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Theory and Design of Uniform DFT, 
Parallel, Quadrature Mirror Filter Banks 

KUMAR SWAMINATHAN, MEMBER, IEEE, AND P. P. VAIDYANATHAN, MEMBER, IEEE 

AbSfrUCf -In this paper, the theory of uniform DFI, parallel, quadra- 
ture mirror filter (QMF) banks is developed. The QMF equations, i.e., 
equations that need to be satisfied for exact reconstruction of the input 
signal, are derived. The concept of decimated filters is introduced, and 
structures for both analysis and synthesis banks are derived using this 
concept. The QMF equations, as well as closed-form expressions for the 
synthesis filters needed for exact reconstruction of the input signal x(n), 
are also derived using this concept. In general, the reconstructed. signal 
.C( n) suffers from three errors: aliasing, amplitude distortion, and phase 
distortion. Conditions for exact reconstruction (i.e., all three distortions 
are zero, and Z(n) is equal to a delayed version of x(n)) of the input 
signal are derived in terms of the decimated filters. Aliasing distortion can 
always be completely canceled. Once aliasing is canceled, it is possible to 
completely eliminate amplitude distortion (if suitable IIR filters are em- 
ployed) and completely eliminate phase distortion (if suitable FIR filters 
are employed). However, complete elimination of all three errors is 
possible only with some simple, pathalogical stable filter transfer functions. 
In general, once aliasing is canceled, the other distortions can be mini- 
mized rather than completely eliminated. Algorithms for this are pre- 
sented. The properties of FIR filter banks are then investigated. Several 
aspects of IIR filter banks are also studied using the same framework. 

I. INTRODUCTION 

T HE DECOMPOSITION of a signal into contiguous 
frequency bands and reconstruction of the signal based 

on the subband components are fundamental concepts in 
signal processing. The partitioning of the input signal into 
several frequency bands is done by the so-called analysis 
filter bank and reconstruction by the synthesis filter bank. 
The subband components of the input signal are usually 
decimated to reduce the amount of computational load in 
applications where the subband components need to be 
processed. In maximally decimated filter banks, each sub- 
band component is represented with the minimum number 
of samples per unit time. Such maximally decimated filter 
banks are of particular interest in frequency-domain coders. 
In fact, the motivation for studying maximally decimated 
filter banks largely stems from frequency-domain speech 
coding because in such coders properties of aural percep- 
tion can be exploited to achieve higher speech quality at 
lower bit rates. 
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The quadrature mirror filter bank. 

The quadrature mirror filter (QMF) pair (Fig. 1) has 
been the basis of most filter banks used in frequency- 
domain speech coders since its development by Croisier et 
al. [35] and later by Esteban and Galand [21]. The analysis 
section of the QMF pair splits the input signal into two 
Subband signals having equal bandwidth and decimates 
each subband signal by a factor of two. The synthesis 
section interpolates the two subband signals by a factor of 
two and recombines them through another filter pair to 
produce the output. The impulse responses of the analysis 
filters are represented by h,(n) and h,(n) and their trans- 
fer functions by H,(z) and H,(z). The impulse responses 
of the synthesis filters are represented by to(n) and fi(n) 
and their transfer functions by F,(z) and F,(z). The input 
signal is denoted by x(n) with z-transform X(.zl and the 
reconstructed signal by 2(n) with z-transform X(z). The 
QMF pair has the desirable property that when the analy- 
sis and synthesis filter banks are connected together, the 
input signal can be reconstructed at the output with arbi- 
trarily small error. This is because 1) the analysis and 
synthesis filters are chosen so as to completely cancel the 
aliasing components caused by the decimation process, 
and 2) the filter‘ frequency responses are designed to 
overlap and add in such a way that the overall frequency 
response approximates a delay at all frequencies. 

An important class of filter banks is the uniform filter 
bank where the input signal is split into equal bands. 
Maximally decimated uniform filter banks with more than 
two bands may be implemented using tree structures in 
which the input signal is successively divided into two 
equal bands at each stage of the tree using the analysis 
section of the QMF pair and the output signal is recon- 
structed by successively recombining the subband compo- 
nents at each stage of the tree using the synthesis section 
of the QMF pair [l], [lo], [21]-[26]. A disadvantage of this 
approach is that the number of uniform bands, say r, is 
restricted to be a power of two. Uniform maximally deci- 
mated parallel QMF banks (Fig. 2), which do not have this 

0098-4094/86/1200-1170$01.00 01986 IEEE 



SWAMINATHAN AND VAIDYANATHAN: UNIFORM DFT, PARALLEL, QhlF BANKS 1171 

x0(n) 

x,(n) 

x2(n) 

tr fo(n) -aq 

Fig. 2. r-band parallel QMF bank 

restriction, are implemented by passing the signal through 
r analysis filters and decimating each filter output by a 
factor of r. The signal is reconstructed by interpolating 
each subband signal by a factor of r and recombining 
them through r synthesis filters [lo], [27]. The impulse 
responses of the r analysis filters are represented by 
ho(n)9 h,(n),* - *> h,-1(n), and their transfer functions by 
f&(z), f4(z),- - *> HrT1(z). The impulse responses of the r 
synthesis filters are represented by!,(n), fi(n); * ., f,-i(n), 
and their transfer functions by Fa(z), Fi(z), . * *, F,-,(z). 
A comparison between parallel QMF structures and tree 
structures can be found in [lo], when r is a power of two. 
It is shown in [lo] that the complexity of the parallel 
approach is comparable to the tree approach and in 
addition has several advantages, such as smaller group 
delay and smaller signal storage requirement, over the tree 
approach. 

In this paper, we restrict ourselves to maximally deci- 
mated uniform parallel QMF banks. We also assume that 
the analysis filters of these uniform filter banks are all 
frequency-translated versions of a common baseband filter. 
Thus 

H,( &a) = jy( &-2n//r)) 

h,(n) = pm/q (n) 

where H(z) is the prototype low-pass filter and h(n) its 
impulse response. If we define 

w= e-jWr 
then 

H,(z) = H(zW’) 

h,(n) = W-‘“h(n). 

Such uniform filter banks, where the analysis filters are 
derived by frequency modulation of a common baseband 

filter, are referred to as uniform DFT filter banks [l, ch. 71. 
The common baseband filter is assumed to be centered at 
w = 0. This corresponds to the “even-type” uniform chan- 
nel stacking arrangement [l, ch. 71. The objective of this 
paper is to develop the theory, implementation, and design 
of such filter banks. A unified framework is presented in 
this paper .which allows various issues such as aliasing, 
amplitude and phase distortions, efficiency of implementa- 
tion, stability of filters, etc., to be addressed based on a 
common ground. 

The filter banks developed in this paper differ from the 
results of Galand and Nussbaumer [lo], Rothweiler [37], 
and Chu [39] in a number of respects. We indicate here 
how aliasing can be exactly canceled with an arbitrary 
number of channels r and with no assumptions regarding 
the exact frequency shaping achieved by the filters (for 
example, no assumption is made that nonadjacent filters 
have completely nonoverlapping frequency responses). 
Galand and Nussbaumer have indicated tree structures for 
accomplishing this, and their results hold when r is a 
power of 2. The results in [37] and [39] hold for arbitrary r, 
under the assumption that nonadjacent filters in the analy- 
sis bank do not overlap. 

The filters belonging to the filter banks presented in this 
paper are such that all filters are derived as in the above 
equation by complex modulation. Accordingly, the filtered 
signals x,,Jn) in Fig. ,2 are complex even for real x(n). 
Depending upon the actual application, this may or may 
not be an inconvenience. In any case, there are several 
important reasons for studying these filter banks. First, 
complete theoretical results are developable, addressing 
aliasing and other distortions in a unified and quantiative 
manner. Second, parallel r-channel QMF banks with filters 
having real impulse responses (so that xk(n) are real for 
real x(n)), and which are entirely free from aliasing, are 
readily developed from the results of this paper; in fact, all 
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Fig. 3. (a) Structure for analysis and synthesis filter banks. (b) Altema- 
tive stmcture for analysis and synthesis filter banks. 

the properties we study herein can be translated to the case 
of real-QMF banks, as will be reported elsewhere. Finally, 
there are several other contexts such as transmultiplexer 
design [3], [22]-[24], spectral analysis, and synthesis of 
speech [l, ch. 71, and so on, where the concept of uniform 
DFT filter banks finds applications. 

The organization of the paper is as follows. In Section 
II, the QMF equations (i.e., the equations that must be 
satisfied if the input signal is to be reconstructed exactly 
by the cascade of analysis and synthesis banks) are derived. 
Closed-form expressions for the synthesis filters that are 
needed for exact reconstruction are also derived. In Sec- 
tion III, the concept of decimated filters is introduced and 
expressions for the synthesis filters needed for exact recon- 
struction are obtained in terms of the decimated filters. 
Structures for the analysis and synthesis filter banks are 
derived. The study of FIR filter banks (i.e., where all 
analysis and synthesis filters are FIR) is motivated and 
conditions that must be satisfied for exact reconstruction 
by the FIR filter bank are derived. In Section IV, we 
investigate situations for which the cascade of analysis and 
synthesis FIR filter banks has transmission zeros at some 
frequencies for any arbitrary linear-phase FIR, prototype 
low-pass filter H(z). Clearly, such situations are to be 
avoided while designing FIR filter banks. Properties of 
FIR filter banks are derived in Section V. In Section VI, a 

procedure for designing linear-phase FIR filter banks is 
described. Examples of the design algorithm are given in, 
Section VII. In Section VIII, various aspects of IIR filter 
banks are discussed. 

