
SIAM J. NUMER. ANAL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 5, pp. 2131–2158

OPTIMAL DISCONTINUOUS GALERKIN METHODS
FOR WAVE PROPAGATION∗

ERIC T. CHUNG† AND BJÖRN ENGQUIST‡

Abstract. We have developed and analyzed a new class of discontinuous Galerkin methods (DG)
which can be seen as a compromise between standard DG and the finite element (FE) method in the
way that it is explicit like standard DG and energy conserving like FE. In the literature there are
many methods that achieve some of the goals of explicit time marching, unstructured grid, energy
conservation, and optimal higher order accuracy, but as far as we know only our new algorithms
satisfy all the conditions. We propose a new stability requirement for our DG. The stability analysis
is based on the careful selection of the two FE spaces which verify the new stability condition. The
convergence rate is optimal with respect to the order of the polynomials in the FE spaces. Moreover,
the convergence is described by a series of numerical experiments.
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1. Introduction. Many applications involve the solution of wave equations. Ex-
amples are electromagnetic waves for radar and communication as well as acoustic
and seismic wave propagation. Let Ω ⊂ R

2 be a two dimensional polygonal domain
with outward normal vector n and let T > 0 be a fixed time. Given two positive
constants a1 > 0, a2 > 0 and two given functions F1(x, t), F2(x, t), we will consider,
for (x, t) ∈ Ω× (0, T ), the following wave propagation problem: find a function u(x, t)
and a vector field v(x, t) ∈ R

2 such that

a1
∂u

∂t
+ Bv = F1,(1.1)

a2
∂v

∂t
−B∗u = F2,(1.2)

where the two operators B and B∗ satisfy

∫
Ω0

(B∗φ)ψ dx−
∫

Ω0

(Bψ)φ dx =

∫
∂Ω0

(Lψ)φ dσ(1.3)

for all subset Ω0 ⊂ Ω. Here L is some operator depending on the two operators B,
B∗ and the subdomain Ω0. We also denote by L⊥ the operator such that |ψ|2 =
|Lψ|2 + |L⊥ψ|2. Assume that there is an operator B⊥ such that BB⊥p = 0 for all p.
Acting (B⊥)∗ to (1.2) and using (B⊥)∗B∗ = 0, we have the following:

∂

∂t
(a2(B

⊥)∗v) = (B⊥)∗F2.(1.4)
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The condition (1.4) usually has important physical significance. For example, in the
case of electromagnetic wave propagation (see (E) in the following), v represents the
electric field, (B⊥)∗ is the divergence operator, and (1.4) is just the continuity equation
expressing the conservation of charges. We supplement the system (1.1)–(1.2) with
boundary condition

Lv = 0 ∀x ∈ ∂Ω(1.5)

and initial conditions

u(x, 0) = u0(x) and v(x, 0) = v0(x) ∀x ∈ Ω,(1.6)

where u0(x) and v0(x) are given. In particular, we are interested in the acoustic and
the electromagnetic wave equations, which correspond to the following choice of B
and B∗:

(A) Acoustic: Bv = −∇ · v, B∗u = ∇u, and Lv = v · n.
(E) Electromagnetic: Bv = ∇× v, B∗u = ∇× u, and Lv = v × n.

Notice that, in (1.1)–(1.2), u(x, t) is a function while v(x, t) = (v1(x, t), v2(x, t)) is a
vector having two components. So the operator ∇× is defined as ∇×v = ∂1v

2−∂2v
1

for any vector field v and ∇ × u = (∂2u,−∂1u) for any function u. Here v × n =
v1n2−v2n1 with n = (n1, n2). In (A) and (E), we use n to denote generically the unit
normal vector of the corresponding subdomain which defines L and L⊥. Moreover,
we have L⊥ψ = ψ × n for (A) while L⊥ψ = ψ · n for (E). Furthermore, we have
B⊥p = ∇× p and (B⊥)∗p = ∇× p for (A) while B⊥p = ∇p and (B⊥)∗p = −∇ · p for
(E). Wave propagation problems can be solved by partial differential equation (PDE)
techniques, integral equation techniques, and asymptotic techniques. Among PDE
techniques, finite difference (FD) method, finite volume (FV) method, finite element
(FE) method, and discontinuous Galerkin (DG) method are the most popular choices.
The FD method provides a simple way to solve wave propagation problems, but it
is typically low order and applies only to structured grids. The FV method can be
seen as a generalization of the FD method to unstructured grids, but it is still low
order. The FE and DG methods provide high order solvers for the time dependent
wave equations on unstructured grids.

