LETTERS TO THE EDITOR

The order of runs in these experiments was not arranged to give an accurate value of \(\eta \), but we can give \(\eta = 0.40 \) as a preliminary value from which we calculate \(r_s = 2.6 \times 10^{-5} \) sec. with \(f = 1/10 \) or \(= 2.4 \times 10^{-5} \) sec. with \(f = 0.5 \). The result is insensitive to the choice of \(f \).

We wish to acknowledge helpful discussions with Dr. C. G. Montgomery and to state that the Carnegie Institution of Washington contributed to the support of the experiments.

THOMAS H. JOHNSON

MARTIN A. POMERantz

The Bartol Research Foundation of the Franklin Institute,
Philadelphia, Pennsylvania,
December 8, 1938.

FIG. 1. Ferromagnetism of semi-conductors.

The results are different from those calculated by the ordinary Weiss-Heisenberg theory.

Our results are illustrated in Fig. 1. It is specially interesting to note that at very low temperature ferromagnetism vanishes.

This result will be useful for the interpretation of experimental facts on magnetite,\(\delta \) pyrrhotite,\(\delta \) chromium sulphide, and some other substances. Further experiment which is necessary for the verification of our theory is now in progress.

The detailed account of the above theory will be published at a later date.

SYÖKEI MIYAHARA

The Research Institute for
Iron, Steel and Other Metals,
Tohoku Imperial University,
Sendai, Japan,
November 25, 1938.

Mesotron as the Name of the New Particle

After reading Professor Bohr’s address at the British Association last September in which he tentatively suggested the name "yucon" for the newly discovered particle, I wrote to him incidentally mentioning the fact that Anderson and Neddermeyer had suggested the name "mesotron" (intermediate particle) as the most appropriate one. I have just received Bohr’s reply to this letter in which he says:

“I take pleasure in telling you that every one at a small conference on cosmic-ray problems, including Auger, Blackett, Fermi, Heisenberg, and Rossi, which we have just held in Copenhagen, was in complete agreement with Anderson’s proposal of the name ‘mesotron’ for the penetrating cosmic-ray particles.”

ROBERT A. MILLIKAN

California Institute of Technology,
Pasadena, California,
December 7, 1938.