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Abstract—An important open problem in multiple-antenna  are non-Gaussian, the maximume-likelihood receiver is nonco-

communications theory is to compute the capacity of a wireless herent, and there is a hard upper limit on the number of usable
link subject to flat Rayleigh block-fading, with no channel-state transmit antennas.

information (CSI) available either to the transmitter or to the The isotropicall d it trix—havi th
receiver. The isotropically random (i.r.) unitary matrix—having € 1sotropically random unitary matrix—having 0rtho-

orthonormal columns, and a probability density that is invariant normal columns, and a probability density that is invariant to
to premultiplication by an independent unitary matrix—plays premultiplication by an independent unitary matrix—plays a

a central role in the calculation of capacity and in some special central role in the theory of our multiple-antenna link [6]. The
cases happens to be capacity-achieving. In this paper, we takecanacity-attaining input signal is the product of an isotropi-

an important step toward computing this capacity by obtaining, h ; . .
in closed form the probability density of the received signal cally random unitary matrix, and an independent nonnegative

when transmitting i.r. unitary matrices. The technique is based real diagonal matrix. In certain limiting regimes [6]-[8], the
on analytically computing the expectation of an exponential diagonal matrix is constant, and the message is carried entirely

quadratic function of an i.r. unitary matrix and makes use of py the unitary matrix: a type of modulation called unitary

a Fourier integral representation of the constituent Dirac delta  gn406_time (USTM) [7]. A number of practical considerations
functions in the underlying density. Our formula for the received ke USTM attractive f |

signal density enables us to evaluate the mutual information for maxe attractive 9r genera usgge. . )
any case of interest, something that could previously only be done It follows that calculations of capacity or mutual information

for single transmit and receive antennas. Numerical results show invariably require taking expectations with respect to an isotrop-
that at high signal-to-noise ratio (SNR), the mutual information is jcally random unitary matrix. This was done for single transmit
maximized for M = min(N, T/2) transmit antennas, where - 54" ceive antennas [6], but has not been done for more com-

N is the number of receive antennas andl’ is the length of the . S . . .
coherence interval, whereas at low SNR, the mutual information plicated problems. The contribution of this paper is a technique

is maximized by allocating all transmit power to a single antenna. for taking this expectation analytically for certain cases. In par-
. . . . ticular, when the input signal is isotropically random unitary we
Index Terms—sotropically random (i.r.) unitary matrix, mul- btai | d-f - in the f f a det ; i
tiple antennas, unitary space—time modulation (USTM), wireless obtain a ¢ ose.? orm ex.preSS|on, In -e orm Or a determinant,
communications. for the probability density of the received signal. When com-
bined with a simple Monte Carlo integration, it is possible to
compute mutual information for any case of interest.

Our computation of the mutual information resulting from
E consider a single-user multiple-antenna wireless linRn isotropically random unitary input yieldd@wver bound on
subject to flat Rayleigh block-fading, with no channelcapacity that is increasingly tight as the signal-to-noise ratio

state information (CSI) available either to the transmitter or {8NR) grows [8]. At low SNR, however, it is well known that
the receiver. The assumption of no CSl—as opposed to GHlithe information is carried by the diagonal matrix that deter-
available at the receiver, for example—converts a straightfanines the magnitude of the transmitted matrix signal, and not by
ward problem in Shannon theory [1]-[3] into a rather difficultthe isotropic unitary matrix that determines its directionality. At
albeit more realistic, one [4]-[8]. The capacity-attaining signafgoderate values of SNR, some of the information is carried by
the diagonal matrix and some by the unitary matrix (although
a simple count of the degrees of freedomés-as opposed to
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the Dirac delta functions that comprise the isotropic unitary dewhereH is anM x N propagation matrix, and is a7’ x N ad-
sity. An integration with respect to the received signal, whictlitive noise matrix. The elements & andW are independent
we cannot perform analytically, yields mutual information (Se&N (0, 1)-distributed. The values df andW are unknown to
tion 1V). We perform this integration via Monte Carlo in Sechoth the transmitter and the receiver. At each timene trans-
tion V to compute mutual information. Appendix A reviews thenitted signal has, on average, unit-variance entries
isotropically random unitary density, and derives its Fourier- "
based versioh.Appendix B reviews a technique for converting E { Z P |2}
a particulari/-dimensional integral into a determinant of an m
M x M Hankel matrix, whose entries are one-dimensional in-
tegrals. Finally, Appendix C discusses a certain complex expgdinceS, H, andV are independent, the normalizatign in
nential quadratic integral. (1) implies thatp is equal to the SNR at each receive antenna,
independently of\/.