Nédélec [15] introduces a curl-conforming FE method for solving Maxwell’s equa-
tions. Geveci [8] proposed a mixed FE method for the scalar wave equation. The
inversion of the mass matrix at each time step causes some possible drawback in the
efficiency of those methods. Mass lumping techniques can be used to avoid solving
linear systems. In Cohen and Monk [6], a mass lumping method for rectangular grids
is developed. In Bécache, Joly, and Tsogka [1], a new class of mixed FE method, which
is suitable for mass lumping, is developed for the scalar wave equation. Cohen, Joly,
Torjman, and Roberts [5] design a mass lumping technique for triangular grids for
polynomial order up to five. Discontinuous Galerkin methods provide explicit schemes
in the sense that only block diagonal mass matrices have to be inverted. Hesthaven and
Warburton [10] proposed a DG method based on upwind flux and Cockburn, Li, and
Shu [4] proposed a DG method based on locally divergence free basis and upwind flux.
While the schemes are successful, energy is not conserved due to the upwinding. Fe-
zoui, Lanteri, Lohrengel, and Piperno [7] proposed a DG method based on central flux.
This method preserves energy, but the convergence rate of the scheme is suboptimal.
Recently, a new DG method has been developed for the wave equation in second order
form; see Grote, Schneebeli, and Schötzau [9]. The method is also energy conserving



OPTIMAL DISCONTINUOUS GALERKIN METHODS 2133

DG
both u and v are
discontinuous� � �� �

Our DG
u and v are continuous
at different points� � �� �

v

u

FE
both u and v are
continuous� � �� �

Fig. 1.1. Comparison among standard DG, our new DG, and FE methods.

in the sense of a newly defined energy. A space-time DG method has also been
developed in Monk and Richter [14].

In this paper, we will develop and analyze a new class of DG methods which can be
seen as a compromize between FE and DG methods. Our new DG method combines
the advantages of FE and DG methods in the sense that it is both energy conserving
and explicit. The idea is to use discontinuous functions with extra continuity. In
the velocity-potential formulation of the scalar wave equation (A), we will add extra
continuity to the velocity where the potential is discontinuous and add extra continuity
to the potential where the velocity is discontinuous. For Maxwell’s equations (E), a
similar idea can be applied to the electric and magnetic fields. As a result, the flux
integrals are evaluated exactly, which is the basis of energy conservation. However, the
addition of the extra continuity cannot be done arbitrarily due to stability concerns.
It has to be done in such a way that some inf-sup conditions are satisfied. In Figure
1.1, we illustrate this idea in one space dimension. For standard DG, both unknown
functions u and v, which are velocity and potential for scalar wave equation and
are electric and magnetic fields for Maxwell’s equations, are discontinuous at cell
boundaries. For FE methods, both u and v are continuous. For our new DG, the two
functions are continuous at different points.

Yee’s scheme [16] has been a very popular numerical method for computational
electromagnetics. It is a second order central FD method on structured grids. The
success of the scheme is due to the use of a staggered grid. Our new DG method is
a FE method on staggered grids and can be seen as a higher generalization of Yee’s
scheme on unstructured grids. In particular, in one space dimension, our new DG
method with piecewise constant approximation is the same as Yee’s scheme. In two
space dimensions, our new DG method in the lowest order is some averaged version
of Yee’s scheme.

The rest of the paper is organized as follows. In section 2, we will introduce
the new FE spaces and prove the corresponding unisolvence and interpolation error
estimates. The new DG is then derived in section 3. In section 4, under the assumption
of some inf-sup conditions, the stability and convergence of the method are proved.
The inf-sup conditions are then verified in section 5. Furthermore, some numerical
experiments are presented in section 6. The paper ends with a conclusion.

Remark. We consider only two space dimensions in this paper. For three space
dimensions, a careful choice of the two FE spaces Uh and Vh that verify (3.1) and
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(3.2) as well as the two inf-sup conditions (4.1)–(4.2) are required. This work will be
developed in a forthcoming paper.

2. FE spaces. Assume the domain Ω is triangulated by a family of triangles T
so that Ω = ∪{τ | τ ∈ T }. Let τ ∈ T . We define hτ as the diameter of τ and ρτ as the
supremum of the diameters of the circles inscribed in τ . The mesh size h is defined
as h = maxτ∈T hτ . We will assume the set of triangles T forms a regular family of
triangulation of Ω so that there exist a uniform constant K independent of the mesh
size such that [3]

hτ ≤ Kρτ ∀τ ∈ T .