II. DERIVATION OF THE QMF EQUATIONS 

In this section, we derive the QMF equations which are 
a set of linear equations that must be satisfied for exact 
reconstruction of the incoming signal in the absence of any 
processing of the decimated subband signals. Using these 
equations, we derive closed-form expressions for each 
synthesis filter in terms of analysis filters. 

Let us denote the decimated subband signals as x,(n), 
x,(n),- * a, xrP1( n) with z-transforms X,(z), Xi(z), . . . , 
X,-i(z). Each decimated subband signal xk( n) is obtained 
by first passing the input signal x(n) through the filter 
Hk(z) and then decimating it by a factor of r. Thus, X,(z) 
can be expressed as (see [l, sec. 2.3.21) 

X/h> = ; g&( zl’rw-‘) x( ““‘W-‘), 

O<k<r-1. 0) 
Each signal xk(n) is next passed through an interpolator 
as shown in Fig. 3. It is then passed through the corre- 
sponding synthesis filter Fk(z) and the outputs of synthe- 
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sis filters are added to produce Z(n). Thus 
r-l 

R(Z) = c Fk(z)xk(zr). 
k-0 

(2) 

Substituting for X,(z) from (1) in the above equation, we 
get 

r-l 
2(z) = c Fk(z)~;~~Hk(zw-~)x(zw-t) 

k=O 

= ; ;+zw-‘) ;+I)H,(Iw-‘). (3) 

But the analysis filters Hk(z) are assumed to be related to 
H(z) by Hk( z) = H( z Wk) and therefore 

H&w-‘) = H(zWk-‘) = H(,,-,)m&(z) (4) 

whence 

‘tz) = ;;g;xtzw-‘) ‘if’ Fk(Z)H(k-,)mcdr(z)~ @) 
k=b 

If the reconstructed signal a(n) is to be an exact replica 
of the input signal, except for a delay of n, samples, then 
we must have 

A general matrix formulation has also been derived in [41] 
by Ramstad and in [42] by Vetterli. Equations (7) or (8) 
are identical to (5-33) derived in [31] by Smith. 

In order to obtain a closed-form expression for the 
synthesis filters in terms of the analysis filters, we exploit 
the circulant nature of the matrix H(z). Every circulant 
matrix, such as H(z), can be expressed as 

H(z)‘= wA(z)w-l (9) 
where W is the r-point DFT matrix, i.e., 

f-1 I - 1 1 
1 w **. w= . 

wr-1 

I @a> 

1’ 1 W’--1 . . . w”- l)(r- 1) 1 
and where 

A,(z) 
Al(Z) 0 

A(z) = . . t w 
0 -*. 

I 

L,(z) 1 

2(z) = x(z)z-“0 6) Ai = rglHk(z)Wik, Oii,<r--1. (9c) 
and so the following conditions must hold: k=O 

; ~+k(z)H(k-,).m.ir(z) = z-noB(z>~ 

Recall that W/6 is unitary. Hence 
OGlGr-1 

WtW=WWt=rl (104 

where a(1) is the usual Kronecker delta defined as 
(7) and 

W-l= WT/r. (lob) 

w = ( 1 ifZ=O Substituting for H(z) from (9) in (S), we get 
0 otherwise. WA(z)W-If(z) ‘c(z) (114 

Expressing (7) in matrix form,* we have the following f(z) = WA-l(z) W-k(z). (lib) circulant set of equations: 

H(z) f(z) = c(z) (8) In view of (SC), (9a), and (9b), eq. (llb) simplifies to 

434 

- 1. 

where 

H(z) = 

\ f&id H,(z) ... HOi 

f(z) = [F,tz)~ltz)...F,-ltz)1= 

c(z) = [rz-“O O...OIT. 

The set of linear equations described in (7) or (8) are the 
required QMF equations, and they represent necessary and 
sufficient conditions for exact reconstruction (except for a 
delay) of the original signal. The aliasing cancellation 
matrix (AC matrix) formulation derived in [2] by Smith 
and Barnwell for an arbitrary analysis filter bank reduces 
to (7) or (8) if the analysis filters obey Hk(z) = H(z Wk). 

*Notations used in the paper: Capital bold-faced letters are used to 
represent matrices and small bold-faced letters for vectors. The identity 
matrix is represented by 1. The conjugate transpose of a matrix W is 
denoted by Wt, whereas transpose is denoted by WT. 

@a> f(z)=W i 

(Sb) Thus 
A;?;(z) 

r-1 

(84 e;.(z) = c A~yz)Wik-Z-“O, 

-“O ! . (12) ‘ 

J 

Ogi<r-1. (13a) 
k=O 

In words, the ith synthesis filter transfer function 4(z) in 
the synthesis bank is the r-point DFT of the reciprocals of 
the r-point DFT sequence of the analysis bank { Hk(z)}. 
Substituting for A,(z) from (SC) in (13a), we get 

r-l 
E;.(z) = c 

i 

wik 

k = o X,;Z,jH,( z) Wlk I ‘-“” 
O,<iQr-1. 

tl3b) 

We have thus derived a closed-form expression for the 
synthesis filters in terms of the analysis filters. 
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III. ANALYSIS AND SYNTHESISFILTER BANKS 
USING DECIMATEDFILTERS 

In this section, uniform DFT, parallel, QMF filter ba&s 
are studied using the concept of decimated filters. The Ith 
decimated filter with transfer function G,( z)(O Q I 6 r - l), 
corresponding to H(z), is defined as the filter whose 
impulse response is obtained by retaining every r th sample 
of h(n), the impulse response of the prototype low-pass 
filter, starting from the Ith sample. Thus 

G,(z) = f h(l+pr)z-P, O<l<r-1. (14a) 
p=o 

The transfer function H(z) can therefore be written as 
r-1 

H(z),= c z-‘G,(z’). t14b) 
I=0 

This representation has been used earlier by other authors; 
for example see Bellanger et al. in [3]. The notion of 
decimated filters provides additional insight into’ the 
implementation and design aspects of uniform DFT paral- 
lel QMF filter banks. We begin this section by deriving 
expressions for the analysis filters in terms of the deci- 
mated filters. Next, expressions for the synthesis filters in 
terms of the decimated filters are developed. Structures for 
the analysis and synthesis filter bank are derived. Finally, 
for the case when both the analysis and synthesis filters are 
restricted to be FIR filters, the condition for exact recon- 
struction of the original incoming signal is derived in terms 
of the decimated filters. 

The transfer function Hk(z) of the k th analysis filter 
can be expressed, using,(l4b) as 

r-1 
H,(z) = H(zWk) = c z-‘W-k’G,(~‘). (15) 

I-O 

The above equation can also be expressed in matrix form 
as 

where 
h(z) = Wig(z) =rw-‘g(z) 06) 

h(z) = [Hob)H,(z) . . . K-,(z)] ’ (16a) 

g(z) = [G,(z’) z-‘G,(z’) ...z-(‘-~)G~-~(z’)]~. 
(16b) 

We have thus expressed the analysis filter bank in terms of 
the decimated filters of the prototype H(z). 

Equation (16) can also be written as 

&) = m(z) 07) 
or in terms of components 

r-l 
rz-‘G,(z’) = c H,(z)W’~. (18) 

k=O 

But the right-hand side of (18) is just the Ith eigenvalue 
h,(z) of the matrix H(z) (see (SC)). Thus 

A,(Z) = rz-‘G,(z’), O<l<r-1. (19) 
The eigenvalues of the circulant matrix H(z) are thus very 

simply related to the decimated filters by the above expres- 
sion. A consequence of this relationship is that, if any of 
the decimated filters has a transmission zero at some 
frequency, then the corresponding eigenvalue becomes zero 
causing H(z) to become singular at the same frequency. 
We elaborate further on the physical significance of these 
singularity issues in Section V. 

Substituting (19) into (13a), we obtain 

4(z) = ; $1 z-k;;;zr) ‘-“‘, Ogi<r-1. (20) 

We have thus obtained an expression for the synthesis 
filters in terms of the decimated filters of the analysis 
prototype H(z). In order to derive a similar equation as 
(16) for the synthesis filters, we proceed by defining 

r-1 

Rk(Z) = l~oG,(z)~ Ogkgr-1 (21) 
I+k 

Z -no 

D(z) = z-(‘-l)n;i;G,(z’). (22) 

Then 

. e(z) = fDtz) r~l~k(z’)z-(‘-‘*‘w’*, 
k=O 

OgiGr-1 (23) 

or in matrix form 

f(z) = fo(z)wr(z) o-4) 
where 

r(z) = [ z-(‘-~)R~(z~) z-(‘-~)R,(z’) . . . R,-,(z’)] T. 