= M. )

m=1

A. Notations and Definitions )
, o , ) B. Mutual Information
This paper makes significant use of matrix notatitrfA)

anddet(A) denote the trace and determinant of a square matrix 1 N€ independence d@f andW" over different coherence in-
A. The superscript denotes conjugate transposition, so thdgrvals implies that Shannon coding, applied over many coher-
At is the conjugate transpose df For scalars, the complex €NC€ intervals, yields reliable transmission at any rate less than
conjugate is denoted by the superscrigy is theT x T identity  the mutual information
matrix. For a complex-valued argument the Dirac delta function (X]9)
o I(X; §) = E{log 212/ ©)
is defined asi(z) = 6(Real())é(Imag(x)). For a complex- (X5 5) = 08 p(X) |-
valuedM x N matrix A, we have
SinceX givensS is zero-mean and Gaussian (it is the sum of two

Mo N zero-mean random Gaussian matricé&l and W), a covari-
6(A) = H H 6(@mn) ance computation shows that the conditional density | 5)
m=1 n=1 is
M N
= H H 6(Rea1(amn))6(hnag(amn)) 1 exp |:—tl‘ )(T (IT + ]\_pl SST)71 X:|
m=1 n=1 p(X | S) = 7TTN ’ (4)

det (Ir + £& S51)™
and for aM x M Hermitian matrix4, we have o ) ) o
The maximization of the mutual information over the distribu-

M M tion of S, subject to the power constraint (2), yields the capacity.
8(A) =[] 8€amm) [ 8amn) There is no point in making the number of transmit antennas
m=1 n=m-+1 greater than the symbol duration of the coherence interval [6],
M M so we assume that/ < 7'. The capacity-attaining signal is the
= H 8 mm) H 6(Real(amn))d(Imag(amn)).  product of two independent random matrices [6]
m=1 n=m-1
S =VT®D (5)

Finally, (z) = f;° A*"te™>d) is the gamma function, and _ ) ) o _ )
CN(0, 1) denotes a scalar, zero-mean, circularly symmetri¢here® is al’x M isotropically distributed unitary matrix, and
complex Gaussian with unit variance. DisanM x M nonnegative real diagonal matrix. The matbix

has orthonormal columns®® = I,,, and the joint probability

density of its elements is unchanged wideis multiplied by any

T x T unitary matrix¥ that is independent cb, i.e.,p(®) =

A. Signal Model p(U®). See [6], or Appendix A, for a derivation of this density.

Consider a single-user block-fading multiple-antenna linkhe power constraint (2), combined with (5), implies that

with M transmit andV receive antennas described by a 5

propagation matrix that is constant during coherence intervals B {trD } =M. ®)

of lengthZ” symbols, after which it jumps to anew independquxCept for the cas@ = M = N = 1 [4], [5], and for certain

value forZ” more symbols, and so on [6]. This is a reasonablgiing cases, little is known concerning the capacity-attaining

model for systems employing some form of '[Ime-dIVISIOIJfbint density of the diagonal elements bf

multiplexing, or frequency hopp!ng. .During any coherence £ the two limiting cases: 1)I' > M [6], or 2)

interval, al x M cqmp[ex maﬁnxS is transmitted, and a < min(T/2, N) andp 3> 1 [8], capacity is attained when

T x N complex matrixX is received D = I, and the optimal transmitted signal is proportional to
an isotropically random unitary matrix. The transmission of

X = \/% SH+W

Il. SIGNAL MODEL; MUTUAL INFORMATION

(1) orthonormal signals is called unitary space—time modulation
(USTM) [7], and its general use is motivated by several prac-

1Throughout the paper, all probability densities are with respect to Lebesgrﬂjgal conS|derat-|ons [6]{ [11]. For either of the |!m't'ng cases
measure, rather than Haar measure. above, mutual information can be evaluated indirectly through
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asymptotic formulas for capacity [6], [2], [8]. In generalNote that in the above expression we have easily integrated out
however, the optimizing joint distribution ob is not known. @ since the only dependence of the integrandomas through

In fact, even the mutual information obtained By= I, inthe p(®).

general case was not known and is the main focus of this papefThe log-numerator term in (9) is

C. Difficulties in Computing Mutual Information E{logp(X | ®o, D)}
= —TNlog(re) — NElogdet (I + pp®oD?®
The combination of (3) and (5) yields a formidable multiple og(me) { g e ( T+ pi%o 0)}
integration — —T'Nlog(ne) — NE {log det (IM n pﬁD?@g@O)}
= —TNlog(me) — NE {logdet (I + pBD?)} (20)

I(X; 8) = /dX/dcb/de(X@, D) -p(®) - p(D)
(X|®, D) where we defingd 2 T/M.
Jlog{ ——— p i _ _ ) One further simplification of (9) occurs, because the loga-
{ Jd® [dDp(X |2, D)-p(®)-p(D) } rithm depends only on the eigenvaluesf f, as we discuss
in the next section.

The term that arises from the log-numerator reduces to an exAll of the above simplifications, combined with numerical

pectation with respect tB. Most of the trouble results from the integration, were used to evaluate capacity and mutual informa-
log-denominator. tion for cases wherd/ = N = 1 and7’ > 1 [6]. Classical

The outer integration of (7) with respect éomay be elim- numerical integration of the quadrature type is helpless when
inated as follows. For any’ x 7" unitary matrix¥, a straight- dealing with more than a few integration variables, so the same
forward computation shows (4) thatX | S) = p(WiX | ¥1S) tgghnique (_:anno_t be ap_plieo! to bigger problems. Another possi-
(see also [6]). Now use this property fir = [& @], where bility—not investigated in this paper—is Monte Carlo integra-
&, istheT x (I — M) orthogonal complement t, and per- tion. However, this could only be used in conjunction with some

form the following change of variable in (77X — X. This Clever importance sampling, for the reason it | ¢, D) is
yields sharply peaked with respect da In the next section, we show

how to calculate analytically the inner integral with respect to
the isotropically distributed unitary matrix for the case where

