordinate system, yields

a’*(p*—a?)
g,(p,0,0) =—§7T—E“——
f 8,(a,6,4) dQ 1
s [p*+a®—2apcos(9) P’

where d(Q is an element of solid angle on the sphere, a is
the radius of Earth, p is the distance of the point of obser-
vation from the center of the sphere, and g, is the verti-
cal component of gravity. In deriving Eq. (1), it is impor-
tant to recall that the vertical component of gravity in a
spherical coordinate system is not harmonic but pg, is
harmonic and will solve Laplace’s equation.

If Z is the elevation of the point on the tower above the
surface (i.e., Z =p—a) and r is the distance along the sur-
face of the sphere to a measurement point (i.e., r =a0)
then we can expand Eq. (1) in powers of Z /a, keep lead-
ing terms, and find
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_Z(1—2Z /a)?
gp(O,O,Z) ———“2‘77_—
Xfo rdr
27 gp(ry¢y0)
X d .
fo * Trrz0-2/a) 17

The perturbations caused by the Z /a terms are small and
if (1—Z /a) is set to 1, we have the solution to Laplace’s

for clarity although future experiments may reach
sufficient precision for them to be important. We will
also drop the subscript p and use the notation g(r,¢,Z)
to refer to the vertical component of gravity from now
on.

It is important to note that Green’s theorem applies
only to harmonic potentials and the observed gravity field
has contributions from nonharmonic, noninverse square
potentials (e.g., radial accelerations). So we must sub-
tract an accurate model of the nonharmonic terms from

equation above a flat plane. Since the current experi-
ments are not sensitive to these terms, we will drop them

the data, leaving only harmonic terms, before continuing
with the upward continuation:

Z ) 2 g(r7¢’0)_gmodel(r’¢’0)
e fo rdr fo d¢ . (2)

g(O,O’Z) —gmodel(o’oaz) = (r2+ZZ)3/2

Equation (2) is simplified if we define the gravity anomaly to be Ag = g — gpoqe- And if Z is the lowest reliable point
of observation on the tower, we can estimate the anomalous gravity gradient AT" between Z and Z, by subtracting
Ag(0,0,Z,) from both sides of Eq. (2) and rearranging terms:

Z _ Zo
(r2+22)3/2 (r2+Z(2))3/2

_ —l— e 27
ANZ) (Z=Zo) = - fo rdr fo d¢ Ag(r,$,0) 3)

To compute this integral, first subdivide the surface into several rings of radii 7; and divide each ring into K ;j subsec-

tors of width A¢ (see Fig. 1). Then if each sector is to be approximately “square,” the number of sectors per ring is

r,+r _
K. > ,n._.i—j_.l. , (4)

J —_
Fp—Ti—1

where we choose K; to be the next largest integer defined by Eq. (4).
The discretized version of Eq. (3) becomes

K.
J
Ag..
AF(Z) (Z—Z ) _ § [§1 gU Z _ Z ZO . ZO
T A K (PP, +Z)Y2 (2O (P ZDV (o + 232
1 %) 27 Z Z,
— d¢ Ag(r,¢,0 - 5
21 rNy rdr fO ¢ g(r ¢ ) (r2_+_ZZ)3/2 (r2+Z%)3/2 } (5)

The discrete sum in Eq. (5) covers the entire range of data, and the integral from ry to « is the truncation error that is
encountered by not being able to measure gravity over the entire surface of the Earth. We will return to an estimate of
this error later.

Equation (5) can be used to estimate the upwardly continued gravity anywhere. But a high-quality test of the
inverse-square law should be done in a geologically flat region where AT'(Z) is constant. This simplification will lead to
useful insights and so we integrate both sides of the equation from Z, to H, the height of the tower, and normalize by
f dZ (Z—2Z,) to yield the average gravity gradient anomaly AT:

K;
2 N ‘zlAgU
AT = =5 3 | FHY = L 20+ (P 2V — (- HY)
T 40! j=1 J
Zo(H-Zo) . Z()(H_Zo) (6)
(rP+Z3V* P +ZHV? |
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FIG. 1. The optimum survey pattern is compared to the lo-
cation of the data points selected by Eckhardt, Jekeli, La-
zarewicz, and Romaides. Their data are highly optimized but
with an obvious lack of data in one ring. The largest ring in the
figure has a radius of 7.2 km.

The anomalous gravity gradient is thus a weighted sum
of the surface gravity anomalies:

- N K
AT = 3 3 W, .
j=tli=1
The total sum of weights is zero because the weighting
function is negative at small distances and positive at
greater distances with the two zones canceling. The data
are therefore naturally split into two regions with rg, be-
ing the critical radius where the weighting function
changes sign. The total weight in either zone is

o KjW _ 2
}5 :S ij (}I__;ZO)Z

J=rgei=1
X |(rRo +H)'? — (rgo +Z35)'?