(244 

One can easily derive the structures for the analysis and 
synthesis filter banks using (16) and (24). The vector of r 
outputs of the analysis filters is given by h(z)X(z) = 
r W-‘g(z)X(z). If the vector of r inputs to the synthesis 
filters is u(z), the reconstructed signal is given by X(z) = 
f ‘(z) y( z) = l/rD( z)r’( z) WY(z), in view of the symmetry 
of W, i.e., WT= W. The analysis and synthesis filter 
banks can therefore be drawn as in Fig. 3(a). Without 
the IDFT and DFT, the filter banks are identical to 
the decimating and interpolating structures used by 
Constantinides and Valenzuela in transmultiplexing [4]. 
An alternative structure with the decimator moved to the 
left and interpolator moved to the right is shown in Fig. 
3(b). This can be justified because the DFT, IDFT, and 
multiplication operations are all memoryless (see [l, sect. 
3.1.21). The analysis and synthesis filter banks are now 
seen to be identical to the polyphase structures discussed 
in [l], [3], and [5]. Identical filter banks for the case r = 2 
have been given by Barnwell in [6] and [30]. 

In the structures of Fig. 3, we have a general means of 
perfectly reconstructing a signal x(n) (within a fixed de- 
lay) after the signal has been split into r bands and each 
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component decimated by r. The claim is that Z(n) = 
x( n - n,) with no aliasing error and no reconstruction 
error. Accordingly, the overall system of Fig. 3 is a linear 
shift-invariant system (even though the decimator and 
interpolator building blocks are time-varying) with transfer 
function 2 - “0. 

The question that remains to be answered is, under what 
conditions is the synthesis filter bank realizable for a given 
analysis filter bank? For realizability, the components 
Rk(z) and D(z) are required to be causal and stable. 
Notice that if the prototype low-pass filter H(z) is stable, 
then so are the decimated filters G,(z). As a result, Rk(z) 
defined as in (21) is stable for all k. It only remains to 
concern ourselves with the stability of D(z). In general, 
D(z) as given by (22) is not stable. In fact, if H(z) is a 
linear-phase FIR filter with a symmetric impulse response, 
it is easily shown (property 4, Section V) that lYI;:tG,(zr) 
is a linear-phase FIR filter. Hence, D(z) is necessarily 
unstable in this case. This motivates us to find conditions 
under which D(z) can be deleted in Fig. 3, without 
deteriorating beyond tolerance, the reconstructed signal. 

Consider the case when H(z) is a FIR filter. Let 
N-l 

H(z)= c h(n)z-“. 

Furthermore, let 

The power of z-l, which lies midway, is r-l+(N-r). 
r/2. In Section IV, it is shown that in order to avoid 
singularity situations, N - r must necessarily be even, and 
so its mid-value is guaranteed to be an integer. So one 
possible design criterion for minimizing the distortion is to 
approximate Z’(z) by a delay of r - 1 +(N - r)r/2, i.e., 

r-l 
T(~) = z-(r-l),JJo~l(zr) = Z-(r-l+W-W2) (29) 

or equivalently 
r-1 
,voG,(z) = z--(~-~)“. 

Thus, if we design the prototype transfer function H(z) so 
that in addition to being a good low-pass filter it also 
satisfies (29) or (30) as closely as possible, then the re- 
constructed signal Z(n) will be a good approximation of 
the original incoming signal x(n). 

For FIR analysis-synthesis filter banks, the filter D(z) is 
excluded, and so the synthesis filters are now given by 

4(z) = ; ~~~Rk(z’)z-(‘l-k)~ik, O=gi<r-1 

instead of the expressions in (23). By substituting the new 
exnressions for the svnthesis filters in the left-hand side of 

N-l=m,+m,r, Ogm,<r-1. (25) the QMF equation (i), one can verify that 
Then the decimated filters are given by 

i 

C,“loh(Z+pr)z-P, 
G,(z) = cm p1 

O<l<m, 

p1o h(l+ pr)zep, mo+l<l<r-1. 

(26) 

Since all the decimated filter transfer functions are poly- 
nomials in I- i, the filters R,(z)(O < 2 6 r - l), defined in 
(21), are also polynomials in z-i. Thus, all the filters 
shown in the structures for analysis and synthesis filter 
banks can be realized as FIR filters with the exception of 
D(z). If we exclude D(z), then the overall transfer func- 
tion of the cascade of the analysis and synthesis filter 
banks would simply be 

z 
-no r-1 

T(z) = - = z-(~-~)/~~G,(z’). 
D(z) 

(27) 

This is because when D(z) is included, the overall transfer 
function is simply ~~“0. Note that the effect of deleting 
D(z) is to introduce an amplitude distortion of the form 
l/lD(ej”)l and a phase distortion of the form 
- arg[ D(ej”)]. (The reconstructed signal however, con- 
tinues to be free from aliasing.) The effects of these two 
distortions are minimized by approximating T(z) as closely 
as possible with a pure delay operator. 

The overall transfer function T(z) has powers of z-l 
starting from r - 1 to NT, where 

N,=r-l+(mo+l)m,r+(r-l-m,)(m,-l)r 

=(N-r)r+r-1. (28) 

(31) 

; gH(k-,,md, (Z)F,(Z)=T(z)S(Z), Odl<r-1. 

(32) 

This confirms our earlier statement that the effect of 
deleting D(z) is only to introduce an amplitude distortion 
and a phase distortion, and the reconstructed signal is still 
completely free from aliasing. Minimizing the effect of this 
distortion is equivalent to satisfying the first QMF equa- 
tion as closely as possible, i.e., 

T(z) = f gzk(z)Fk(z) = z-“o. (33) 

For the choice of n,=r-l+r*(N-r)/2, this is the 
same as the design criterion expressed by (29) and (30). 

Comment on Exact Reconstruction: The term “exact re- 
construction” means a situation where aliasing, amplitude, 
and phase distortions are completely eliminated, so that 
a(n) = x(n - no). With FIR filters in the analysis and 
synthesis stages, this is possible provided we make the 
following choices: 

G,(z’) = Z-‘v R,(z’) = Z-(rW, O<Z<r-1 

where k, and p are arbitrary nonnegative integers, with 
p > k,. The overall delay no is given by n, = r - 1 + pr. 
With G,( zr) restricted to be delays in the above manner, 
the frequency-shaping achievable by H,(z) is indeed very 
limited, i.e., H,(z) does not give a “good” low-pass re- 
sponse. Such pathological situations of “exact” reconstruc- 
tion will not be considered further. 
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In general, with H,(z) required to accomplish better 
frequency shapings, it is possible to eliminate either am- 
plitude distortion or phase distortion completely, but not 
both. Aliasing, of course, can always be eliminated by 
proper choice of Fk(z) for given Hk(z). 

TABLE1 
CONDITIONSUNDERWHICHTHE(M,,/Z)-NDDECIMATEDFILTER 

BECOMESSINGULAR 

Parity of ml Parity of mg Nature of h(n) 
i 

Zeros of Cy(cJw) Zem of A;,(&‘) 

IV. SINGULARITY ISSUES Odd 

In this section, we investigate the conditions under 
which the input signal cannot be reconstructed by the FIR 
filter bank for any arbitrary linear-phase low-pass filter 
H(z). Clearly, these conditions are to be avoided. 

The overall transfer function of the FIR filter bank is 
T(z) and is given by (27), i.e., 

r-1 

T(z) = z-(~-~)~~~G/(z”). 

The input signal is unconditionally nonreconstructable iff 
G,( ej““) = 0 for some I and some w,, unconditionally. In 
other words, one of the decimated filters G[(z) has a 
transmission zero at some frequency w for any arbitrary 
linear-phase filter H(z). Equivalently, the corresponding 
eigenvalue of H(z) (see (19)) has zeros at frequencies 
(wo+2rp)/r for O<p<r-1 causing H(z) to become 
singular at these frequencies. 

If h(n), the impulse response of H(z), is real, then the 
Zth decimated filter will also have a transmission zero at 
27r - w0 and, accordingly, the eigenvalue A,(z) will have 
zeros at frequencies (2~ - w. + 2vrp)/r for 0 < p < r - 1 
as well. Let us now investigate the condition under which 
this situation can arise. 

In the range 0 < I Q m,, the transfer function of the Zth 
decimated filter G,(ej”) is given by 

G,(ej”) = z h(Z+ kr)e-jak. 
k=O 

This vanishes unconditionally when one of the following 
cases arises [7, ch. 31. 

i) The 1 th decimated filter is a linear-phase filter of odd 
order (even length) with a symmetric impulse response. 
For this case, G,(ej”) becomes necessarily zero at w = T. 

ii) The Zth decimated filter is a linear-phase filter of odd 
order with an antisymmetric impulse response. For this 
case, G,(ej”) becomes necessarily zero at w = 0. 

iii) The Zth decimated filter is a linear-phase filter of 
even order with an antisymmetric impulse response. For 
this case, G,(ej”) becomes necessarily zero at w = 0 and 
w = 77. 

For both case i) and ii), m, must be odd, and we must 
have 

h(Z+kr)=h(Z+(m,-k)r), O<k< 
m,-1 

2 

for case i) and 

h(Z+kr)=-h(Z+(m,-k)r), 
m,-1 

O<k<- 
2 

for case ii). For case iii), m, must be even, and we must 

Eves symmetric u=c 

have 

h(Z+kr)=-h(Z+(m,-k)r), O$k+ 

Case i) conditions hold for an arbitrary linear-phase low- 
pass filter with a symmetric impulse response iff 

N-l-Z=Z+m,r 

or 
2Z= m,. 