I(X;S):/dX/d@/de(\I/TX|<I>0,D).p(<1>).p(D) D = I,.

g{ p(X|®, D) } IIl. COMPUTING p(X)
[ d® [ dDp(X|$, D) p(®)-p(D)

Using (4) and (5), we may write

- /dX/d(I)/de(X|‘1>o, D) - p(®) - p(D) p(X|S)
{ p(VX |9, D) } 1 e[~ XT(Ir + ppoD?et) T X]
U

dd [dDp(TX | d, D) - p(d) - p(D) INT det(Iz 1 ppoD2BTY™
— [ax [ae [appx |0 D) @) p0) 2 L
,NJ\TT
-1
Jogd —— PX[®0, D) exp{—tr [XTX - xto(2te+ L D) @TX} }
[dd [dDp(X |V, D) - p(d) - p(D) : —_
det(IT + pBD22Td)"
where 1 exp(—tr XTX)

aNT . det(IM + pﬁDQ)N

/ I
B 2 Wi = { M] (8) IR
0 cexp [tr XT®( Iy + ?D ofxX| . (11)
0
Now make the change of variable’® — &, and use the fact
that & is isotropically distributed to obtain This implies that
(X|D) = 1 exp(—trXTX)
I(A,S):/dA/de(A|‘I>0, D)p(D) p _7TNT det(I]\4—|—p/3D2)N
- -1
log . ; p(X |fb°’,D) . —¢. (9 -E|p exp trXT<1><IM+iD—2) ofxX| (12)
Jd® [dDp(X |, D)-p($)-p(D) P
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where the expectation is taken over the isotropically distribut@here the integration is over thi@ x A/ Hermitian matrix vari-
unitary matrix®. Consider now the eigenvalue decompositioable? = Q. (For a proof see Appendix A.)

of XXT We may, therefore, write
XXt =ru |: z OKX(T_K) :| Ut Eett ADPBDT _fraB F(T) - 'F(T +1- M)
LOa—r)yxx  O@—k)x(r—K) oM ¥ (2T+M+1)
éYA ] /dq)eftr(aITfA)q)Bq)T /dgei tr DT Tp)
whereU is T x T and unitaryy. is K x K real positive diagonal, _iraB LT I(T+1-M)
andK 2 min(7, N). Then oM 75 (AT+M A1)
./dge—itrQ /d(I)e—tr[(a,rT—A)éi%*—<I>7‘,Q<I>*1'

-1
1
E|pexp [tr X'o <IM + — D2> o' X (14)

pp

Note that the inner integration ovéris feasible, sinc& is
now an unconstrained matrix variable. To facilitate this integra-
tion, the expressiotx[(aly — A)®B®T — ®iQ®*] can be reor-
ganized as a quadratic form in the entriegbof

[ -1
1
=Epexp|tr XXT <IM + P D2> of
P

—1
1
=Epexp|tr UAUT® <IM + P D2> of
P

tr [(alr — A)P BT — QD]

T M M
= Z Z Z d)trn,l d);(rnz [(a/_at)brnl 6771,1771,2 _iwrn,lrnz]

t=1 mi=1 mo=1
; tl

=Y [¢n - dmllla—a)B—iQ]| (15)

where to obtain the last equality, we have used the fact that, since ;= o
® is isotropically distributed/t® is also unitary and isotropi- tM

cally distributed. Definings = (Iy+ s3D7?)7t we note that \yhere{q,} and{b,,.} denote the diagonal elementsd&nda,
to computep(X | D) we need to computB{exp(tr A®B®")}, respectively. Denoting theth row of ® by ¢;, then the integral
where the expectation is taken over the M isotropically dis- over® in (14) is the product of” elementary integrals
tributed unitary matrixp. For reasons to be made clear shortly,

it will be convenient to transform the diagonal matrix > 0 / JPe—ttl(alr—)DBE —2i0di]

into a negative-definite matrix via the following transformation

Choose the scalar > 0 such thatzI; > A, then

-1
1

=Epexp|tr AUT® <IM + P D2> i
P

-1
1
=E|pexp|tr AD <IM + — D2> o
I pp

T
- H/d@e_@[(a—at)B—iQ}@.
t=1

Note that the parameterhas been chosen so that- ¢, > 0
and hencéa—a,)B > 0. This implies that each of the integrals

/ T - T
EctrAéFﬁI) :CtraBECtrA(I)F)'(I) e traB
/ T i
:etr aBEetr APBP e traBP'P

T i
:etraBEetrAéB@ e traPBP

— ¢lraBE—t(alr—A)2B2 converges absolutely for all Hermitig and so the result is
given by
which transformsd > 0to A — alr < 0.
lt\low denoting the distribution ob by p(®), we need to com- / e til(alr—DOBE - bigel] _ a M '
ute T
P I[ det[(a — a)B — €]
t=1
FelrA®Be! _ traB /d(bp(q))e—tr(aIT—A)@B@T. (16)
(See Appendix C for an explanation.)
Although it is possible to give an explicit formula for the density We substitute (16) into (14) to obtain
asp(®) = c6(®7® — I7), wherec is an appropriate normaliza- 0T T(T+1—M
tion constant, direct integration of the above expression usilEg?“A‘I’B‘I’T etraB ( )2M g_/[(MH) )
the Dirac delta representation of the density appears to be for- ”‘2
midable. To compute this integral, it is useful to introduce the / dQe" =8 17)
following integral formula forp(®): det[B(a —ay) — i§2] -+ -det[B(a — ar) — i8]’

