Two-Dimensional Shear-Layer Entrainment

Paul E. Dimotakis

California Institute of Technology, Pasadena, California

It is observed experimentally that a spatially growing shear layer entrains an unequal amount of fluid from each of the free streams, resulting in a mixed fluid component that favors the high-speed fluid. A simple argument is proposed, based on the geometrical properties of the large-scale flow structures of the subsonic, fully developed turbulent mixing layer, which yields the entrainment rate and mixing function. The predictions depend on the velocity and density ratio across the layer and are in good agreement with measurements to date.

1. Introduction

The concept of entrainment has evolved in recent years with our changing perspective of turbulent flow. As a consequence, one of the difficulties in discussing this topic is that several possible definitions of entrainment exist at present, not necessarily equivalent, assumed either implicitly in discussions and analyses or operationally through particular choices and interpretations of measurements in the laboratory.

In the original discussions of Corrin and Kistler, the turbulent region was envisioned as circumscribed by the superlayer, an interfacial surface of a relatively simple topology, which marked the instantaneous boundary between the turbulent and non-turbulent flow. Within this superlayer, the turbulent region was treated as essentially homogeneous and isotropic. In this context, entrainment could be described as the flow of non-turbulent fluid across the superlayer interface, in turn, the consequence of the random diffusive propagation, as defined, and augmented, by the local flowfield of the superlayer into the nonturbulent fluid. (See also related discussions in Refs. 22-24.)

Entrainment by the Corrin and Kistler mechanism has come to be known as "bulging" of the irrotational fluid by the rotational (turbulent) fluid. Work in the last fifteen years or so on the structure of turbulent shear flows suggests that this picture may not be the conceptual basis for the description of entrainment of non-turbulent irrotational fluid into the turbulent flow. The term "bulging" has been coined to describe the resulting suggested picture, and it now appears that this process might best be described as possessing three main phases, which can be outlined as follows.

Initially, fluid in the vicinity of the vorticity-bearing fluid is set in motion through the Biot-Savart-induced velocity field. Note that this phase of the process is kinematic and not diffusive. Irrotational fluid sufficiently close to the vortical fluid will in fact participate in the large-scale motion long before it has acquired vorticity of its own. This first phase of entrainment, however, is the term among discussions with Professors A. Roshko and R. Narasimha) and determines largely irrotational fluid that is staked at the low end of the turbulent number spectrum and should therefore be considered as part of the turbulent flow. See Fig. 1. Brown and Roshko identified this "entrainment" stage of entrainment as distinct from the subsequent phases of the overall process. Induced fluid, even though initially irrotational, is part of the motion in the turbulent region and already contributes to the overall momentum and energy of that region.

It should be emphasized that the induction velocity should not be confused with the induced velocity corresponding to the Biot-Savart law and the large-scale vorticity concentrations in free shear flows, or with the displacement velocity at large distances from the turbulent region.

Secondly, following the induction of irrotational fluid into the turbulent region, a fluid element is strained until its spectral scale is small enough (large wave number) to permit it within reach of (viscous) diffusive processes. In this phase, which could be called dilatation or turning (crawling) through (laying down) some action or influence, the irrotational fluid is "corrupted" with vorticity through the action of viscosity as it cascades to spatial scales of the order of the viscous (Kolmogorov) scale η. A third stage can be associated with other possible diffusive processes, such as molecular mixing or heat conduction, and may or may not precede the second stage, depending on the relative magnitude of the corresponding molecular diffusivity to that of the kinematic viscosity. This third stage, which could be called inflation, would of course be almost indistinguishable from the dilatation phase in the case of gas-phase entrainment, for which the value of the corresponding diffusion coefficient are usually so small. In the case of liquid-phase molecular mixing, however, for which Schmidt number are of the order of 103, it is the case of the diffusion of particulars and aerosols, for which the effective diffusivity is set by Brownian motion with Schmidt numbers that can reach values of the order of 105, the corresponding diffusion scale η_{D}, which differs from the viscous scale by the square root of the Schmidt number, i.e.,

$$
\eta_{D} = \lambda_{D} \eta^{1/2}
$$

(1)

can be very much smaller and is the species diffusion counterpart of the Batchelor scale. In particular, if we are interested in chemical reactions between the entrained fluids into a turbulent shear layer, it is the most appropriate scale and it is this difference between gases and liquids that can result in the large Schmidt number of focus on the reaction rates documented recently for the fully developed two-dimensional shear layer between liquid-phase reactions 5 and gas-phase reactions 6.