In addition, we will assume the triangulation satisfies the inverse assumption [3].
Let E be the set of all edges and let E0 ⊂ E be the set of all interior edges of the

triangles in T . The length of σ ∈ E will be denoted by hσ. We also denote by N the
set of all interior nodes of the triangles in T . Here, by interior edge and interior node,
we mean any edge and node that does not lie on the boundary ∂Ω. Let ν ∈ N . We
define

S(ν) = ∪{τ ∈ T | ν ∈ τ}.(2.1)

That is, S(ν) is the union of all triangles having vertex ν. We will assume the
triangulation of Ω satisfies the following condition.
Assumption on triangulation: There exists a subset N1 ⊂ N such that

(A1) Ω = ∪{S(ν) | ν ∈ N1}.
(A2) S(νi) ∩ S(νj) ∈ E0 for all distinct νi, νj ∈ N1.

Let ν ∈ N1. We define

Eu(ν) = {σ ∈ E | ν ∈ σ}.(2.2)

That is, Eu(ν) is the set of all edges that have ν as one of their endpoints. We further
define

Eu = ∪{Eu(ν) | ν ∈ N1} and Ev = E\Eu.(2.3)

Notice that Eu contains only interior edges since one of the endpoints of edges in Eu
has a vertex from N1. On the other hand, Ev has both interior and boundary edges.
So, we also define E0

v = Ev ∩ E0 which contains elements from Ev that are interior
edges. Notice that we have Ev\E0

v = E ∩ ∂Ω. Furthermore, for σ ∈ E0
v , we will let

R(σ) be the union of the two triangles sharing the same edge σ. For σ ∈ Ev\E0
v , we

will let R(σ) be the only triangle having the edge σ.
In practice, triangulations that satisfy assumptions (A1)–(A2) are not difficult

to construct. In Figure 2.1, we illustrate how this kind of triangulation is generated.
First, the domain Ω is triangulated by a family of triangles, called T̃ . Each triangle in
this family is then subdivided into three subtriangles by connecting a point inside the
triangle with its three vertices. Then we define the union of all these subtriangles to
be our triangulation T . Each triangle in T̃ corresponds to an S(ν) for some ν inside
the triangle. In Figure 2.1, we show two of the triangles, enclosed by solid lines, in
this family T̃ . This corresponds to 6 triangles in the triangulation T . The dotted
lines represent edges in the set Eu while solid lines represent edges in the set Ev.

Lemma 2.1. Each τ ∈ T has exactly two edges that belong to Eu.
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•

•
S(ν1)

S(ν2)

ν1

ν2

Fig. 2.1. Triangulation.

Proof. First of all, τ has at least one interior vertex. We will show that there is
exactly one vertex of τ that belongs to N1. If none of the three vertices of τ belong
to N1, then τ0 ∩ S(ν) is an empty set for all ν ∈ N1, where τ0 is the interior of τ .
Then, ∪{S(ν) | ν ∈ N1} ∩ τ0 is an empty set. So, ∪{S(ν) | ν ∈ N1} 	= Ω, which
violates assumption (A1). If τ has two vertices, νi and νj , that belong to N1, then
S(νi) ∩ S(νj) contains τ . So, it violates assumption (A2). The case that τ has all
vertices belonging to N1 can be discussed in the same way. In conclusion, τ has
exactly one vertex which belongs to N1. So, by the definition of Eu, the two edges
having the vertex in N1 belong to Eu.

Given τ ∈ T , we will denote by ν(τ)1, ν(τ)2, and ν(τ)3 the three vertices of
τ . Moreover, ν(τ)1 is the vertex that is one of the endpoints of the two edges of τ
that belong to Eu. Then ν(τ)2 and ν(τ)3 are named in a counterclockwise direction.
In addition, λτ,1(x), λτ,2(x), and λτ,3(x) are the barycentric coordinates on τ with
respect to the three vertices ν(τ)1, ν(τ)2, and ν(τ)3.