Zo(H"—Zo)

T 1 )
(rho+23)172

and rg, can easily be found by integrating Eq. (3) over Z
and setting the kernel of the integral to zero. More ex-
plicitly, 7z is defined to be the solution of the following
equation:

1 1 ZZO(EI‘“ZZO)
("1%0+H2)1/2 (”1%0"“2(2))1/2 (r£0+z(2))3/2
= 0. (8

Equation (8) has an analytic solution but it is not interest-
ing. It is simpler to solve for rg, by iteration.

ERROR ANALYSIS

There are two unavoidable sources of error in the eval-
uation of Eq. (5). The first is the error in sampling a sur-
face with a finite number of points. The second is the er-
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ror due to truncating the sum at a finite radius. (There
are also errors in the data but they can be assumed to be
small.)

The sampling error arises because we will choose to use
a single gravity value to estimate the mean value within

each sector. Ideally, we would have many measurements

per sector and then we could define a parent population
of measurements with a mean and standard deviation for
each sector. But with only one measurement, the error in
the mean is identically the standard deviation of the (un-
known) parent population in the sector. Therefore we
will have to estimate the characteristics of the parent
population from measurements in surrounding sectors.
For example, we expect the standard deviation to in-
crease as the size of the sector increases due to changes in
the local topography and the underlying geology, so we
assume that the variation in values for any sector can be
described by a simple function of the size of the sector.
(Figure 2 shows the fluctuations in the measurements tak-
en around the WTVD tower in North Carolina. Evident-
ly, the standard deviation is a linear function of the diam-
eter of the sector.) Furthermore, the error in estimating
the mean in a sector is independent of the error in es-
timating the mean in an adjacent sector as long as the
measurement points are selected at random within the
sectors, or if there are random topographic features in
each sector and the points are sampled regularly. There-
fore,

N

K.
J

o2e = 21.21 Wi ok(ri—ri_0), ©)
==

where (r; —r; _,) characterizes the size of the sectors.

The truncation error is represented by the integral on
the right-hand side of Eq. (5). If we assume that

N
=)

T T T T T T T T T

; WTVD vicinity

O M Rk Rk ke
D @ o N -~ [} <]
T T r T T T

| I |

P R

(o]

Standard Deviation (milligals)

©
I
—

o

[

T
N SR B |

%2000 2000 6000 8000
Diameter (m)

FIG. 2. The mean and standard deviation for all data points
falling within a circle of diameter d is easily calculated. The
figure suggests that the standard deviation of the free air
anomalies surrounding the WTVD tower grows linearly with
the size of the circle. The data are plotted as a function of di-
ameter and a straight line fit yields an intercept of 0.54 mGal
and a slope of 0.13 mGal/km.
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|Ag(r,$,0)| is bounded in the outer domain, with
greatest sensitivity near r,, then we can evaluate the in-
tegral to find

Al'\trunc(z) (Z_ZO) = \Ag(r,¢,0)|

__Z
(r1%+22)1/2

Z()
“wgrzye | 1

as long as ry > rgo. Integrating both sides over Z and
taking the limit of large r, we find that the truncation er-
ror in the average gradient anomaly is

ATy ——ng(:’ 0l (11)
N

Equations (6), (9), and (11) are sufficient to analyze exist-
ing data.
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DESIGNING A NEW SURVEY

Deciding where to place gravity measurements in a
new survey depends on several factors. One necessary
condition is that the total weight per ring, K;W;;, must
decrease with increasing ring number so that the sum in
Eq. (6) is convergent. Another condition is that the error
per ring, K;W/o}, must decrease with increasing ring
number so that Eq. (9) is also convergent. One way to
achieve this!® is to have the sector weights W,; be propor-

tional to l/a%j. Therefore, we choose

2|Wij| 1
|IJ/II = = 1 —2_' (12)
O'H
> i
g

Lj Yij

The term in large parentheses is a constant and so we
may rearrange Eq. (12), substitute for W;; from Eq. (6),
and derive a recursion relation for the various ring radii,

r;. For the special case where r, = 0 and r, is given,

2
o(ri—r;_)
ij’ (rP_+H)'?2 = (r} +Z5)2 + PP H+Z5)? — (r}+H)?
ZyH—Zy)  Zo(H—Z,) o’(ry) Zy(H—Z,)
. e 2t S l=—— |3 +Z)V 22— P+ EV2+ 20 )
(rFP+Z)'V? (P +Z5) K, (ri1+z3)7

Equation (13) is easily solved with the aid of a computer. [An alternative to Eq. (13) is to define 7z, as one of the zone
boundaries. This clearly separates the regions of positive and negative weight.] And the total error can be calculated by

substituting Egs. (12) and (7) into Eq. (9) to find

>yl
e~ ZH—Z,)
2 iJ 2 241/2 2 23172 0 0
ol = (rgotH")/'*—(rgot25)7°— . (14)
ar (H—2Zy)? EL RO RO 0 (rZ,+22)17?
2
o

Lj “ij

These equations yield some surprising results. For ex-
ample, the surface gravity points should lie inside the sec-
tors shown in Fig. 1. But they do not have to be precisely
located since we are only using each point as an estimate
of the mean for the sector. (A statistically valid sample
of the gravity field can be made by taking the measure-
ments near the center of each sector since it is highly im-
probable that the underlying geologic structures are
correlated to the radial pattern around the tower.) Also,
terrain fluctuations determine the required precision of
the surface gravity survey. Figure 2 plots the variation in
the gravity measurements around the WTVD tower; in
this case o is a linear function of the diameter of the sec-
tor. The nonzero offset in Fig. 2 is caused by random ter-
rain fluctuations of =~ =*2 m. Since this represents ‘“‘noise”
in the data, the elevation of the points only need to be
known to some fraction of this noise (e.g., 4 or ). And
since gravity is tightly correlated to elevation, the re-
quired precision on the gravity measurements is deter-
mined by this elevation noise (=100 uGal in this case).