It can be said that for a Schmidt (or Prandtl) number substantially different from unity, as in the case of liquids or particulate dispersal, for example, a different volume fraction would be associated with fluid in each of the three phases. In particular, we would expect that the volume fraction occupied by molecularly mixed fluid in a liquid would be smaller than the volume fraction of vortex fluid. Analogously, depending
on the monitored property of interest, the corresponding "interactivity" would be different.

II. Experimental Data and Discussion

Measurements by Konrad in a two-dimensional, gas-phase shear layer at high Reynolds numbers show that the entrainment of fluid from the two freestreams into the turbulent mixing layer is not symmetric. Using a small aspirating probe and ignoring possible corrections between composition and velocity fluctuations, Konrad estimated the flux of mixed fluid, which he defined operationally as fluid whose composition was measurably different from that of either of the pure freestreams. It can be seen, on the basis of the preceding discussion, that whereas Konrad's estimates of the absolute values of the entrainment flux from each of the freestreams correspond to the infinite flux and not the induction flux, which is higher, his estimate of the entrainment ratio is probably reliable and approximately equal to the induction ratio. The asymmetric entrainment ratio was also appreciated by G. Brown, who argued for it on the basis of the apparent angles of interaction of the shear of the shear-layer-turbulent region and those of the corresponding freestreams.

Confirmation of this entrainment asymmetry can also be found in the measurements by Mungai and Dimotakis at high Reynolds numbers, in a gas-phase chemically reacting shear layer (H2+F2), as well as in the laser-induced fluorescence measurements in a liquid-phase chemically reacting shear layer in water by Koocherfahani et al. at a lower Reynolds number and in the drift experiments of Koocherfahani and Dimotakis at a higher Reynolds number.

These results may be considered surprising at first sight. In the absence of an imposed streamwise pressure gradient (constant freestream velocities), the large-scale vertical structures in a two-dimensional, shear-layer connect with a constant velocity \(U_0 \). Consequently, there exists a Galilean frame translating at \(U_0 \), in which the vortices are stationary. In this vortex frame, one will observe the high-speed freestream going in one direction with a speed \(U_1 - U_0 \) and the low-speed freestream going in the opposite direction with a speed \(U_0 - U_1 \). For equal freestream densities \(\rho_1 = \rho_0 \), the convective acceleration of the entrainment in the mean speed of the layer \(\Delta U = (U_1 + U_2)/2 \) is practically equal to \(\Delta U/2 \). The corresponding free-shear-layer entrainment, would then be equal to \(\Delta U/2 \), respectively, where \(\Delta U = U_1 - U_0 \) is the velocity difference across the layer. Consequently, for uniform-density flow, it would appear that in the vortex frame the two freestream provide a symmetric environment.

It is important to recognize that this argument is valid for a temporally growing shear layer and, for equal freestream densities, would indicate that such a layer will entrain equal amounts of fluid from the two freestreams. This has been argued by G. Brown, who proposed that the entrainment ratio should be equal to the square root of the freestream density ratio, \(\sqrt{\rho_1/\rho_2} \).

Konrad's measurements at high Reynolds numbers indicate that the entrainment ratio is a function of both the freestream speed ratio \(r = U_1/\bar{U} \), and the density ratio \(r = \rho_1/\rho_2 \) across the shear layer. For a uniform-density shear layer \(r = \bar{U} \), and the speed ratio \(\varphi = 0.38 \), Konrad measured a volume flux entrainment ratio of \(E_{V12}(r) \). Using a high-speed stream of helium and a low-speed stream of nitrogen, corresponding to a density ratio of \(\rho_1/\rho_2 \approx 7 \), and the same speed ratio of 0.38, he measured a volume flux entrainment ratio of \(E_{V12}(r) \) at 1.4. It should be noted that, for a fixed speed ratio \(r \), the ratio of the two volume flux entrainment ratios, as measured by Konrad, is approximately in the ratio of the squares of the density ratio, i.e., \(E_{V12}(r) \approx r^2 \), consistent with the density dependence of the proposed entrainment ratio expressions by G. Brown. The preceding observations suggest a functional dependence of the (volume) entrainment ratio \(E_{V} \) on the density ratio \(r \) and the velocity ratio \(r \) of the form

\[
E_{V12}(r) \approx \varphi (r, \varphi) \frac{r}{\varphi}
\]

The fact that a temporally growing shear layer at uniform density must be characterized by a symmetric entrainment ratio suggests that the function \(F_S(\varphi) \) is the preceding equation must tend to unity as the velocity ratio \(r \) tends to unity, as has been argued by G. Brown. In turn, Konrad's measurements at uniform density and a velocity ratio of \(r = 0.38 \) suggest the value of \(F_S(0.38) = 1 \), in disagreement with G. Brown's proposal, which would predict a symmetric entrainment ratio under these conditions.