Now, we will discuss the FE spaces. Let k ≥ 0 be a nonnegative integer. Let
τ ∈ T . We define P k(τ) as the space of polynomials of degree less than or equal to k
on τ . We also define

Rk(τ) = P k(τ) ⊕ P̃ k+1(τ),(2.4)

where P̃ k+1(τ) is the space of homogeneous polynomials of degree k+1 on τ in the two
variables λτ,2 and λτ,3 such that the sum of the coefficients of λk+1

τ,2 and λk+1
τ,3 is equal to

zero. That is, any function in P̃ k+1(τ) can be written as
∑

i+j=k+1,i≥0,j≥0 ai,jλ
i
τ,2λ

j
τ,3

such that ak+1,0 + a0,k+1 = 0. Now, we define

Uh = {φ | φ|τ ∈ Rk(τ);φ is continuous at the k + 1 Gaussian points of σ ∀σ ∈ Eu}.

For any edge σ, we use P k(σ) to represent the space of one dimensional polynomials
of degree less than or equal to k on σ. We define the following degrees of freedom:
(UD1) For each edge σ ∈ Eu, we have ∫

σ

φpk dσ

for all pk ∈ P k(σ).
(UD2) For each triangle τ ∈ T , we have∫

τ

φpk−1 dx

for all pk−1 ∈ P k−1(τ) (for k ≥ 1).
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Notice that (UD1) is equivalent to φ(αi) where αi, for i = 1, 2, . . . , k + 1, are the
k + 1 Gaussian points of σ. For a smooth function φ, we will define Iuφ ∈ Uh by the
following degrees of freedom:

(U1) For each edge σ ∈ Eu, we have∫
σ

(Iuφ− φ)pk = 0

for all pk ∈ P k(σ).
(U2) For each triangle τ ∈ T , we have∫

τ

(Iuφ− φ)pk−1 dx = 0

for all pk−1 ∈ P k−1(τ) (for k ≥ 1).
Theorem 2.2. Let Iu : Πν∈N1W

k+1,p(S(ν)) → Uh. Then Iu is uniquely deter-
mined by (U1)–(U2). Moreover,

|φ− Iuφ|Wm,p(S(ν)) ≤ Khk+1−m|φ|Wk+1,p(S(ν)).(2.5)

Proof. Notice that dim(P k) = 1
2 (k+1)(k+2). Then (UD1) gives (k+1)|Eu| con-

ditions while (UD2) gives 1
2k(k+1)|T | conditions where |S| is the number of elements

in the set S. Notice that |S(ν)| = |Eu(ν)| for all ν ∈ N1. So, by the assumption (A1)–
(A2) and the definition of Eu, we have |T | =

∑
ν∈N1

|S(ν)| =
∑

ν∈N1
|Eu(ν)| = |Eu|.

So, the total number of degrees of freedom defined by (UD1)–(UD2) is 1
2 (k + 1)(k +

2)|T |. Next, we will find the dim(Uh). Notice that dim(P̃ k+1(τ)) = k + 1. So, we
have dim(Uh) = 1

2 (k + 1)(k + 2)|T | + (k + 1)|T | − (k + 1)|Eu|, where the subtraction
of the third term is due to the continuity condition imposed on the k + 1 Gaussian
points of each edge in Eu. Since |T | = |Eu|, we have dim(Uh) = 1

2 (k + 1)(k + 2)|T |,
which is equal to the number of degrees of freedom defined by (UD1)–(UD2).

Next, we will show Iuφ = 0 if φ = 0. Let τ ∈ T . Then the degree of freedom
(UD1) implies that Iuφ is zero at the k + 1 Gaussian points of the two edges of τ
that belong to Eu. More precisely, we denote by αj (j = 1, 2, . . . , k + 1) the k + 1
Gaussian points of the edge of τ having endpoints ν(τ)1 and ν(τ)2. Then we define
real numbers wj (j = 1, 2, . . . , k + 1) such that 0 < w1 < w2 < · · · < wk+1 < 1 and
αj = (1 − wj)ν(τ)1 + wjν(τ)2. Moreover, we denote by βj (j = 1, 2, . . . , k + 1) the
k + 1 Gaussian points of the edge of τ having endpoints ν(τ)1 and ν(τ)3. Then the
real numbers wj also satisfy βj = (1 − wj)ν(τ)1 + wjν(τ)3. So, we have

Iuφ = cΠk+1
j=1 (λτ,2 − wj) + cΠk+1

j=1 (λτ,3 − wj) − c(−1)k+1Πk+1
j=1wj + λτ,2λτ,3qk−1

for some qk−1 ∈ P k−1(τ). By the definition of Rk(τ), the sum of the coefficients of
λk+1
τ,2 and λk+1

τ,3 is zero. So, we have c= 0. Using (UD2), we have
∫
τ
λτ,2λτ,3q

2
k−1 dx= 0.