NT)---T(T+1-M)
OM & (2T+M+1)

Recall in our case, that

p(®)= /dQeXp[itrQ (<I>T<I>—IM)]

(13) A=diag{oy, ..., 0K, 0,...,0}
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where thes;, are the nonzero eigenvaluesxkifXT and K = Note that, sinc&? is Hermitian, thex,,,, m = 1, ..., M are
min(7, N), and thatB = (Ip; + -1, D~2)"L. Therefore, we real and so the domain of integration over thg is [—oc, oo].
have (18), shown at the bottom of the page. We now perform the change of variables — A,, — iaa, and

For the remainder of the paper, rather than consider an arbitroduce the factor in the termg\,,, — A;). This leads to
trary diagonalB, we confine ourselves to the case of USTM.

Ectrax*cm*x
A. The Case of Isotropically Distributed USTM DTy -T(T+1— M)(—1)M®M-1)/2 " "
WhenD = I,;, the input signal takes on the form of the L(M+1)---T(1)( 27r M / v / M
(scaled) isotropically distributed unitary matik= +/7'®. In M o
this case, we have 'nl;ll {(—aal —iAm) (_MK - M,n)(—um)u}
B= I = aly, = 19 . —iXy FiA
1+pa M = Qipg @ 1+ 3 (19) zgl( ¢ i)

and therefore we have (20), also shown at the bottom of the pagere we should now make a mental note of the fact that the do-
To carry out the integration in the above expression, it i@ain of integration of the\,, is no longef—oc, o], but rather

useful to introduce the eigenvalue decompositibe= UAUT [—o0 + daa, oo + daal.

of the Hermitian matrix2. This eigenvalue decomposition can Now using the integral formula developed in Appendix B we

be regarded as a change of variables fi@rto {{/, A}. Note obtain

that the integrand depends only on the eigenvalues. It is a well-

known result in random matrix theory (see, e.g., [12], [13]) that dh ... dAnm

for any functiong(Q2) whose value depends only on the eigend 27 2

values of(2 (and not on the eigenvectors) M e—iAm
. 'nll__[j(—arfl —iAn) (o — ) (—iA )T K
/ 9(&) T (=idm +iX)? = M!det F,
aM(M—1)/2 <m
:/dAF(M+1 i ILIT 0w =207 o). @)
k>l l where theM x M Hankel matrixZ’ is given by
(In fact, the term[], _, IT,(Ax — Xi)? can be regarded as the ,  pootica c~irdA/(2)
Jacobian in the change of variables fréimto {{/, A}.) The £ = / oa (—aor — N (—aog — N (—NTE
combination of (21) with (20) gives —ootiaa . '
(=iA)
raxt t
Betret HEA A e e ML (22)
_ T - -I(T + 1 (_i)\)M—l
= F(M+1) T /d)\l /d)\M H1
Jaidn, " We thus have
' <[a(a—01)—i)\m] s [Oé(a—ffr()—i)\m][aa—i)\m]T—K) EetraXoatx
: Am — A% _ M-y B0 - DT 41— M)

By ot X0+ D7) eix _ Ty ---T(T+1—-M)
\p oM ;o H(M+1)
dQetr[Ba—iQ]

. / det[B(a — o1) — Q] - - -det[B(a — o) — iQ2] det[Ba — Q)T K~

(18)

t 1 p-2y—igpt tppt
ElDCtrX ‘I’(IM'FM;D )yTle'X :Ectr(yX POHTX

B NT)---I{T+1-M) y / dQetr{aalny —if2)
B oM F(M+1) det[a(a — o1) —iQ] - - - det[afa — ok ) — iQ] det[owa — QT —K "

(20)
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and, therefore, using (12) wherev(r, s) is the incomplete Gamma function

(—1)MM=1)/2 exp(—tr XTX) s 1
X — . & = T u.
P(X) nTN (1+ pB)MN e /0 e

(D) T(T+1-M

) det ' (23) Finally, we combine (26) with (28) and (29) to obtain the

[(M)---1(1) desired formula for the entries &f
which is the desired expression fo(.X). K o
B. Computing the Entries df Foun ; (voy)@ ll;[k(ocak — aoy)

All that remains to give an explicit formula fgr(X) is to AQ, ack) -
determine the entries of the Hankel matfix Note from (22) Q) - Qz (30)
that the(m, n)th entry of I is given by 1, Q<0