III. Entrainment into a Spatially Growing Layer

The discussion of entrainment in the spatially growing shear layer is complicated by the coalescence interactions between the large-scale vortex structures, which do not allow a steady flow analysis of the problem. However, there is evidence in the Herman and Jimenez digital image analysis of the motion picture data of Bernal to suggest that the coalescence interactions may be reduced and not a significant additional contribution to the entrainment flux. In particular, Herman and Jimenez find that the visual area of the turbulent region of the structure emerging from the coalescence is very close to the (extrapolated) sum of the areas of the participating structures prior to pairing. Consequently, we are encouraged to consider an approximation of entrainment as a continuous process, largely independent of the coalescence interactions. It should be noted, however, that this conjecture is at variance with the suggestion of Winant and Brown, who argued, on the basis of their flow visualization experiments in the two-dimensional shear layer, that the pairing process is in fact primarily responsible for entrainment. Of course, in the context of the preceding discussion, it should be recognized that the apparent discrepancy may be semantic, in view of the possible identification, in each case, with a different phase (direct or transverse), or mixing of the entrainment process.

Keeping these issues in mind, we might be able to argue for entrainment in the spatial layer as follows. Consider the nth vortex at \(x_n \) in the spatially growing layer, viewed in a vortex rest frame, with the splitter plate trailing edge receding with a velocity \(-\bar{U}\), and at an instant before pairing, its upstream and downstream neighbors at \(x_{n+1} \) and \(x_{n-1} \), respectively (see Fig. 2). The ratio of the high-speed fluid induction velocity \(\bar{U}_i \)...

Fig. 1. Entrainment stages. Dashed lines indicate induced fluid (or incompressible velocity field in the vortex frame). Crosshatched fluid indicates vertical (massive) fluid. Solid line indicates molecularly mixed (high-speed + sublayer) fluid.

Fig. 2. Large-structure array and induction velocities in vortex convection frame.
to the apparent velocity $U_1 - U_2$ of the high-speed freestream in the vortex frame, in general, be some function of the dimensionless parameters of the problem, i.e., $\varepsilon_\theta/\varepsilon = \varepsilon_\theta/(U_1 - U_2)$
\[\varepsilon_{\theta_1}/\varepsilon_{\theta_2} \quad \text{and similarly for } (U_1 - U_2)/(U_1 - U_2)_0. \]

The ansatz is now proposed that the two dimensionless functions $\varepsilon_{\theta_1}(x,t)$ and $\varepsilon_{\theta_2}(x,t)$ are equal, i.e.,
\[\varepsilon_{\theta_1}/\varepsilon_{\theta_2} = (U_1 - U_2)/(U_1 - U_2)_0. \]

Note that, consistent with the ansatz, the ratio of the induction velocities $-\varepsilon_\theta/\varepsilon_\theta$ is equal to the freestream velocity ratio in the vortex frame, i.e., $(U_1 - U_2)/(U_1 - U_2)_0$ or $(1-t_c)/(1-t_c)_0$, where $t_c = U_2/U_1$ is the normalized vortex convection velocity and $\varepsilon_{\theta_1}/\varepsilon_{\theta_2}$ is the freestream speed ratio in the laboratory frame.

Vortex Convection Velocity

To proceed, we need to evaluate the normalized vortex convection velocity which, for equal-density ($\rho = 1$), is known to be approximately equal to $r(t+\tau/2)$, the normalized mean speed of the layer. On the other hand, on the basis of the $x-t$ data in Bovis and Roshko, we find that the normalized convection velocity for a density ratio of $\tau = 7$ and a velocity ratio $r = 0.38$ in the range of $0.35 < r < 0.56$ (at $r = 0.69$ at this velocity ratio).