Since λτ,2λτ,3 > 0 in the interior of τ , we have qk−1 = 0. Hence, Iuφ = 0.
Now, we will prove (2.5). Let τ ∈ T and let pk ∈ P k(τ). It suffices to show that

Iu preserves polynomials. By (U1), Iupk − pk is zero at the k + 1 Gaussian points of
the two edges that belong to Eu. So,

Iupk − pk = bΠk+1
j=1 (λτ,2 − wj) + bΠk+1

j=1 (λτ,3 − wj)

−b(−1)k+1Πk+1
j=1wj + λτ,2λτ,3rk−1
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for some constant d and rk−1 ∈ P k−1(τ). Since Iupk ∈ Rk(τ), we have b = 0. Using
(U2), we have rk−1 = 0. Hence, Iupk = pk.

We define

Vh = {ψ | ψ|τ ∈ P k(τ)2;Lψ is continuous along σ∀σ ∈ Ev;Lψ = 0 on ∂Ω}.

We also define the following degrees of freedom:
(VD1) For each triangle τ ∈ T , we have

∫
τ

(L⊥ψ)pk dx ∀pk ∈ P k(τ).

(VD2) For each triangle τ ∈ T , we have

∫
τ

(Lψ)λτ,1pk−1 dx ∀pk−1 ∈ P k−1(τ).

(VD3) For each edge σ ∈ E0
v , we have

∫
σ

(Lψ)qk dσ ∀qk ∈ P k(σ).

Furthermore, for a smooth vector field ψ, we define Ivψ as the corresponding inter-
polation operator by the following degrees of freedom:

(V1) For each triangle τ ∈ T , we have

∫
τ

L⊥(Ivψ − ψ)pk dx = 0 ∀pk ∈ P k(τ).

(V2) For each triangle τ ∈ T , we have

∫
τ

L(Ivψ − ψ)λτ,1pk−1 dx = 0 ∀pk−1 ∈ P k−1(τ).

(V3) For each edge σ ∈ E0
v , we have

∫
σ

L(Ivψ − ψ)qk dσ = 0 ∀qk ∈ P k(σ).

Theorem 2.3. Let Iv : Πσ∈E0
v
W k+1,p(R(σ))2 → Vh. Then Iv is uniquely deter-

mined by (V1), (V2), and (V3). Moreover,

|ψ − Ivψ|Wm,p(R(σ))2 ≤ Khk+1−m|ψ|Wk+1,p(R(σ))2 .(2.6)

Proof. First of all, the number of degrees of freedom defined by (VD1), (VD2),
and (VD3) are 1

2 (k + 1)(k + 2)|T |, 1
2k(k + 1)|T |, and (k + 1)|E0

v |, respectively. Also,
the dimension of Vh is given by

dim(Vh) = 2
1

2
(k + 1)(k + 2)|T | − (k + 1)|E0

v | − (k + 1)|Ev\E0
v |,

where the second term on the right-hand side is due to the continuity condition that
Lψ is continuous on σ for all σ ∈ E0

v , and the third term on the right-hand side is
due to the boundary condition Lψ = 0 on ∂Ω. Notice that |T | = 2|E0

v | + |Ev\E0
v |.
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Fig. 2.2. S(ν) for k = 1.

ν(τ)1

ν(τ)3
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◦

Fig. 2.3. A single triangle for k = 1.

Now, a direct calculation shows that dim(Vh) is equal to the total number of degrees
of freedom defined by (VD1), (VD2), and (VD3).

Now, we will show Ivψ = 0 if ψ = 0. First, (VD1) implies that L⊥(Ivψ) = 0 on
each τ ∈ T . Using (VD3), we have L(Ivψ) = 0 on each σ ∈ E0

v . So, on each τ ∈ T ,
we have L(Ivψ) = λτ,1qk−1 for some qk−1 ∈ P k−1(τ). Indeed, we can write

L(Ivψ) = a +

k∑
j=1

(bjλ
j
τ,1 + cjλ

j
τ,2).