1 [eootiaa (—iA)~THEFmAn=2,—iA wherem, n =1, ..., M and
Frnn = _/ d\ . N
27 | _orioa  (—op —iX) - (—aog — i)
(24) Q=T-K-m-n+2.
This expression may be evaluated by inspection. We introduce/Ve can also give an alternative expressiongQk). To this
a function of a real variable end, note that
f( ) 1 /oo+iaa " e—i)\‘r d7f(7') OéO'k 76‘10"
T) = — R .
27 | _orina  (—aop —iX) - (—aog — 1) dr | Z H aon — aoy)
(25) Ry
q+r
which constitutes an inverse Fourier transform. Since the region = Z Z (aoy) .
11 (ceor, — ceoy) q!

of convergence includdsn{A} > «a, f(r) is causal. We rec- =
ognize that the elements éfare merely derivatives or integrals

of various orders of the functiofi(r), evaluated at =1 If we adopt the convention that = ~c for all ¢ < 0, this last
equation can be written as

K q
X i Sy

by 7=0

Fom = f(_T+K+nl+n_2)(7_)|‘r=1~ (26)

The formula forf () is obtained by taking-:2= times the sum drf(f)

of the residues of the({ distinct poles in (25)\ = iaoy, art o i lHk(OéO'k a0y o \d
k =1,..., K; the factor—1 results from the clockwise en- *
circlements of the poles On the other hand
f’: eozcr;\‘r r r
T 720
F(r) = { #=1 11 {aor, — aoy) 27) </0 du) flu)
o K r—1 q
0, T < 0. — 1 C(y(rk _ (OéO'k)
o _ po (aor)" T (aor — aoy) —
Therth derivative off(7) atT = 1is = I#k ¢
K =) .
1 (oo, )Tt
d’lwf(’,_) ao_k ’I OéO'k = Z p Z X ‘
28 — (aow)" [[ (aor —aor) = (q+7)!
dre | _, Z TI (aor — aoy)’ (28) k=1 £k 7=0
= l;ék 1 o (aa )q
k
Therth integral of f(r) atT = 11is N Z Il (aor — aoy) qz_o (g+m) (32)
L ik =
< /0 dU> f(u) Combining (31) and (32) yields

q=0

K r—1
1 OéO'k ) K oo
- 1 (aoy)?
r _ Frnn: ?
i (aow)” 11 (aon —acy) < > T {am—ao) on(q+T—(m+n+K)+2)!

m,n=1,..., M (33)

¥k

i (r, aoy,)

= Z ) 7 . ( )’“ (29)
OéO OéO‘ — 0T, T

k=1 ) l# * ! where we have adopted the conventiba= oo, for all ¢ < 0.
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C. An Alternative Expression fai( X) IV. THE MUTUAL INFORMATION FOR |SOTROPICALLY

The expressions (23), (30), and (33) fgtX) can, in prin- DISTRIBUTED USTM
ciple, be used to compute the mutual informatiiog P(f)g) Having obtained various formulas fgi{X'), we can now
via Monte Carlo integration. However, practice has sﬂown thagadily write the mutual informatiofi( X'; ¢), using (10) with
Monte Carlo evaluation of the mutual information using thesB = I, and (23) as
expressions leads to numerical problems at high SNR and at
large numbers of receive and transmit antennas. The main! (X3 @) = —T'Nlog(me) — MNlog(1 + pf)
reason for this i; that the en_tries of the.Hanke.I_maEﬁQin (30) _ [—TN log 7 — MN log(1 + pf)
and (33)) contain exponential terms with positive exponent (the

e*?+ terms) which can lead to numerical instability, overflow,

I(T)---T(T+1— M)

etc. Therefore, it would be useful to avoid such expressions. +log (M) ---T(1)
This, indeed, can be done: one can derive an equivalent for- _E {tr XTX} log e
mulation that involves only negative exponents. To this end, let
&, denote the x (T — M) orthogonal complement @, i.e., +E {1Og [(_1)M(M—1)/2 det F} }}

Ir =00 +®,80" and &' &, = I .
T + o, P 191 T—-M I(T) - T(T +1— M)

=MNpBloge — log

Then one can write T L(M)---T(1)
—tr XX
) = g g B0 e {0 e} e
m P
—tr(l—a)XT X where the expectations are taken with respeéf teonditioned
¢t traX X1, of ; ; . ;
= Eemtre tEL on ®, being transmitted. A similar expression follows from

T AIN(1 4 pB)MN

Note that in the above expressian, is also isotropically . ] o
random. We may, therefore, repeat the above steps to comput-'éheorem 1 (Mutua! Information for Isotropically Distributed
the expectation on the right-hand side. We need only note th/itary Input): Consider the channel model

differences: 1)a has changed te-« in the exponent of the P,
X= ’/M SH+W

(34).

isotropic term, and 2) the isotropically random (i.r.) unitary
matrix hasl” — M, rather than\/, columns, which means that ' o . _
we only need to replacd? by T — M in all our expressions. Where the matrixX € C**" is the received signai € 7>