The vortex convection velocity can be estimated with the aid of the following argument. For a two-dimensional shear layer, and in the Galilean rest frame of the vortices, a stagnation point must exist between them, as was pointed out by Coles. Consequently, Bernoulli's equation would apply along a line through this point and, treating the flow as approximately steady along this line, the dynamic pressures in the two freestreams (in this frame) will be approximately matched. If second-order differences in the static pressure across the layer are ignored, we then have
\[\rho_1(U_1 - U_2) = \rho_2(U_2 - U_2) \]
which yields the freestream velocity ratio in the frame of the vortices,
\[(U_1 - U_2)/\tau = r \quad \text{or} \quad r(t+\tau/2) \]

Solving for the normal convection velocity ε_{θ_1} we then obtain
\[\varepsilon_{\theta_1}(x,t) = -r(t+\tau/2) \quad \text{or} \quad 1/r = -\tau \]

The resulting expression for the convection velocity ε_{θ_1} is plotted in Fig. 3. Note that:
1) It is linear in the velocity ratio r.
2) For equal densities, it predicts a convection velocity equal to the mean speed, i.e., $\varepsilon_{\theta_1}/\varepsilon_{\theta_2} = (1-r)/(1-r)_0$.
3) It gives a value of $\tau_{\theta_1}/\tau_{\theta_2} = 0.55$, in good agreement with the Brown and Roshko's $x-t$ data for these conditions.
4) The large structure convection velocity U_1 exceeds the mean speed of the layer $U = (U_1 + U_2)/2$ for a high-speed fluid ($\rho_2 < \rho_1$) and, conversely, is less than the mean speed for a light high-speed fluid ($\rho_2 > \rho_1$), i.e., a heavy high-speed fluid "drags" the vortices along.

Entrainment Ratio

If we assume that the motion of the entrained fluid can be represented as indicated in Fig. 2, we can argue that the high-speed fluid (vortex) induction flux should be proportional to $-\varepsilon_{\theta_1}(x,t)$, the product of corresponding induction velocity and the chord subtended by the nth vortex and its downstream neighbor, while the low-speed fluid induction flux should be proportional to $\varepsilon_{\theta_2}(x,t)$, the product of the corresponding induction velocity and the chord subtended by the nth vortex and its upstream neighbor. Therefore, using Eq. (3), the volume flux entrainment (induction) ratio E_c should be given by
\[E_c = \varepsilon_{\theta_1}/\varepsilon_{\theta_2} = (U_1 - U_2)/\varepsilon_{\theta_1} = \tau_{\theta_1}/\tau_{\theta_2} \]

Since the (x,t) position sequence constitutes a geometric progression, i.e., $x_n = (1 + \tau)/x_{n-1}$, we have, combining with Eq. (5),
\[E_c = \tau_{\theta_1}/\tau_{\theta_2} = (1 + \tau)/x_0 \]
where x_0 is the (mean) vortex spacing to position ratio, which is a constant of the flow (i.e., $t = \pi$).

The ratio E_c can be estimated using the relation suggested by Kocheff et al. Based on their cross-correlation measurements, these authors report a value of
\[E_c = 3.90 \tau_{\theta_2}/x_0 \]

where L_c/ε is the vortex thickness to position ratio, experimentally found to be proportional to $(1-r)/(1+r)$ for equal densities ($\rho_2 > \rho_1$), with the constant of proportionality in the range 0.16-0.18 (the higher value is the one recommended by Brown and Roshko). If we substitute the mid-range value for L_c/ε, we have
\[E_c = 0.17 \tau_{\theta_2}/x_0 \]

where $r = U_2/U_1$ is the velocity ratio across the shear layer. Combining the latter two equations yields an expression for E_c, i.e.,
\[E_c = \frac{0.16 - 0.17}{1 + \tau} \]

It should be noted that even though the empirical relations, as given by Eqs. (9) and (10), are based on flow-layer data with equal freestream densities, Kossal's new visualization data suggest that E_c is not a function of the freestream density ratio. Consequently, we are encouraged to accept Eq. (11) as true.
valid for all velocity and density ratios, even though expressions (9) and (10) are not.

Substituting this expression for E_x in Eq. (8) then yields, for the entraintment ratio,

$$E_x(x,t) = s^{1/2} \left\{ 1 + 0.66 \frac{1 - r}{1 + r} \right\}$$ \hspace{1cm} (12)

Note that the mass flux entrainment ratio E_x can also be obtained from the preceding equation, since $E_x = E_x/s$, or

$$E_x(x,t) = x^{1/2} \left\{ 1 + 0.66 \frac{1 - r}{1 + r} \right\}$$ \hspace{1cm} (13)

The resulting proposed expression for the (volume flux) entrainment ratio (Eq. (12)), is of the form suggested by Eq. (3). For equal densities.