In other words, if m, is odd and m, even, GWO,,(ej”) 
vanishes at w = r or equivalently Rm0,2(ejw) vanishes at 
all odd multiples of r/r for an arbitrary linear-phase filter 
H(z) with a symmetric impulse response. Similarly, it can 
be shown that if m, is odd and m, even, GmO,,(ei”) 
vanishes at w = 0 and, hence, R,0,2(ejw) = 0 at all even 
multiples of v/r for an arbitrary linear-phase filter with 
an antisymmetric impulse response. If both m, and m, are 
even, it can be shown that G,0,r2(e-jw) vanishes at w = 0 
and w = 7~ and, hence, A m0,2(e’w) = 0 at all multiples of 
q/r for an arbitrary linear-phase filter with an antisym- 
metric impulse response. These results are summarized in 
Table I. 

In the range m. + 1~ Z Q r - 1, the frequency response 
of the Zth decimated filter is given by 

m,-1 

G,(ej”) = c h(Z+ kr)e-Juk. 
k=O 

As in the previous range, this will vanish for any { h(n)} at 
either w = rr or w = 0 or both corresponding to one, of the 
three cases. For the first two cases, m, must be even, and 
we must have 

h(Z+kr)=h(Z+(m,-l-k)r), O<k+-I 

for case i), and 

h(Z+kr)=-h(Z+(m,-l-k)r), O<k+l 

for case ii). For case iii), m, must be odd, and we must 
have 

-1 
h(Z+kr)=-h(Z+(m,-l-k)r), O<kGm, 

2 . 
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TABLE11 TABLE III 
CONDITIONS UNDER WHICH ((m. + r)/2)-ND DECIMATED FILTER 

BECOMES SINGULAR 
CONDITIONS UNDER WHICH SINGULARITY OCCURS, WHEN H,(z) 

HAS SYMMETRIC I~WUL~E bs~0NsE 
I I 

TABLEIV 

Case i) conditions hold for arbitrary linear-phase H(z) 
with a symmetric impulse response iff 

CONDITIONS UNDER WHICH SINGULARITY OCCURS, WHEN H,,(z) 
HAS ANTISYMMETRIC IMPULSE RESPONSE 

r 1 

N-1-Z=Z+(m,-1)r 

or 
2Z=m,-I-r. 

Thus, for m, even and (mo+r) even, Gc,0+rj,2(ejw) 
vanishes at w = n or equivalently A (m,+rj,2( e“‘) vanishes 
at all odd multiples of r/r for an arbitrary linear-phase 
filter H(z) with a symmetric impulse response. Similarly, 
it can be shown that if m, is even and (mO + r) 
even, Gcmo+rj,2 (ej”) vanishes at w = 0 or equivalently 
&q3+,,,2( eJw) = 0 at all even multiples of v/r for an 
arbitrary linear-phase filter H(z) with an antisymmetric 
impulse response. If ml is odd and (m. + r) is even, it can 
be shown that Gcmo+rj/2( ej”) vanishes at w = 0 and w = IT 

Odd Odd Even EVeI 
I I I 1 I 

or equivalently A (m, + rj,2 (e+) = 0 at all multiples of g/r 
for an arbitrary linear-phase filter H(z) with an antisym- 
metric impulse response. These results are summarized in 
Table II. 

To summarize, a singularity situation arises for a linear- 
phase FIR filter with a symmetric impulse response only 
when i) me is even and m, is odd, and ii) (m O + r ) is even 
and m, is even. The combinations of r, mo, m,, which 
result in the above conditions, are listed in Table III. Such 
conditions are avoided by restricting ourselves to the fol- 
lowing choices of r, m,, m,: 

and even N. We thus see that linear-phase FIR filters with 
an antisymmetric impulse response have limited use. Fur- 
thermore, such filters have a zero at w = 0 and therefore 
cannot be used if we want a low-pass filter centered at the 
zero frequency. For this reason, we assume throughout the 
remainder of this paper that all prototype linear-phase 
FIR filters have a symmetric impulse response. 

V. PROPERTIESOF FIR FILTERBANKS 

In this section, we derive several useful properties of 
FIR filter banks discussed in the previous section. 
Property 1 

9 odd r, odd mo, odd m, 
ii) odd r, even m,, even m, 
iii) even r, odd m,, odd m, 
iv) even r, odd m,, even m,. 

But for choices i) and ii), N is odd and for choices iii) and 
iv), N is even. Thus, singularity can be avoided simply by 
choosing N and r to be both odd or both even. For the 
case r = 2, this result is well-known [l]. 

For a linear-phase FIR filter with an antisymmetric 
impulse response, a singularity situation arises only when 
mO or (m,+ r) is even. The combinations of r,m,,m,, 
which result in such a condition, are listed in Table IV. 
Such a condition can therefore be avoided by restricting 
ourselves to even r and odd m,, or equivalently, even r 

For FIR filter banks, the synthesis filters, like the analy- 
sis filters, can be derived from a basic filter F(z), which is 
the same as I;b( z). The synthesis filters are related to F(z) 
by the following equation: 

e(z) = w-‘F(zW’). (34) 
Proof: Using (31) 

=w i(r-1). - ‘, ~~~Rk(z’W”)I”-‘-k)w-i~~-~-k~ 

= w-‘Fo(zW’) = w-‘F(zW’). 

1177 
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Corollary: When n ,, = r - 1+ (N - r). r/2, the synthesis 
filters required for exact reconstruction of the original 
signal, except for a delay of n,, and whose transfer func- 
tions are given by (23) also satisfy this property. 

Proof: Consider the filter D(z), defined by (22). For 
n, = r - 1+ r( N - r)/2, D(z) has the following property: 

Z-[(N-r)/2.r+r-1]W-i((N-r)/2.r+r-l) 

D(zw’) = Z-(r-l).W-i(r-l)n;I;G,(ZrWir) 

=D(z). 

Thus, if the synthesis filters are given by (23) rather than 
(31), then (34) continues to be true. 
Property 2 

The length of the basic synthesis filter I;(z) for FIR 
filter banks is 

N,=(N-r+2)r-N. (35) 
Proof: 

F(z) = I;,(z) =; y&i(zyz-(‘-“) 
r=O 

where 
r-1 

Ritz?) = kcoGk(l’)- 

kfi 

The degree of R,(z’) using (27) and (28) is simply ob- 
tained as follows: 

degree of Ri( z’) 

= degree of (L<G,(z’)) -degree of { Gi(z’)} 

=N,-(r-l)-degreeof {Gi(z’)} 

l 

(N-r)r-m,r, O<i6mm, 
= 

(N-r)r-(m,-l)r, m,+l<i<r-1. 

Clearly, degree of F(z) 

= o<‘,a;-, {degree of z-(‘-‘-‘)Ri(z’)} 
. . 

= max 
1 max {degreeof z-(~-‘-‘).R~(z’)}, 

OdiQm, 

max 
m,+l<i<r-l 

{degree of z -(r-l-O.Ri(zr)}) 

=max{r(N-r)-m,r+r-l,(N-r)r 
- m,r+r-l+(r-m,-1)) 

= r(N-r)-m,r+r-l+r-m,-1 

=(N-r+2)r-N-1. 

Thus, the length of the filter F(z) is Nr = (N - r + 2)r - N. 

Comments on the length of F(z): Note that the length of 
the FIR filter F(z) is much higher than that of the analysis 
prototype filter H,(z) for large r. This is unlike the 
parallel QMF structures proposed elsewhere, such as in 
[37] and [39]. The reason for this increased length is that 
aliasing is guaranteed to be perfectly canceled, regardless 
of the exact nature and quality of Ho(z): 

For composite r (i.e., r not a prime), one can obtain a 
compromise between parallel and tree structures by de- 
composing r, say, as r = r,r,, and decomposing the analy- 
sis stage (and synthesis stage) into two subsections, in a 
manner analogous to the tree structures in [lo]. Such 
decomljosition may lead to reduced overall length of the 
synthesis filters. Notice that aliasing is guaranteed to be 
perfectly canceled even with this decomposition. 

Property 3 

If the basic analysis filter H(z) is a linear-phase FIR 
filter, the decimated filters obey the mirror image property 

G,(z) = Gmo-,(~-l)~-ml, OgI<m, (36) 

G,(z) = G,+m,-,(~-l)~-(m,-l), m,+l<lbr-1. 

(37) 

Proof: Because of the linear-phase property of H(z) 

h(l+kr)=h(N-1-l-kr) 

= h((m, - k)r + m, - r). 

Thus, (26) gives 

G,(z)= 5 h((m,-k)r+m,-I)zdk 
k=O 

=z -ml 5 h(kr+m,-I)zk 
k=O 

=z -mlGm,-,(z-‘) 

which establishes (36). Equation (37) follows in a similar 
manner. 

Property 4 

If the basic analysis filter H(z) is a linear-phase FIR 
filter, then the overall transfer function T(z) has linear 
phase. 

Proof: In view of (36) and (37), T(z) given by (27) 
has the property that if zk is a zero, then so is zi’. Hence, 
T(z) has linear phase. 

Property 5 

If the basic analysis filter H(z) is a linear-phase FIR 
filter, the basic synthesis filter F(z) also has linear phase. 