This leads to is the transmitted signal, and” € CT*V is the additive
(—1)T-MT-M-1)/2 exp(—tr(l _ a)XTX) noise. The entries af andWW are assumed to be independent
p(X) = — : o CN(0, 1) distributed. Then ifS = T®, where® is an
T (14 pp) . ; o . .
F(T)- DO 4 1) isotropically distributed unitary matrix, we have
Ty--- +1
. detG (34 rry---(r+1-M
T -M) --T'(1) (34) I(X; &)= pTNloge —log ( )F(M)( —;(1) )
whereGis a(T — M) x (T — M) Hankel matrix whose entries
are given by -E {108‘ ((—1)M(M_1)/2 det F)} (38)
K —aot or equivalentl
G =2 (—aow)? IGT( +ao) ! 1y 8 T(T).-T(M +1)
— — QT —QTL aagy — e +
k=1 : I(X; )= TN loge — log
7k e g (X5 @) = g 5 PTN log e —log g
, — QT > 1
. RO - (35) i (T—M)(T—M—1)/2
{1’ 0<0 —E {log ((-1) detG)}  (39)
where we define the incomplete Gamma function for a negativ@here " andG areM x M and(7 — M) x (T — M) Hankel
valued argument as matrices whose entries are given by (30) and (35), respectively.
@ —a01) _ | o = (Z000)
Q) —LTe Z q! V. NUMERICAL RESULTS
q=0 . .
or equivalently The formula§ (38) a}nd (39) are expressions for mt.JtuaI'mfor—
mation for an isotropically random unitary space—time input.
K 1 At present, however, we are unable to evaluate analytically the
Gmn = Z 1 (—aor + aoy) expectation with respect t&. This may be done by Monte
k=1 g Carlo integration. We generaté independent realizations
i — o) X1, ..., X1}, where theX; are distributed according to (11),
( OéO'k)
: Z G+T—(mt+ntK)t2)! (36) With_D = Iy andS = \/_T%, <I>$ = [y 0] A_s mentione_d
q=0 earlier, because the entries Gfhave exponential terms with

wherem,n=1,..., 7T — M. negative exponent, whereas thosefofiave exponential terms
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Fig. 1. Mutual information per symbol versus duration of coherence intétvér M/ = N = 1, 2, 4 transmit and receive antennas, anddoe —6.0, 6.0,
18.0 dB.

with positive exponent, Monte Carlo simulation of (39) is mucto the perfect knowledge capacity &s— ~c. As can be seen,

more numerically stable. The Monte Carlo estimate of mutuabnvergence is faster at higher SNRs.
information is

B. Mutual Information as a Function df/ and V

L
1 X;|®

Fig. 2 shows the mutual information per symbol as a func-
=1 p(X0) tonof M =1,...,8 andN =1,...,8 for7T = 8, and

L p = —6.0,6.0,18.0dB, and = 2500. As can be seen, at very

_1 Zlog T - M)---T(1) low SNR (here—6.0 dB) USTM is unable to utilize multiple
L =1 D(T)---I(M+1) transmit antennas efficiently, and it is best to reserve all of the
i i power for a single antenna. This contrasts sharply with the high
eXp(“ b Xo X (=1 + ‘1)0‘1)0)) SNR regime (here 18 dB), where the mutual information peaks

(—1)(T=M)(T=M=1)/2 det, 3, at aboutM = min(77/2, N) transmit antennas, thereby con-

firming the high SNR results of [8]. Intermediate SNR values
(40) (here 6.0 dB) present an intermediate stage. We conclude that,

where we have used (11) ff X; | &), and (34) forp(X;). @S the SNR increase_s, more and more transmit antennas should

We avoid the form (39), where the expectatiorap(X | &,) P& Powered successively.

is taken analytically, and instead, for greater stability, we apply

Monte Carlo integration to a log-likelihood ratio. VI. DISCUSSION ANDCONCLUSION

, ) We have obtained a closed-form expression in the form of a
A. Mutual Information as a Function &f determinant, for the probability density of the received signal,

Fig. 1 shows the mutual information per symbol (i.e., (40)hen the input is isotropically random unitary. This expression,
is normalized through a division b¥) as a function ofl’ = when combined with a simple Monte Carlo integration enables
1,...,25 for M =N =1,2,4, andp = —6.0, 6.0, 18.0 dB, us to compute mutual information for all cases of interest. At
with L = 4 x 10* Monte Carlo trials. Thedd = N = 1 sufficiently low SNR, we have found that mutual information is
curves match similar curves obtained in [6], where the expectaaximized by allocating all power to a single transmit antenna.
tion with respect toX' was performed by numerical quadratureAt sufficiently high SNR, we have confirmed the result of [8]
The dashed lines represent the perfect knowledge capacity. Tt A/ = min(7/2, N) transmit antennas maximizes mutual
figure shows the rate of convergence of the mutual informatiamformation.
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Fig. 2. Mutual information per symbol versus number of transmit antefha®r N = 1, ..., 8 receive antennas, fa@f = 8, andp = —6.0, 6.0, 18.0 dB. At

this low SNR it is best to feed all power to a single antenna. At high SNR it is best tb/usemin(7/2, N) transmit antennas.