1) The entrainment ratio tends to unity as the velocity ratio tends to unity, i.e., $E_x = (1/r)(1 - r) = 1.0$, in agreement with the temporally growing shear layer, which should approximate this case in the limit.

2) It predicts an excess entrainment of high-speed fluid. For $r = 0.38$, it predicts an entrainment ratio of $E_x = 1.31$, in agreement with Kommed's measured estimate of 1.3.

3) For a density ratio of $s = 7$ and a velocity ratio of $r = 0.38$, it predicts an entrainment ratio of $E_x = 3.46$ in good agreement with Kommed's experimental estimate of 3.4.

The function $E_x(x,t)$ of Eq. (12) is plotted in Fig. 4 vs. the velocity ratio r, for equal density ($s = 1$), and in Fig. 5 vs. the density ratio s, for a velocity ratio $r = 0.38$.

Step-Layer Growth

Viewing the overall entrainment into the layer, the induced velocity amass suggests that the growth of the thickness of the layer, in the vortex frame, should be in the mean, be linear with time. In particular, the induced flux from the two freestream results in a growth of the layer, A_x,

$$A_x = \frac{1}{2} \alpha (x_{in} - x_{out})$$ \hspace{1cm} (14)

between pairings, with vortex spacings temporarily constant, which we can estimate linearly by

$$\frac{A_x}{r} = \frac{1}{2} \alpha \left(U_1 - U_0 \right) \left(x_{in} - x_{out} \right)$$ \hspace{1cm} (15)

Substituting for A_x, dividing through by $x_{in} - x_{out}$, and rearranging terms, we have

$$\frac{r}{\alpha} = \left(U_1 - U_0 \right) \left(1 + \frac{1}{2} \frac{s}{r} \right)$$ \hspace{1cm} (16)

where r/s is the vortex-spacing-to-position ratio [see Eq. (11)]. Solving for r, then yields

$$r = \frac{U_1 - U_0}{U_0} \sqrt{\frac{s}{1 + \frac{s}{2} \frac{2 \pi}{s}}}$$ \hspace{1cm} (17)

where $U_0 = (U_1 + U_2)/2$ is the means speed of the layer. Transforming back to laboratory coordinates and normalizing all velocities by U_1 to scale that $r = \pi/U_1$, we have

$$\frac{r}{r_0} = \frac{1}{\pi} \left(1 - \frac{r}{r_0} \right) \left(1 + \frac{r}{2r_0} \right)$$ \hspace{1cm} (18)

For equal densities ($s = 1$), the convection velocity is predicted to be equal to the mean speed, i.e., $r = (1 + \pi)/2$, the difference inside the parentheses vanishes, and we recover the familiar form of shear-layer growth [see Eq. (10)], i.e.,

$$\frac{\delta_x}{\delta_0} = \pi \left(\frac{1}{\pi} - \frac{1}{r_0} \right)$$ \hspace{1cm} (19)

which both credence to the ansatz of Eq. (3) and suggests that $r = \pi/2$, at least for $r = 1$. The latter is also assumed to hold for $\pi < 1$, where an expression is obtained for the growth of the two-dimensional shear layer given by

$$\frac{\delta_x}{\delta_0} = \pi \left(\frac{1}{\pi} - \frac{1}{r_0} \right)$$ \hspace{1cm} (20)

which both credence to the ansatz of Eq. (3) and suggests that $r = \pi/2$, at least for $r = 1$. The latter is also assumed to hold for $\pi < 1$, where an expression is obtained for the growth of the two-dimensional shear layer given by

$$\frac{\delta_x}{\delta_0} = \pi \left(\frac{1}{\pi} - \frac{1}{r_0} \right)$$ \hspace{1cm} (21)

where Eqs. (6) and (11) have been used for r_0 and s/r_0, respectively.

The resulting growth law, corresponding to the vorticity (maximum slope) thickness A_x/x_0 of Brown and Ronkoff is plotted as Fig. 6 vs. $(1 - r)/(1 + r) + s$ for $s = 1/3, 1$, and 7, using the value of $s = 1/3$ for the corresponding constant from Eq. (10).

Note that the second term in the brackets vanishes as $s \rightarrow 1$ or $r \rightarrow 1$. Note also that if we neglect the second term in the brackets, which arises from the upstream/downstream asymmetry of the spatially growing layer, we recover the shear-layer growth law.
layer growth law proposed by G. Brown, which should be valid for the temporally growing shear layer (i.e., as \(r \to 1 \)).