CONCLUSIONS

Eckhardt, Jekeli, Lazarewicz, and Romaides have mea-
sured the vertical component of gravity at six locations
on the WTVD tower in North Carolina."»!! The average
observed anomalous gravity gradient was 2.1 mGal/km

TABLE I. Data of Eckhardt, Jekeli, Lazarewicz, and
Romaides for the WTVD tower are listed beside the results of
their upward continuation of the surface gravity field. The ob-
served mean gravity gradient is 2.1 mGal/km. The upward con-
tinued mean gradient is 3.1 0.1 mGal/km.

Z Ag (Z)observed Ag (Z)upward Error
93.92 —19.796 —19.612 0.095
192.17 —19.622 —19.321 0.117
283.58 —19.436 —19.024 0.120
379.54 —19.207 —18.709 0.120
473.24 —18.946 —18.406 0.120
562.27 —18.671 —18.124 0.121
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TABLE II. Calculated weights for upward continuation of the anomalous gravity gradient around the WTVD tower. The calcu-
lated gradient is 3.1 mGal/km. (Values in parentheses are assumed, values in square brackets are unknown.)

Ring average Sum
No. Radius (m) K % weight Sum % |Wt| weight Ag weight Ag
0 0 0 0.0 0.0 0.0 0.0 0.0
1 36 4 —17.03 7.03 —2.364X107* —19.70 4.659
2 73 11 —14.56 21.59 —4.898X107* —19.93 14.42
3 129 13 —17.05 38.64 —5.738x107* —19.92 25.85
4 267 9 —11.36 50.00 —3.821x107* [—20.000] 33.49
5 578 9 10.50 60.50 3.532%x107* —20.13 26.38
6 1024 12 13.18 73.68 4.435%107* —19.77 17.61
7 1890 12 11.07 84.75 3.725X107* —19.06 10.51
8 3680 11 7.24 91.99 2.436X1074 —18.00 6.12
9 7234 10 3.91 95.90 1.316 X 1074 —17.66 3.80
10 13945 10 1.97 97.87 6.626X107° (—9.15) 3.20
11 25917 11 0.98 98.85 3.309X10°° —5.55 3.01
12 45530 12 0.49 99.35 1.662X 1073 0.38 3.02
13 75522 13 0.26 99.61 8.721X107° 8.89 3.10
14 120 195 15 0.15 99.75 4.921X107¢ 8.83 3.14
15 182441 16 0.08 99.84 2.839X107¢ 2.09 3.14

and their upward continuation of the surface field yielded
3.1 £0.1 mGal/km. (See Table I.) They attribute the
difference to a non-Newtonian interaction.

I have attempted to duplicate this calculation with the
techniques described above. Figure 1 shows the predict-
ed survey pattern within 2.5 km of the WTVD tower.
The locations of the measured gravity points'! are shown
and obviously they were well chosen with the exception
of some missing points in one of the rings. Using the
methods presented in this paper I find an anomalous
gravity gradient of 3.1 mGal/km (see Table II), in good
agreement with the previous calculation.

Figure 2 shows the variation in the free air anomalies’
around the tower. The figure was generated by calculat-
ing the mean and standard deviation for all measure-
ments within a circle of diameter d. The standard devia-
tions were then plotted as a function of increasing diame-
ter.

The sampling errors can be estimated by assuming that
any sector on the ground is subject to the same gravity
fluctuations as a sector of similar size centered on the
tower. This is a local model which is valid because the
integral is weighted so heavily near the tower (e.g., over
90% of the weight [Eq. (6)] comes within 4 km) and in
addition the errors propagate as the square of the weight
per sector.

Using this model and assuming that all rings were filled

with data yields a sampling error of 0.23 mGal/km. But
the ring with missing data represents approximately 11%
of the integral weight and so may cause an additional sys-
tematic shift of the gradient by +0.1 mGal/km. And,
there is a shortage of data between 5 and 10 km (see
Table I) which could cause a systematic shift as large as
+0.3 mGal/km. The truncation error also contributes
but is less than 0.3 mGal/km if the free air anomalies
beyond 200 km do not exceed 50 mGal. Adding all these
terms in quadrature yields an error of 0.5 mGal/km;
small enough to justify the claim of Eckhardt, Jekeli, La-
zarewicz, and Romaides that the difference between the
observed anomalous gravity gradient and the upward
continued gradient is evidence for a breakdown of
Newtonian gravity at the 2o level.
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