The mutual information we have computed yields a lowdrecause our derivation will be useful for obtaining the desired
bound on the actual channel capacity. In future work we will akourier integral expression.
tempt to compute the mutual information for arbitrdpyrather We first note that, due to the unitary constradritd = I,,,
than D = I,,. This should lead to further insight into thethe density must have the forp{®) = f(®)§(®T® — I),
problem at moderate values of SNR and to tighter lower boundéere f(®) is some smooth function and where
on capacity. The fact that we have been able to find the output M
density in closed form should also be useful for obtaining upper s ia _ T _ T
bounds on capacity via divergence-based techniques [9]. Blote — ) = [ 8 (shom 1) 1] & (Re (6,0n))
. Our _method of taklr_1g expect-anons with .respect. to the . 6(Im ( of %)) (A1)
isotropically random unitary density has other interesting ram-
ifications. In particular, it enables us to compute any desiredNow, for & to be isotropically distributed, the density®)
moments for an isotropically random unitary matrix. Alsomustbe invariantto pre-and postmultiplication by &hy 7" and
we can obtain a variety of new bounds on the random codifdg x M unitary matrices, sa/ andV. Clearly,s(®T® — I;,)is
exponent for space-time autocodigyhich should provide invariantunder suchatransformation. Fér) to be invariant, we
improved estimates, compared with the simple union bourf@équire thatf(U®V) = f(®). But sincel/ andV are arbitrary
of the autocoding performance of codebooks of isotropicaltis implies thatf(®) cannot be a function of the singular vec-

m=1 m>n

random unitary signals [14], [15]. tors of & and must, therefore, be only a function of the singular
values. But since is unitary, its singular values are all unity,
APPENDIX A which implies thatf (®) must be a constant. In cherwords, we
INTEGRAL FORMULA FOR p(®) havep(®) = c§(®T® — I,,), for some normalizing constant

. o ~ To compute the normalizing constantwe can rewrite the
Let us begin by obtaining the formula for the densityengity as

of a T' x M identically distributed (i.d.) unitary matrix
® =[p1 --- ¢ul wherethep,,, m = 1, ... M denote the p(®) =p(¢1, ..., dar)

T x 1 column vectors ofb. This density was derived in [6], =p(¢p1)p(b2, ..., dar|dL)
but we include it here to make our treatment self-contained and

M
=p(¢1) [] p@mldr, s 1) (A2)

2This was pointed out independently to us by Prof. S. Shamai. m—2
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Now sincep; is7’ x 1 isotropically-distributed unitary, we haveand

p(d1) = e6($lg1 — 1)

for some constant. To determine: it is useful to represent the

delta function via its Fourier transford(z) =
and to proceed as follows:

1= [ dinp(en)
dd)l/dweiw(élm—l)

iy 29101 —adlon / dwc @ e1=1)

1 Wwx
ﬁfdwe ,

a>0

27r
= g dwe™ / d(j)le—(a—iw)élm
27
ce® dwe—i T er?
=— we™ - =
2m (a—iw)T  T(T)

which implies that

po) = G s

Now we also have

(¢T¢1 )

m—1
H 5 (¢ho
for some other normalizing constantand where

8(phupn) = S(Re(dh,bn))S(Im(¢], dn))-

p(¢m|¢17 sy d)m 1) — 66 ¢nl¢nz -

Proceeding with a similar argument to the one presented
above to determine;, or, alternatively, by simply noting

that, in the subspace that is orthogonaKt, ..., ¢rr—1},

6 ($hadn) =6 (Re (¢l dn)) -6 (Im (¢].6n))

1 .
= W/ darnn dﬂrnn

. e @mn Re(@f, b)) +Bmn Im(d], 60))

1
= W /darnn dﬂrnn

. Ci( emn ;i/3m71 ¢Iﬂ¢7l+(\m71§i/3mvz qulqu)

(AB)

Now, if we define the off-diagonal parts of the Hermitian matrix
Q via

e — 13 O + 13
wnln — mn [rnn and wnnl — wnln — mn [rnn
2 2
we clearly have
darnndfjrnn
dwrnn = f

so that
1 )
8 (¢hutn) = — / €/ S Brtinm®dm) (A7)
aw

Combining (A5) and (A7) with (A3), we arrive at
Ty --I(T+1-M
p(@y = DI )

M(zT—M+1)

w
' 2 J\I/H dwrnrncw'mm[(q) D) —Ormm]
71'

m=1

'7rM(M 1)/ H dwimn

m>n

. ez[wmn(((b D) mn— nm)+‘~'nm((‘1ﬁ D) —6mn )]

(/)nllzt)l_,...,%Tl has _the same @stnbuuop as/a+ 1 — M-di- T(T). .. T(T +1— M) (018 Iu)
mensional isotropically distributed unitary vector, we may = — dQet™ M
write oM 15 (20 +M+1)
) ---N(T+1-M) itr @ o—Iy
p(d)mw)l, ey (/)rn—l) = 2]\/[71_%(211_'_]\4_'_1) /dQC ( ) (A8)
m—1
- PTr+1- m) N H § (¢h.0 where the integration is over the Hermitian mat¢lx But this
rlHt=m simply the desired result (13).
angsdgﬁ] th(eA fZ;pJ\/eesic;ns Vccrp:t(é/n) andp(pm|d1, - - -5 Pm_1), APPENDIX B
9 ' Y A USEFUL INTEGRAL FORMULA
(@) raT---nr+1- H § (9 b — In the next result we generalize a formula of Wigner [16] for
== g LA oo positive functionsf(-) to arbitrary ones.
H 5 (/) (A3) Lemma 1 (An Integral Formula)Consider the single-vari-
men able functionf(-). Then we have the following identity for the
M -fold integral:
Ty ---r+1-M)
= M(2T—M+1) 6 ((I)T(I) - IJW) (A4)
e 2

which is the desired density function fp{®).