SWAMINATHAN AND VAIDYANATHAN: UNIFORM DFT, PARALLEL, QMF BANKS 1179 

Proof: 

(using (31)) 

qz-l> = f y$z+cr-l-ii 
r-1 
kvoGk(z-r) (using (21)) 

I-0 
kfi 

r-l 

* ,=$+, ( G,o+r-k(Zr)‘Z(ml-l)r) 
0 

+- ‘,, ,-il 
r-rQ+1 

zr-‘ikfio ( Gmo~k(zr)zm~r) 

r-l 

’ k=~+l ( Gmo+r-k(Zr)*Z(ml-l)r) 

k+‘i 

(using (36) and (37)) 
r-l 

=- 
‘, ,gz 

(r-l-i)Z(N-r).rz--mlr 

I-0 
kvo { Gk(Zr)) 

k#m,-i 

+- ‘, ,-il 
Z(r-l-i)Z(N-r)rz-(mI-l)r 

r-rno’l 

r-l 

* lj tGktzr>) 

kd,+Or-i 

+- f ,-il Zr-l-(mo+r-i)z(N-r)rz-(ml-l)r 

I-mo+1 

r-l 

’ kvo { Gk(Zr)) 

k#i 

= f ~~lzr-l-(mo-i)Z(N-r)rz-m~r r-1 

r=O 
k~o{Gk(zr)~ 

k+i 

= Z(N-r+2)r-N-l. i yi’,-(r-1-i)rfi { i;k(zr)} 

z-n k=O . _ 
k#i 

N-l 
Nd = - 

2 . 

= z+‘.F(z). Then the normalization constraint is also given by 
Thus, if zk is a zero of F(z), then so is zi’. Hence, F(z) 
has linear phase. 
Property 6 

or 

5 d2(n) =l 

If the impulse response h(n) of the basic analysis filter 
H(z) is real, then the impulse response f(n) of the basic 
synthesis filter is also real. 

n=O 

Proof: This property is easily proved by simply ob- 
serving that coefficients of the powers of z-l in the 

where 

dTd=l 

dT= [d(O) d(1) . . . 

decimated filters are real and so the coefficients ,of z-i in 
the basic synthesis filter F(z), given by (31), are also real. 

VI. DESIGN OF LINEAR-PHASE FIR FILTER BANKS 

In this section, we describe a procedure for designing 
linear-phase FIR filter banks. Our procedure uses the same 
distortion measure as in Johnston’s technique [8] as well as 
in a technique proposed by Jain and Crochiere [9]. This 
distortion measure is a weighted sum of the ripple energy 
E, of the overall transfer function T(z) and the stopband 
energy Es of the basic analysis filter H(z). Thus 

E=E,+aE,. 

The analysis filter H(z) is designed by minimizing E 
subject to the constraint that the total energy of H(z) is 
unity, i.e., Cy:th2(n) = 1. The same normalization con- 
straint has been employed by Jain and Crochiere [9]. 

The design procedure is basically a gradient algorithm. 
Before we describe the algorithm, we obtain expressions 
for the normalization constraint, ripple energy E,, and 
stopband energy Es. The gradient computation is discussed 
in Section VI-D, and finally the gradient algorithm is 
described in Section VI-E. 

A. Normalization Constraint 

The normalization constraint is 

N-l 

c h2(n) =l. 
n=O 

For linear-phase FIR filters, h(n) = h( N - 1 - n). So let 
us define for even N 

d(n) =fih(n), @a) 

N,=;-1 

and for odd N 

(38b) 

i 

fib(n), 
N-l 

O<ng-- 
d(n) = 

2 
1 

N-l (394 
h(n), n=- 

2 
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B. Ripple Energy where 
The overall transfer function of the filter bank is T(z), 

which is given by (see (32)) 

T(z) = ; ;-;Hk(z)Fk(z) 

= f $;H(zWk)F(zWk)W-* 

N+N/-2 N-1 
=- : n&‘. ( iFoh(i)f(n -i) ‘i:’ W-(‘.+l)k z-” 

k-0 1 

N-r 

i 

N-l 

= k’&‘oz-(kr+r-l) c h(i)f(kr+r-1-i) . 
i-0 1 

Thus, the impulse response t(n) of the overall transfer 
function T(z) is given by 

I 

N-l 

c h(i)f(kr+r-l-i), if n=kr+r-1, 
t(n) = i=O O<k<N-r 

0, otherwise 
(41) 

for even N and 

‘1 
2 

1 

pij= ( “7 

35 
1 

\4 

for odd N. In matrix form, we can express (43) as 

where 

Note that f(n) is assumed to be zero for n outside the 
range [0, NJ -11 in the above expression. It follows from 
(41) that the overall impulse response t(n) can be obtained 
by first convolving the prototype analysis filter impulse 
response h(n) with the prototype synthesis filter impulse 
response f(n), decimating the convolved sequence by a 
factor of r (starting from the (r - 1)th sample), and finally 
interpolating the decimated sequence by a factor of r. 

Ideally, we want T(z) to obey the design condition in 
(29), (30), or (33) which are all equivalent to 

i 

N-r 
t(n) = ‘7 ifn=- .r+r-1 

2 
0, otherwise 

So, the ripple energy E, of T(z) is simply 
N-r 

Er= C t’(kr + r -1). (42) 
k-0 

k#(N-r)/2 

A= [aijl(Nd+l)x(Nd+l) 

N-r 

aij=Pij C 
k=O 

k#(N-r)/2 

.[f(kr+r-l-j)+f(kr+r-l-(N-l-j))]. 
Wb) 

Note that the matrix A is symmetric and nonnegative 
definite. 

C. Stopband Energy 

The stopband energy of H(z) is given by 

Substituting from (41), we get 
N-l N-l N-r 

E,= c c h(i)h(j) 
i=O j=O 

k;. f@r+r--1-i) 

k+(N-r)/2 

.f(kr+r-1-j). 

where w, is the stopband edge and lies between vr/r and 
2r/r. Equation (45) can be rewritten as 

For linear-phase FIR filters, the ripple energy can also be 
expressed in terms of d(i)3 defined by (38a) and (39a). 
Thus 

E,= F z d(i)d(j)Pii Nir 
i=O j=O k=O 

k#(N-r)/2 

.[f(kr+r-l-i)+f(kr+r-l- N-l-i)] 

+[f(kr+r-l-j)+f(kr+r-1-(N-l-j))] 
(43) 

N-l k-1 

E,= c c h(i)h(k)klnej“(i-k)dw. 
i=O k=O s 

For linear-phase FIR filters, E, can be expressed in terms 
of the vector d. With some manipulation, we can show that 

where 

O<i<N,-1, O< j<N,-1 

i=Nd, O< j<N,--1 
(43b) 

O<i<N,-1, j=N, 

i= Nd, j = Nd 

E, = d TAd (44) 

(444 

[f(kr+r-l-i)+f(kr+r-1-(N-l-i))] 

(45) 

E, = dTVd 

‘= [“ijl(Nd+l)x(Nd+l) 

(46) 

@a) 
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and 

/ [ 

2Pij - 
sino,(i - j) sinw,(N-l-i- j) 

Ir(i- j) - n(N-l-i- j) I 

[ 

7T - w, 
2pij - - 

sino,(N-l-i- j) 
77 

uij = ( 
r(N-l-i- j) I 

2Pij 
-sinw,(i- j) 7T - us 

v(i- j) 
+- 

77 1 
J 

The matrix V, Iike A, is symmetric and nonnegative defi- 
nite. In addition, V is nonsingular and, hence, positive 
definite unless w, = r. 

D. Gradient Computation 
The error measure E is given by 

E = E, + CUE, = dTAd + ad’Vd. 

We would Iike to find the gradient of E with respect to the 
vector d. Note that the elements of the matrix V are 
constants which do not depend on the elements of vector 
d. But the elements of matrix A do depend on the ele- 
ments of d. 

The gradient g is given by 

aE T - . . . - 
WN,) 1 (47) 

and can be computed using 

g=2Ad+2aVd+t (48) 
where 

t = [dTAbd dTA;d. a. dTAbdd] T; @a) 

aaij 
A;= ad(l) [ I (%+1)x(%+1) 

VW 

The partial derivative of the elements aij of the matrix A 
with respect to d(l) is given by 

ifi#jandi+j#N-1 

ifi=jandi+j#N-1 

ifi#jandi+j=N-1 

ifi=jandi+j=N-1 

@6b) 

We now describe a procedure for computing the deriva- 
tives of f(n) with respect to d(l). Let 

I = I, + I,r, O<Z,<r-1. 
Then, for a general FIR filter (not necessarily linear phase) 

aF(z) aFo(z) a -= -=- 
ah(l) aw [ 

1 rilz-(r-l-i) ‘$ Gk(zr) 

ah(l) r i=O ifq I 
(see eq. (31)) 

i f lo k#i 
k # I, 

OQZGN-1. (50) 

Now, N-l- I= m, -lo+(m,- 2,)r. So, for m,-I, > 0, 
we have 

i+mo-I, 

r-l 

* ,rlro G/h’>- 
k#i 

k+m,-I, 

(514 

For m,-IO-co, wehave 
aF(z) 1 r-l 

ah(N-l-l) =; c 
Z-(r-l-i)z-(ml-/l-l)r 

i=O 
i#r+mo-I, 

r-l 

’ kvo Gk(Zr). 
k#i 

k#mo-l,+r 

Wb) 

af(kr+r-l-i) 

ad(l) 

+ af(kr+r-1-(N-1-i)) 

W) 1 
k#(N-r)/2 

*[f(kr+r-l- j)+f(kr+r-l-(N-l- j))] 

+[f(kr+r-l-i)+f(kr+r-1-(N-l-i))] 

af(kr+r-l- j) 

a40 

+ af(kr+r-l-(N-l- j)) 

ad(l) 

O<i<N,, O< j=sN,, O<l,<N,. (49) 
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For linear-phase filters, we have the additional relation h(I) = h(N - 1 - I). Consequently 

a+) -= 
ad(l) 

Wz) 
f%z(N-l-l) 

Wz) 
NO 

O<l<N,-l(odd N) 

O<I<N,(even N) 

2 = N,(odd N) 

(52) 

The partial derivatives af(n)/c?d(l) are simply obtained 
as coefficients of z-” in aF(z)/Jd(l). 

