Grain Growth and Global Structure of the Protoplanetary Disk Associated with the Mature Classical T Tauri Star, PDS 66
Stephanie R. Cortes, Michael R. Meyer, John M. Carpenter, Ilaria Pascucci, Glenn Schneider, Tony Wong, and Dean C. Hines

Citation: AIP Conference Proceedings 1158, 119 (2009); doi: 10.1063/1.3215810
View online: http://dx.doi.org/10.1063/1.3215810
View Table of Contents:
http://scitation.aip.org/content/aip/proceeding/aipcp/1158?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Multi-wavelength Observations and Modeling of Circumstellar Disks
AIP Conf. Proc. 1158, 71 (2009); 10.1063/1.3215919

Protostellar Accretion Disks of the NGC 1333 IRAS 4A Binary System
AIP Conf. Proc. 1158, 117 (2009); 10.1063/1.3215809

Diagnosing the Structure of the HD 163296 Protoplanetary Disk via Coronagraphic Imaging Polarimetry
AIP Conf. Proc. 1094, 393 (2009); 10.1063/1.3099128

A Consistent Model of the Accretion Shock Region in Classical T Tauri Stars

Dispersed T Tauri stars and galactic star formation
AIP Conf. Proc. 393, 184 (1997); 10.1063/1.52743
Grain Growth and Global Structure of the Protoplanetary Disk Associated with the Mature Classical T Tauri Star, PDS 66

Stephanie R. Cortes*, Michael R. Meyer†, John M. Carpenter‡, Ilaria Pascucci†,**, Glenn Schneider*, Tony Wong‡ and Dean C. Hines§

*Steward Observatory, The University of Arizona, 933 N Cherry Ave., Tucson, AZ, 85721
†Department of Astronomy, California Institute of Technology, Pasadena, CA 91125
‡Department of Physics & Astronomy, Johns Hopkins University, 366 Bloomberg Center
§Astronomy Department, University of Illinois, 1002 W. Green Street, Urbana, IL 61801
**Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301

Abstract. We present ATCA interferometric observations of the old (13 Myr), nearby (86 pc) classical T Tauri star (CTTs), PDS 66. Unresolved 3 and 12 mm continuum emission is detected towards PDS 66, and upper limits are derived for the 3 and 6 cm flux densities. The mm data show a spectral slope flatter than that expected for ISM-sized dust particles, which is most likely a result of grain growth. We also present HST/NICMOS 1.1 µm PSF-subtracted coronagraphic imaging observations of PDS 66. The HST observations reveal a circumstellar region of dust scattering ~0.32% of the central starlight, declining in surface brightness as r^−0.33. The disk is inclined 32±5° from face-on, and extends to a radius of 170 AU. These data are combined with published optical and longer-wavelength observations to make qualitative comparisons between the median Taurus and PDS 66 spectral energy distributions (SEDs). By comparing the near-infrared emission to a simple model, we determine that the location of the inner disk radius is consistent with being at dust sublimation (~1400 K at 0.1 AU). We place constraints on the mass surface density of the disk at 5 AU assuming a flat-disk model and find that it is probably too low to form gas giant planets according to current models. Despite the fact that PDS 66 is much older than a typical classical T Tauri star (<5 Myr), its physical properties are not much different.

Keywords: Stars and Stellar Evolution, Milky Way Galaxy
PACS: 97.10.Bt, 97.10.Gz

INTRODUCTION

PDS 66 is a Classical T Tauri star (CTTs) in Lower Centaurus Crux, a subgroup of the Sco Cen OB association [3]. The median age for CTTs is 3 Myr, yet PDS 66 is still actively accreting at an age of 13 Myr [2]. Such an evolved star with a spectral energy distribution (SED) characteristic of an optically thick disk [4] makes an interesting laboratory for studying the structure. The near-infrared (NIR) provides information about the inner edge of the disk, the mid- to far-infrared emission is a probe of the flared geometry, the slope of the mm-spectrum is a diagnostic of the maximum grain size, and the disk mass can be constrained from the mm-fluxes.
FIGURE 1. NIR-scattered light data at 1.1 μm (Right), and surface brightness profile (Left). Reproduced by permission of the AAS

DISK PROPERTIES OF PDS 66

We present NIR-scattered light data at 1.1 μm obtained with Hubble Space Telescope’s Near-Infrared Camera and Multi-object Spectrograph (HST/NICMOS). Figure 1 shows the plot of the surface brightness profile medianed over the disk, which is robustly detected out to a radius of 1.5'' (130 AU). Lower surface brightness scattered light is detected out to 2'' (170 AU). The right image of Figure 1 is the 7.5x7.5'' field towards PDS 66. Based on the apparent major-to-minor axis ratio, we estimate an inclination of 32±5°. We estimate the 1.1 μm flux density of the disk (from 0.41<r<3.5'') as 2.7±0.4 mJy, scattering 0.32% of the starlight.

At long-λ, the emission from a blackbody goes as v^2, and if the disk material is optically thin, the flux is also proportional to the mass opacity: κ_v ∝ v^β. Therefore, F_v ∝ v^{2+β}, and we can derive β directly from the observed slope. For grain sizes < λ (ISM-like grains), β ~ 2; and for grain sizes > λ (blackbody), β ~ 0. We measure a slope of -2.4, so β=0.4, indicating grain growth from the initial ISM grains. If we correct for optically thick emission [1], using values for the temperature and density power-laws that maximize the correction, we require β_corr ≤ 0.5. There was no detection at 3/6 cm, so we conclude that stellar winds are insignificant at these wavelengths.

For a more detailed description of our analysis and conclusions about the circumstellar disk around PDS 66, see our paper in The Astrophysical Journal.

ACKNOWLEDGMENTS

We thank the SOC and LOC for a wonderful conference, and putting together an interesting schedule. We were delighted to present our work at this conference.

REFERENCES