A. The Integral Formula

To obtain an integral formula fgr(®), we shall replace the

delta functions in (A3) by their Fourier integrals. Thus,

1 P i —
6 ((/)Ind)nl - 1) = % /dwrnrnc/ o (1, P —1) (A5)

M
/ <H d)\mf()\m)> H (—idm+iN)? = M!det F (B1)
m=1 l<m
whereF is anM x M Hankel matrix given by
(—iA)°

r2 oo [(—iA)0 - (—iNM]

M-t
(—iA) ©2)
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Proof: Note that the produd],_,,, (=i + ;) can be and

written as the determinant of a Vandermonde matrix (—iA) T (—idg) 2l (—idgy )t

_fb 0 ... _f‘ 0

( L.)‘l) ( L).‘M) where the{m;} and{n,;} denote some permutation of the in-
H(_i)\m+i)\1) = det : : . tegers{l, ..., M}, we note that, due to the bi-orthogonality
t<m (A )M=L o (midg) M condition, whenever thém,;} and{x,} are different permuta-

tions their product integrates to zero. When they are the same
Assume now that" is nonsingulaf, and define the polynomials permutation they integrate to unity. Since there/afesuch per-

91(:), -, gm () via mutations, we conclude that
a(\) (=iA)? J=Mdet FF
: 2p! : . (B3) which is the desired result.
gm (M) (—in)M-1L All that remains to be shown is that whénis singular the

integral is zero. Suppose th&thasR > 0 zero eigenvalues, so
With this definition of theg,,(-), it is important to note that that its singular value decomposition takes on the form

Ly=F"'F F:U[E }v*.
(—i\)° Orxr
:/d)\f()\)F—l : [(=iN)° - (—iA)M~1] Now defining the polynomials qi(-), ..., gu(-) and
(i i)
[ a1 (A) ] (—iA)°
g1(A) : 2yt :
= (A )] T (=) e ()M ' .
/ Lan(A) ] (—in)M—t
g (A) and
o E _s)\)\O0
which implies that they,,(-) and \»~! satisfy the following n) N (=id)
bi-orthogonalitycondition : =% :
_7’1\4()\)_ (_,L')\)J\lfl

/d)\f()\)gm()\)(—i)\)"_l = bpny  mn=1,... M.
(B4)
Denoting the integral in the statement of the lemma/bwe /dAf(A)qm()\)Tn()\)

it is straightforward to see that

can now write

o Tnbmn, ifm,n<M-—R (B5)
J:/< dAmf(Am)> det F det P 10, ifm>M-—Rorn>M - R,
m=1 Using an argument similar to the one presented above, one can
(—id)? o (i) 12 write
det : , : M (A1) o @(Am)
. e . .. .
' : J= / Donf O | det : :
(—id)M=L o (=i M Y <m=1 ( )>
M am(M) o am(Am)
= detF/< d)\mf()\m)> ri(A) o ri(Aar)
m=1 . . . .
91(.)\1) 91().\M) rar(Ar) rar(Anr)
- det : : Now expanding the above two determinants and using (B5) it
gv(A)  gn(Aar) follows that all terms integrate to zero, so thiat 0. O
(=id)® e (i) APPENDIX C
: - : . AN EXPONENTIAL QUADRATIC INTEGRAL
(=AML o (=i M Let P and@ beM x M Hermitian matrices such thét > 0.

. n this appendix, we verify the integral formula
If we now expand the above two determinants as sums of tlhe PP bt g "

products / dye™¥" (P+iQy — T (C1)

~ det(P +iQ)’
I (A)Gmy (A2) - Gy () Note that this result only requires a positivity assumptiorfon

3We shall momentarily show that ff is singular then the integral is zero.  (and not onQ).
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SinceP >0, for anysquare-root factorizatioR = P1/2 P*/2,
the matrix P1/2 will be nonsingular. Consider the change of
variablesz = P*/2y. Then clearly

2
dz = dy ‘det P*/Q‘ — dydet P
and the integral becomes

/. dye ¥ (PHiQy — !

det P

Consider now the eigenvalue decomposition of the Hermitian
matrix P~1/2QP~*/2 = UAU*, whereU is unitary andA is
diagonal with real diagonal entries, ..., Ap;. The change of
variablew = U*z yieldsdw = dz (since the transformation
matrix is unitary) and so

/ dye—y" P+ _

/ dpe—* T +iP~2QP™"/%)z

1
det P

1 M )
_ duw, (A lonl?
det P ngl / Wm®

It is straightforward to show that

/ e Al —

/ dwe—wt (I]\/[ —|—ZA)LU

™

144X,

(10]

so that

!
/dye_y*(P+iQ)y =

M

T 1
det P e

1A

v
=1 1 +
M 1
T det P det(Iy + i)

aM 1

TdetP det(Ip +iUAU™)

7(1\4

~ det(P + Q)
which is the desired result.
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