E. Gradient Algorithm 

For a given d, the error measure is 

E(d) = d?4d + adTVd 

and also the vector d is of unit length, i.e., 

d=d = lld11* =l. (53) 
Now if d is changed to d + Ad such that d + Ad is also of 
unit length, then 

E(d + Ad) - E(d) = Ad’s 

where Ad is assumed to be sufficiently “small” so that we 
can ignore second-order terms. Let us choose 

Ad=-rg+vg, (54 
where g, is a vector orthogonal to g, and r is the stepsize, 
a positive number which controls the change in error and v 
is a number chosen so as to ensure that d + Ad has unit 
length. A vector g, such that 

dg=o (55) 
is generated using 

g, = (g=dd-w (56) 
where 

p = g=d. (57) 
One can also verify easily the following relations using 
(53), (55), (56), and (57): 

g;d=g++* (58a> 

dg, =d&A!-P21. (58b) 
From (58b), it follows that 

g’g z CL*. (584 

We now evaluate the constant v that is needed to ensure 
that d + Ad is of unit length, i.e., 

(d + Ad)=(d + Ad) =l. 
Substituting for Ad from (54) in the above expression and 
using (53), we get 

v2grgl +2vg;d + I’*g=g -2I’g=d = 0. 

Using (57), (58a), and (58b), we get 

gTg[gTg-~2]v2+2v[gTg-p2]+r2gTg-2r~=o. (59) 

,Solving for v, we obtain 
1 

v=y 
gg 

A smaller v and, hence, a smaller IlAd is obtained with 
the ( + )ve sign. So this is preferred. Thus 

1 
v=y 

gg 

(,+fi-Wi)(-,+E+rh) wrP2) 
(60) 

For v to be real, we must have 

P-i& =d--G p+fi 
&f-i I& . 

But r is a positive number and fi - fi G 0 from (58~). 
So the range of permissible values for I’ is [0, r,,], where 
r max is given by 

r,,=(~+fi)h?i. (61) 

To summarize, a decrease in the error E can be obtained 
by changing every unit length vector d to another unit 
length vector d + Ad, where Ad is as in (54). In this 
equation, g is the gradient of the error E evaluated at 
d, g, is the vector orthogonal to the gradient g and is 
given by (56) I’ is the stepsize that must lie in the range 
[O,r,,], and v is a constant that ensures that d + Ad is of 
unit length and is given by (60). Thus, by modifying the 
vector d every iteration, the error E can be reduced to 
within acceptable limits. 

The exact choice of I controls the change in error at 
every iteration and, hence, the rate of convergence. For a 
large change in error at every iteration, a large value for I 
would be necessary. But a small I is necessary,.so that 
IlAd ]I is small enough for the second-order effects to be 
negligible. At every iteration, it is necessary to verify that 
the chosen value for the stepsize, say r,,, is less than I,,. 
If it is not so, then the stepsize is reset to I,, for that 
iteration. In other words, the stepsize is chosen accord- 
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Fig. 4. Magnitude plot of prototype analysis filter H(@) in 
Example 1. 

ing to 
r=min(r,,r,,). 

The initial value of h(n) used in the gradient algorithm 
is the following: 

/ N-r 
0, Odn<- 

2 
-1 

h(n) =( +, 
N-r N+r 
-<n< --I. 

2 2 
N+r 

0, -<nngN-1 
2 

This corresponds to the case when the ripple energy is 
exactly zero. This is easily verified by noting that the 
corresponding decimated filters are given by 

O<I< 
m,+r-1 

2 
m,+r+l 

2 
gl<r--‘l 

where m, is even and 

1 -,-(m1+1)/* -1 

G,(z) = y 

i 

’ 
O&f!?-- 

2 

-(ml-W* m,+l 
TV , 2 =slGr-1 

when m, is odd. Thus, the overall transfer function T(z), 
which is given by (27) i.e., 

r-l 

T(z) = z-(~-~) n G,(z’) 
[=O 

simply reduces to 

Hence, the ripple energy, defined in (42), is identically 
zero. Note that for this initial value of h(n), the FIR 
filterbank satisfies (29) and (30) exactly. 

VII. EXAMPLES 

A Fortran program has been written which implements 
the design procedure described in the previous section. In 
this section, we present two examples: 

i) a two-band filter bank with filter length being 32, 
i.e., r = 2, N = 32, 

ii) a three-band filter bank with filter length being 49, 
i.e., r 5 3, N = 49. 

In both the examples, the stepsize r,, was chosen to be 
0.6 and the value of cx was chosen to be 1.0. The value of 
ws in example i) was chosen to be 1.2g/r = 0.6s and 
1.25v/r = 0.4167~ in example ii). For both examples, 
magnitude plots of the prototype analysis low-pass filter 
transfer function H(ej”) and the overall transfer function 
T( ej”) are shown in Figs. 4-7. The filter coefficients h(n) 
are also listed. The following two significant quantities are 
computed: i) the attenuation AL (in decibels) at the first 
sidelobe in the stopband of IH(ej“)l, and ii) the ripple c 
(in decibels) which is defined as 

‘E = i [ m~~20log,,lT(ej”)lJ- r$n~2010g,,lT(ej~)ll]. 

The values of AL and c are provided in both the examples. 

Example 1 

For r = 2, N = 32, OL =l.O, r, = 0.6, and w, = 0.6~~ the 
following coefficients were obtained at the end of 65 
iterations (final values of E,. = 0.12273200 - 06, Es = 
0.65952510 - 05, and E = 0.67179830 - 05): 

h(O)= h(31) =1.5811828831575D -03 
h(1) = h(30) = - 2.86624387104910 - 03 
h(2) = h(29) = - 2.34231838940460 - 03 
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Fig. 6. Magnitude plot of prototype analysis filter H(&‘) in 
Example 2. 

h(3) = h(28) = 7.71452695938830 - 03 
h(4) = h(27) = 2.04308295792690 - 03 
h(5) = h(26) = - 1.57491265933850 - 02 
h(6) = h(25) = 6.09517173789780 - 04 
h (7) = h(24) = 2.79979645564740 - 02 
h(8) = h(23) = - 7.66859008727320 - 03 
h(9) = h(22) = - 4.63347194456570 - 02 

h(lO) = h(21) = 2.31067971256400 - 02 
h(l1) = h(20) = 7.60677976144200 - 02 
h(12) = h(19) = - 5.84233425700910 - 02 
h(13) = h(18) = - 0.14099868001000 
h(14) = h(17) = 0.18421046025819 
h(15) = h(16) = 0.65812951736014. 

The corresponding magnitude plots of the filter transfer 
function H(ej”) and the overall transfer function T(ejW) 
are shown in Figs. 4 and 5, respectively. The significant 
quantities AL and z are 44.40 dB and 0.01596 dB, respec- 

tively. A plot of the synthesis prototype response IFo(ej”)l 
reveals that it has essentially the same low-pass nature of 
H,(z). Even though this can be understood based on an 
intuitive argument, no theoretical proof is attempted in 
this paper. 

In the Jain-Crochiere design of a 32-tap QMF pair, the 
corresponding values for AL and c are 44 dB and 0.015 
dB. In [S], Johnston has listed two designs for a 32-tap 
QMF pair. The best set of values for AL and c are 51 dB 
and 0.009 dB (this corresponds to the design with (Y = 2.0 
and normalized transition bandwidth of 0.0625). Thus, the 
design for r = 2 is comparable to both the Jain-Crochiere 
as well as Johnston’s design of the QMF pair. 

Example 2 

For r = 3, N = 49, (Y =l.O, IO = 0.6, and O, = 0.46177~, 
the following coefficients were obtained at the end of 350 
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Fig. 7. Magnitude plot of overall transfer function T( e“‘) in 
Example 2. 

iterations (final values of E, = 0.74157540 - 07, Es = 
0.11450030 -05, and E = 0.12192410 -05): 

h (0) = h (48) = 0.98208840679OlD - 04 
h (1) = h(47) = 1.37660906473860 - 03 
h(2) = h(46) = - 4.7910880128979D - 04 
h(3) = h(45) = - 3.16772913125540 -03 
h(4)= h(44) = - 2.49987999102340 -03 
h(5) = h(43) = 2.83200637163340 - 03 
h(6) = h(42) = 7.16667394847460 - 03 
h(7)= h(41) = 2.9142318531781D -03 
h (8) = h(40) = - 8.22635310685440 - 03 
h(9)= h(39) = - 1.3017340160472D -02 

h(lO) = h(38) = - 1.0208555873822D -03 
h(l1) = h(37) = 1.8269886783613D - 02 
h(12) = h(36) = 2.028175022761OD - 02 
h(13)= h(35) = -5.74240525498310 -03 
h(14) = h(34) = - 3.52210724755630 - 02 
h(15) = h(33) = - 2.801492728515OD - 02 
h(16) = h(32) = 2.20447929531580 - 02 
h(17) = h(31) = 6.40509151163690 - 02 
h (18) = h(30) = 3.49366577268580 - 02 
h(19)= h(29) = -6.0910885840952D -02 
h(20) = h(28) = - 0.12484310053556 
h(21) = h (27) = - 3.97437355798370 - 02 
h(22) = h(26) = 0.20915858960999 
h(23)= h(25) = 0.48913886425113 

h(24) = 0.61185356418355. 