Since L(Ivψ)|σ = 0, we have a = 0, cj = 0, and L(Ivψ) =
∑k

j=1 bjλ
j
τ,1. Applying

(VD2), we have L(Ivψ) = 0 on each τ ∈ T . Since |Ivψ|2 = |L⊥(Ivψ)|2 + |L(Ivψ)|2,
we have Ivψ = 0.

The estimate (2.6) follows from the fact that the operator Iv preserves polyno-
mials of degree k.

Let us consider an example for k = 1. For Uh, the degrees of freedom are the two
Gaussian points on each edge belonging to Eu and the cell center. In Figure 2.2, we
illustrate three triangles in the triangulation which corresponds to an S(ν) for some
ν ∈ N1. The dotted lines denote edges from the set Eu while solid lines denote edges
from the set Ev. The solid dots denote the continuity points defined by (UD1), which
are the two Gaussian points of the edges in Eu. The circle in each triangle represents
the degree of freedom defined by (UD2). In Figure 2.3, we show the degrees of freedom
on a single triangle. Any function φ ∈ Rk(τ) can be expressed as

φ = a + bλτ,2 + cλτ,3 + d(λ2
τ,2 − λ2

τ,3) + eλτ,2λτ,3.

For Vh, Lψ is defined as a linear function which is continuous on the edge σ while
L⊥ is defined as a linear function on each triangle with no continuity requirement.
In Figure 2.4, we illustrate an R(σ) for some σ ∈ E0

v , where σ is represented by the
solid line. We represent the degrees of freedom of Lψ by solid dots and the degrees
of freedom of L⊥ψ by circles.
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Fig. 2.4. R(σ) for k = 1.

3. The new scheme. In this section, we will derive the new discontinuous
Galerkin method for the wave propagation problem (1.1)–(1.2). Multiplying both
sides of (1.1) by φ, integrating the resulting equation on S(ν), and using (1.3) yields

a1

∫
S(ν)

∂u

∂t
φ dx +

∫
S(ν)

(B∗φ)v dx−
∫
∂S(ν)

(Lv)φ dσ =

∫
S(ν)

F1φ dx.

Summing over all ν ∈ N1,

a1

∫
Ω

∂u

∂t
φ dx +

∫
Ω

(B∗φ)v dx−
∑
ν∈N1

∫
∂S(ν)

(Lv)φ dσ =

∫
Ω

F1φ dx.

If Lv is continuous along each σ ∈ E0
v and Lv is zero along each edge in Ev\E0

v , then

∑
ν∈N1

∫
∂S(ν)

(Lv)φ dσ =
∑
σ∈E0

v

∫
σ

(Lv)[φ] dσ,(3.1)

where [φ] = φ+ − φ− is the jump of φ along σ. Similarly, multiplying both sides of
(1.2) by ψ, integrating the resulting equation on R(σ), and using (1.3) yields

a2

∫
R(σ)

∂v

∂t
ψ dx−

∫
R(σ)

(Bψ)u dx−
∫
∂R(σ)

(Lψ)u dσ =

∫
R(σ)

F2ψ dx.

Summing for all σ ∈ Ev,

a2

∫
Ω

∂v

∂t
ψ dx−

∫
Ω

(Bψ)u dx−
∑
σ∈Ev

∫
∂R(σ)

(Lψ)u dσ =

∫
Ω

F2ψ dx.

Now if Lψ is a polynomial of degree k and u is a (k + 1)th degree polynomial which
is continuous at the k + 1 Gaussian points of σ ∈ Eu, then

∑
σ∈Ev

∫
∂R(σ)

(Lψ)u dσ =
∑
σ∈Eu

∫
σ

[Lψ]u dσ,(3.2)

where [Lψ] denotes the jump of Lψ along σ. Then, the new discontinuous Galerkin
method is defined as follows.
The new discontinuous Galerkin method: Find uh ∈ Uh and vh ∈ Vh such that

a1

∫
Ω

∂uh

∂t
φ dx + Bh(vh, φ) =

∫
Ω

F1φ dx,(3.3)

a2

∫
Ω

∂vh
∂t

ψ dx−B∗
h(uh, ψ) =

∫
Ω

F2ψ dx(3.4)
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for all φ ∈ Uh and ψ ∈ Vh, where

Bh(vh, φ) =

∫
Ω

(B∗φ)vh dx−
∑
σ∈E0

v

∫
σ

(Lvh)[φ] dσ,(3.5)

B∗
h(uh, ψ) =

∫
Ω

(Bψ)uh dx +
∑
σ∈Eu

∫
σ

[Lψ]uh dσ.(3.6)

The initial conditions uh(0) and vh(0) will be defined as uh(0) = Iuu0 and vh(0) =
Ivv0. We remark here that we define the spaces Uh and Vh so that (3.1) and (3.2) are
valid. Furthermore, we define the discrete derivative operators Bh and B∗

h by

〈Bhψ, φ〉 = Bh(ψ, φ) ∀φ ∈ Uh,

〈B∗
hφ, ψ〉 = B∗

h(φ, ψ) ∀ψ ∈ Vh.