Shear-Layer Orientation

If we could assume that the ratio of induced fluid fluxes from each of the freestreams is also equal to the ratio of the fluid flux crossing the corresponding (mean) visual edges of the shear layer, we could use Eqs. (12) and (17) to estimate the angles subtended between the upper and lower (mean visual) edges of the layer and the direction of the high-speed stream velocity vector, respectively. Aligning the z axis with the \(U_2 \) vector, and denoting the corresponding (positive) angles of the high- and low-speed shear-layer edges by \(\alpha_1 \) and \(\alpha_2 \), respectively, we have

\[
\tan \alpha_1 = \frac{E_2}{r \tan \beta} = \frac{E_2}{X} \\
\tan \alpha_2 = \frac{E_1}{r \tan \beta} = \frac{E_1}{X}
\]

where \(r = U_1/U_2 \) and \(\beta \) is the angle between the transverse and streamwise components of the low-speed stream velocity vector far from the layer, i.e., \(\tan \beta = V_1/U_1 \), and \(S_0 \) is the visual thickness of the layer. 6 See Fig. 7. Conversely, if the angles \(\alpha_1 \), \(\alpha_2 \) and \(\beta \) are known or can be obtained from flow visualization data, then Eq. (18) could be used to estimate the volume flux entainment ratio.

IV. Discussion

It may be useful to consider some of the implications of the preceding arguments. The calculation of both the entainment ratio and the growth of the shear layer rely on an empirical datum: the local large-structure-to-position ratio \(f(x) \) of Eq. (11), which experimental evidence suggests is independent of the density ratio. 11 In the context of the present discussion, note that both the entainment ratio and the growth of the shear layer would revert to the predictions for a temporally growing shear layer if \(f(x) \to 0 \), i.e., if the vertical structures were not large compared to \(x \), which would result in a small upstream/downstream asymmetry. A second empirical datum, of course, the constant \(a \) that appears in Eq. (5) in the derivation of the shear-layer growth rate.

The entainment ratio of the spatially growing layer is given by \(E = c_1 (1 + 6/x) \). The density dependence \(c_1 \) is an expression for the relative induction velocity ratio of the two freestreams, as seen in the frame of the vortices [see Eq. (3)], and would also apply to a spatially growing layer, as has been argued by Brown. 12 The second factor, however, is a statement about the large-scale structures in a spatially growing layer and describes the geometric progression of their expected locations. While the available evidence suggests that large-scale structures would also characterize a temporally growing layer, as indicated by all computational results using a variety of methods, that flow would not possess any upstream/downstream asymmetry and consequently would not be subject to the same argument. It should also be noted that, as a consequence, the induction velocity ratio for the spatially growing layer is not equal to the entainment flux ratio.

From a practical standpoint, important considerations are implied by the potentially large asymmetries in entainment. In particular, the entainment ratio can be substantially different from unity, especially in cases of unequal densities (see Figs. 4 and 5), which are encountered in many applications, such as combustion and mixing that results from Rayleigh-Taylor unstable interfaces. In particular, in the case of chemically reacting flows, the chemical environment dictated by the fluid mechanics can be substantially different from what would be predicted by turbulence models that assume symmetric entrainment; homogeneous, isotropic cody diffusivity; and gradient transport mixing.

Finally, it should be noted that there is evidence to suggest that the dynamics of the two-dimensional shear layer appear to depend on more than just the velocity and density ratio of the freestreams. The experiments of Leamy et al. 13 indicate that a half-jet \((U_1/U_2 = 0 \) shear layer) with a tripped (turbulent) initial boundary layer grows faster, by about 50%, than a half-jet with an untripped initial boundary layer. Interestingly enough, the experiments of Brown and Lefeldt 14 at a velocity ratio \(U_1/U_2 = 0.18 \) and of Monger et al. 15 at \(U_1/U_2 = 0.4 \) suggest that for \(U_1/U_2 \neq 0 \) the shear layer grows slower if the high-speed jet is subsonic compared to laminar. This behavior does not appear to be a Reynolds number effect. In all cases, the shear layer grows linearly with distance in the mean \([x, b_T + 0.5 D(x)] \), in a way that is sensitive to the initial conditions for distances downstream, which can be as large as thousands of initial momentum thickness. In the context of the present discussion, the vortex-spacing-to-position ratio \(f(x) \) and/or the constant \(a \) of Eq. (5), are somewhat also a function of the initial conditions in a way that is not clear at this writing.

Acknowledgments

This work was supported by the Air Force Office of Scientific Research, Contract F49620-79-0159 and Grant AFSOR-83-0213.

References