The corresponding magnitude plots of the filter transfer 
function H(ej”) and the overall transfer function T(ei”) 
are shown in Figs. 6 and 7, respectively. The significant 
quantities AL and E are 51.53 dB and 0.02091 dB, respec- 
tively. A plot of the synthesis prototype response ] Fb( &“)I 
reveals that it has essentially the same low-pass nature of 
H,(z). Even though this can be understood based on an 
intuitive argument, no theoretical proof is attempted in 
this paper. 

VIII. GENERAL r-BAND IIR QMF BANKS 

Based on the derivations of Sections II-V, it is a simple 
task to extend the solution to the QMF problem for the 
IIR case. In applications where phase distortion (but not 
amplitude distortion) can be tolerated, it is more ap- 
propriate to use IIR rather than FIR filters, as shown in 
this section. As pointed out in Section III, Bellanger et al. 
[3] have shown how an arbitrary digital filter transfer 
function H(z) can be written in a form suitable for 
polyphase implementation as in (14b), i.e., 

r-1 

H(z) = c z-~G,(z’) W) 
k=O 

where Gk(z) is the transfer function of the k th decimated 
filter. Bellanger et al. have shown in [3] that when H(z) is 
an IIR filter, the G,(z)‘s all have the same denominator 
and furthermore that the G,(z)‘s closely resemble allpass 
functions when H(z) is a low-pass prototype with a pass- 
band width of about r/r. In this section, we employ the 
same polyphase structure along with an IDFT for the 
“analysis section” of the QMF bank. Without assuming 
the G,(z)‘s to be allpass or even approximately allpass, we 
show how to obtain a “synthesis bank” which can be 
employed along with the analysis bank so that the recon- 
structed signal X(z) is given by 

g(z) = A(z)X(z) (6’4 . 

where A(z) is a stable allpass function. The above equa- 
tion essentially means that the aliasing error terms have 
been completely cancelled and the reconstructed signal 
only suffers from a phase distortion. For the case of r = 2, 
Barnwell [6] has shown how an IIR QMF bank :an be 
constructed such that the reconstructed signal X(z) is 
related to X(z) as in (62). The main purpose of this section 
is to generalize these results. 

Let us assume that the given low-pass prototype H(z) 
has been expressed as in (14b). Let us assume that the 
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Fig. 9. Equivalent IIR filter bank used for theoretical study. 

transfer function of the k th decimated filter Gk( z) is given 
by 

G,c(z) = P&)/Q(z), O<k<r-1. (63) 
Notice that the denominator polynomial Q(z) is the same 
for all k. The polynomials P,Jz) and Q(z) can be com- 
puted following Bellanger’s approach in [3] if the poles of 
H(z) are known. (Refer to the Appendix in this context, 
where we indicate how P,Jz) and Q(z) can be obtained 
without the explicit knowledge of the poles of H(z).) 

Both analysis and synthesis sections of the IIR filter- 
bank are shown in Fig. 8, where the quantities 
fG)(z),-. *> R,-,(z) are to be determined such that (62) 
holds. Fig. 8 has been obtained here in analogy with the 
derivations and conclusions of Section III. Note that the 
DFT and IDFT blocks have been coalesced for analysis 
purposes, as shown in Fig. 9. 

The overall structure of Fig. 9 is time invariant provided 
the quantities Pk(z)Rk(z)/Q(z) are identical for all k. 
Under this condition, with 

S(z) p 4c(z>&(z)/Q(z) (64 
we can easily verify that 

R(Z) = z-(‘-‘)S(z’)X(z). (65) 

Thus, the overall transfer function is z-(‘-‘)S(z’). We 

therefore need only to choose Rk(z) such that the right- 
hand side of (64) is a stable ahpass function, independent 
of k. Under this condition, X(z) given by (65) is com- 
pletely free from aliasing terms and amplitude distortion 
and only suffers a phase distortion. 

Clearly, the choice Rk( z) = Q( z)/Pk( z) accomplishes 
the desired goal, with S(z) in (65) becoming unity. How- 
ever, the synthesis bank is then not guaranteed to be stable 
because the polynomials Pk(z) do not necessarily have all 
zeros strictly inside the unit circle. This problem can be 
handled by decomposing each P,Jz) as 

p,(z) = %in,kwtnax,k(z) (66) 
where P&, k( z) is a minimum-phase polynomial which has 
all its zeros strictly inside the unit circle and Pm,, k( z) is a 
maximum-phase polynomial which has all its zeros strictly 
outside the unit circle. We have implicitly assumed that 
Pk(z) has no zeros on the unit circle. Indeed, if Pk(z) had 
a zero at zO=e jwo (and, hence, at e -+o if h(n) is real), 
then the k th branch in Fig. 9 would have zeros at frequen- 
cies (w,+2?rp)/r for O<p<r-1 (and also at (27r-w0 
+ 27~p)/r for 0 Q p < r - 1 if h(n) is real). As discussed in 
Section IV, such a singularity situation would imply that 
X(ej”) cannot be recovered by the filter bank at these 
frequencies. Thus, our assumption that Pk(z) has no roots 
on the unit circle is entirely consistent with the conditions 
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that would naturally be imposed by the requirements of Equation (72) implies that 
reconstructability of the incoming signal. 

Now define the set of transfer functions 
z-“Q(z-‘) 

G&) = Q(Z> 9 O<k<r-1. (73) 

T,(z) = 
Q(z) 

kin,kwLx,k(4 
(67) Substituting in (14b), we have 

where pm,,,(z) is the mirror image of Pmax,k(z), i.e., 

F,,,,(z) =Z-“‘P,,,&(Z-l). (68) 
H(z) =z-~~~[l+z-l+ - * * +z-(r-l)]. (74) 

In the above equation, nk is the order of P,=,Jz). 
Clearly, P m,,k(z) has minimum phase and, hence, Tk(z) 
is stable. If Rk(z) were taken to be equal to Tk(z), then 
the k th br!nch in Fig. 9 would have transfer function 
P max kw/pma, k(Z). 1 n order to make the branch transfer 
functions independent of k, it is therefore only necessary 
to set 

I+k 

This choice leads to 

S(z) = (70) 

which is clearly a stable allpass function, independent of 
k. Thus, we finally have (62), where 

A(z) = z-(‘-%( z’) = a stable allpass function. (71) 

Clearly, the complexity of the synthesis bank depends on 
the orders of Q(z) and the factors Pm=,,(z). If all the 
polynomials Pk(z) happen to have minimum phase, then 
Rk(z) = Q(z)/Pk(z) for all k, thus leading to the simplest 
possible synthesis bank. In this case, the cascade of the 
analysis and synthesis bank would be an identity system 
(except for a delay of r -l), leading to a perfect-recon- 
struction system. This observation has also been made by 
Smith [3, ch. 51. 

Finally, note that closed-form expressions for the trans- 
fer functions Fk(z) of the synthesis bank are once again 
given by (31) with Rk(z) now given by (69). We wish to 
emphasize that no assumptions have been made about the 
nature of H(z) except that none of the decimated filters 
Gk(z) have transmission zeros on the unit circle. In the 
following subsection, we consider a specific instance of the 
above general setup. 

A. A Special Case 

If H(z) is a low-pass transfer function with passband 
width nearly equal to r/r, then the decimated filter trans- 
fer functions Gk(z) closely resemble allpass functions [3]. 
It might, in fact, turn out that Gk(z) are exactly allpass 
functions. For the case of r = 2, this phenomenon has been 
known for some time. The interested reader is referred to 
Constantinides [4], Liu et al. [12], and Fettweis et al. [13], 
[14] for related results. If Gk(z) is an allpass function, 
then, with N denoting the degree of Q(Z) 

P,(z) = z-~Q(z-‘), Ogk<r-1 (72) 
if there are no cancellations in the ratio Pk(z)/Q(z). 

But this is a trivial situation because the amplitude shaping 
provided by H(z) is then entirely due to the FIR filter 
whose transfer function is 1+ z-l + . . . + z-‘+l. Accord- 
ingly, we rule out the possibility that Pk(z) and Q(z) are 
relatively prime. Assuming therefore that there are cancel- 
lations, the decimated filter transfer functions can be 
expressed in their minimal forms as 

bik(z) 
Gk(Z) = - 

, ak(z)’ 

O<k<r-1 (75) 

where aik(z) is the mirror image of (Ye. If we choose 
Rk(z) to be the following stable allpass function: 

r-1 
&c(Z) = log, =;f?$& O<k<r-1 (76) 

I#k I#k 

then we have 
r-1 

S(z) = %(z)Rdz) = l~DG,b) = l$ (YIO 
r-1 4(z) (77) 

, 

which is independent of k. The overall transfer function 
A(z) is again given by (71). Note that, in this special case, 
every transfer function building block, i.e., G,(z)‘s and 
Rk(z))s, in the IIR filter bank has an allpass nature. 

B. Relation to Low-Sensitivity IIR Filters Satisfying 
Allpass-Decomposition Property 

Until this point, we have discussed only multirate filter 
structures in this paper. Let us now go back to single-rate 
digital filtering and review certain well-known properties 
satisfied by certain IIR digital filter transfer functions. 
These properties pertain to a concept called double-com- 
plemtarity [13], [14], [15], and lead to very efficient IIR 
digital filter implementations [16]. We wish to revisit these 
single-rate implementations in the context of multirate 
QMF banks and place in evidence their extreme suitability 
for multirate applications. 

Two digital filter transfer functions H,,(z) and H,(z) 
with the same common denominator polynomial are said 
to be “power complementary” [15] if 

lHo(ejw)12 + IHl(eio)12 =l, for all 0. (78) 

The pair (H,(z), Hr( z)) is called a power-complementary 
pair. There exist certain power complementary pairs that 
can be decomposed into sums and differences of allpass 
functions [16]. This property is referred to as the allpass 
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decomposition property. Thus 

(79) 

4(z)=~[A,(z)-A,(z)l. (80) 

Equivalently 

4(z) = &(z) + W) (81) 

4(z) = fbb) - f&w. (82) 

Typical examples of such complementary pairs are odd- 
order digital Butterworth, Chebyshev, and Elliptic low- 
pass/high-pass pairs. (Note that if H,(z) is lowpass, then 
H,(z) is highpass in view of (78).) 

An advantage of the decomposition of (79) and (80) is 
that it leads to dramatically efficient filter structures re- 
quiring very few multipliers. Moreover, if A,(z) and A,(z) 
are implemented in a “structurally lossless” manner [17], 
the resulting implementation is “structurally passive,” giv- 
ing rise to very low passband sensitivities [18]. The details 
of these issues are beyond the scope of this section and the 
reader is referred to [4], [12]-[18]. 

The main purpose of the subsection here is to indicate 
the suitability of these efficient structures for multirate 
applications. To be specific, let us consider the case of the 
QMF bank for r = 2. Let us choose the analysis filters 
Ho(z), H,(z) in the usual manner [9], i.e., 

H,(z) = I&( - z). (83) 
In addition, let H,(z) and H,(z) be implementable in the 
forms shown in (79) and (80). Let the synthesis filters 
F,(z) and F,(z) be chosen in the usual manner [9], i.e., 

F,(z) = f&(z) (844 
F,(z) = -H,(z). (84b) 

Then there is perfect cancellation of the aliasing terms, and 
the reconstructed signal is 

T?(z) = [H(jyz)-Hf(z)]X(z). (85) 

In view of the allpass decomposition of (79) and (SO), the 
above equation leads to 

R(z) = A,(z)A,(z)X(z). (86) 
Thus, the overall transfer function is a stable allpass 
function and therefore the signal has been perfectly recon- 
structed to within a phase distortion. Fig. 10 shows the 
overall implementation. A similar reconstruction property 
is satisfied by certain suitably designed wave digital filter 
circuits, as shown by Fettweis [14]. 

In order to derive a polyphase implementation of the 
circuit in Fig. 10, first note that if H,(z) and H,(z) are 
related by (83), then 

&(z) = Ho(z) + J&(z) 
=H,(z)+H,(-z) 

= uo( z”) (87) 

4(z) = f4d4 - K(z) 
=H,(z)-I&(-z) 

= z-+2,( z’). (88) 

The polyphase implementation of the structure of Fig. 10 
can now be obtained directly and is shown in Fig. 11. 

Since H,(z) and H,(z) satisfy (78) and (83) simulta- 
neously, they exhibit a certain symmetry around 77/2. Fig. 
12 shows a typical sketch of ]H,,(e@)]2 and ]Hi(ej”)]2 for 
an equiripple case. Such transfer functions can be looked 
upon as logical extensions of half-band FIR transfer func- 
tions [7], [19]. These transfer functions, because of the 
symmetry around 7r/2, are also called symmetrical func- 
tions [4]. Note that if 6, and 6, represent the peak-ripples 
in the conventional sense (see Fig. 13) then these symmet- 
rical filters have the design requirement 

1 - (1 - 2s,)2 = s,2 

which should be taken into account while designing Ho(z). 
We now generalize the concepts mentioned so far in this 

subsection to the r-band case. The allpass decomposition 
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Fig. 13. Illustrating the design requirements of symmetrical filters. 

property can be extended to r filters Ho(z); . . , H,-,(z) 
by defining a vector of allpass components a(z) such that 

h(z) = f .wt.a(z) (89) 

where 

and 
h(z) = h(z) f&(z). . * fL(41 T 

a(z) = [A,,(z) A,(z)--.A,-,(z)]~ (89a) 

IAk(ej”)l =l forall w,O<kgr-1. (89b) 
and W is the usual r-point DFT matrix. Equations (79) 
and (80) are clearly special cases of (89). From (89), it 
follows that 

ht(ej”)h(ej”) = ~ut(e+)~(ej”) =l (90) 

since the components of a(ej”) all have unit magnitude. 
In other words, the set of r filter transfer functions 
Ho(z), Hl(Z>,. * *> H,-,(z) satisfy the property 

IHo(ej”)12+IHI(ej0)12+ ... +IH,-,(ej”)12=1. (91) 

Equation (78) is clearly a special case of the above equa- 
tion. Note that if each allpass function is implemented in a 
structurally lossless manner, then each Hk(z) is structur- 
ally passive because of (91) and, hence, has low passband 
sensitivity [17], [18]. 

Given a set of frequency domain specifications, one 
design issue is to compute the coefficients of h(z), or 
equivalently a(z), satisfying these specifications. This de- 

although some preliminary work can be found in [15]. 
Another related question worth exploring is, how to pre- 
cisely characterize the class of frequency responses Hk( e j”) 
if they are to satisfy (89). 

For uniform filter banks, i.e., where 

H,(z) = H&W“), O<k<r-1 

the vector h(z) can be related ‘to the decimated filter 
transfer functions G,(z’) by (16), i.e., 

h(z) = Wtg(z) 
where g(z) is as defined in (16b), which is 

g(z) = [Go(z’) Z-lG,(z’) ...z-(‘-~)G~_~(z’)]~. 

Thus, the uniform filter bank can satisfy the allpass de- 
composition property of (89) iff 

Ak(z) =rz-“Gk(z’), Ogk<r-1. (94 

In other words, the uniform filter bank can satisfy the 
allpass decomposition property iff the decimated filter 
transfer functions are allpass functions. But this is the 
same situation as the special case described in Section 
VIII-A. Thus, the design problem concerning H(z) can be 
restated as follows: Given the prototype filter order N, 
how should Ak(z) in (92) be designed so that the low-pass 
prototype H(z) satisfies a given set of design requirements 
such as stopband energy level, transition bandwidth, etc. 
This requires further investigation. 

Ix. hfMARY 

A unified theory of uniform DFT parallel QMF banks 
has been presented in this paper. Various aspects of FIR, 
as well as IIR, uniform DFT parallel QMF banks were 
addressed. A design procedure for FIR filter banks along 
with examples was presented. Improvements in design 
procedures for FIR filter banks, as well as design proce- 
dures for IIR filter banks, are currently being investigated. 
Extensions of the theory to GDFT (generalized DFT), as 
well as r-channel QMF banks having filters with real 
impulse responses are currently under study. 

APPENDIX 

Let H(z) be an Nth-order IIR transfer function 

H(z) = 
a, + a,z-l+ - * * + UNZCN 

l+b,z-‘+ ... +&z-N . (Al) 

Let us assume, as is generally the case, that the poles of 
H(z) are distinct. Then H(z) can be expressed, using 
partial fraction expansion, as 

H(z)=k,+ f 
k, 

,=I l- p,z-l 

where the residues k, and poles p, may be complex. The 
causal impulse response corresponding to H(z) is given by 

h(n) = k&n)+ ; k,p;u(n) 643) 
I=1 
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where S(n) and u(n) denote the unit impulse and unit step 
functions, respectively. Clearly then, the inverse transfor- 
mation of G,Jz), defined by (14a), is given by 

g,(n)=h(m+k) 

PI 

PI 

= k,S(rn + k)+ f k,p,kp;“u(rn + k), 
I-1 

I31 

Hence 
naO,Ogk<r-1. (A4) [41 

[51 

G/h) = k,&,(k) + ,cl 1 :;-;-l. (A5) 

In other words, Q(z) in (63) is given by 

N 

and’ is independent of k. 
In practice, it is not necessary to compute the poles p, 

in order to obtain Gk(z) for a given H(z). The common 
denominator Q(Z) of the Gk(z)‘s, given by 

Q(z) =l+q,z-‘+ a.. +& 647) 

can be found by simply solving the set of N linear 
equations [20] 

go(N) *** go (2) go(l) 
g,(N+l) **- g,(3) go (2) .1 

g,(2N-1) *a* goW+l) go(N) 1 

41 

q2 

qN 

=- 

go(N+l) 
go(N+2) . 

_ go&N) 
The numerator coefficients, i.e., coefficients of P,Jz) in 
(63), given by 

+ Pk,Nz-N (A91 

can be computed as 

P/c,0 = g/c(O) 

Pk,l = gk(l) + q&k(O) 

Thus, given the rational transfer function H(z), all the 
rational representations of the decimated filters Gk(z’) 
can easily be found. 
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