The two operators Bh and B∗
h are the discrete analogue of the two derivative operators

B and B∗.
Lemma 3.1. For all φ ∈ Uh and ψ ∈ Vh, we have

Bh(ψ, φ) = B∗
h(φ, ψ).(3.7)

Proof. Let φ ∈ Uh and ψ ∈ Vh. Then, by the definition of Bh and (3.1),

Bh(ψ, φ) =

∫
Ω

(B∗φ)vh dx−
∑
σ∈E0

v

∫
σ

(Lvh)[φ] dσ

=

∫
Ω

(B∗φ)ψ dx−
∑
ν∈N1

∫
∂S(ν)

(Lψ)φ dσ

=
∑
ν∈N1

{∫
S(ν)

(B∗φ)ψ dx−
∫
∂S(ν)

(Lψ)φ dσ

}
.

Using integration by parts on each triangle,

Bh(ψ, φ) =
∑
ν∈N1

{∫
S(ν)

φ(Bψ) dx +
∑

σ∈Eu(ν)

∫
σ

[Lψ]u dσ

}
= B∗

h(φ, ψ).

This completes the proof.
We define the discrete L2 norms and H1 norms in the following ways. For all

φ ∈ Uh, we define

‖φ‖2
W =

∫
Ω

φ2 dx +
∑
σ∈Eu

(hσ)2
k+1∑
j=1

φ(αj)
2,(3.8)

‖φ‖2
Z =

∫
Ω

(B∗φ)2 dx +
∑
σ∈Ev

h−1
σ

∫
σ

[φ]2 dσ.(3.9)

For all ψ ∈ Vh, we define

‖ψ‖2
W ′ =

∫
Ω

ψ2 dx +
∑
σ∈Ev

hσ

∫
σ

(Lψ)2 dσ,(3.10)

‖ψ‖2
Z′ =

∫
Ω

(Bψ)2 dx +
∑
σ∈Eu

(hσ)−1

∫
σ

[Lψ]2 dσ.(3.11)
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With these definitions, we have the following continuity conditions for all φ ∈ Uh

and ψ ∈ Vh:

|Bh(ψ, φ)| ≤ K‖ψ‖W ′‖φ‖Z ,(3.12)

|Bh(ψ, φ)| ≤ K‖ψ‖Z′‖φ‖W .(3.13)

Moreover, we have, in Uh, the norm ‖φ‖W is equivalent to the standard L2 norm ‖φ‖,
while in Vh, the norm ‖ψ‖W ′ is equivalent to the standard L2 norm ‖ψ‖. That is,
there are two uniform constants K1 and K2 such that

K1‖φ‖ ≤ ‖φ‖W ≤ K2‖φ‖ ∀φ ∈ Uh,(3.14)

K1‖ψ‖ ≤ ‖ψ‖W ′ ≤ K2‖ψ‖ ∀ψ ∈ Vh.(3.15)

Now, we will prove the following interpolation error estimates. The first one is
the interpolation error in the discrete L2 norms.

Lemma 3.2. Assume (u, v) ∈ W k+1,∞(Ω)3. Then for any integer m with 1 ≤
m ≤ k + 1,

‖u− Iuu‖W ≤ Khm|u|Wm,∞(Ω), ‖v − Ivv‖W ′ ≤ Khm|v|Wm,∞(Ω)2 .(3.16)

Proof. By the definition of W -norm and W ′-norm,

‖u− Iuu‖W ≤ K‖u− Iuu‖L∞(Ω), ‖v − Ivv‖W ′ ≤ K‖v − Ivv‖L∞(Ω)2 .

The proof is complete by using (2.5) and (2.6).
The second one is the interpolation error in the discrete H1 norms.
Lemma 3.3. Assume (u, v) ∈ Hk+1(Ω)3. Then for any integer m with 1 ≤ m ≤ k,

‖u− Iuu‖Z ≤ Khm|u|Hm+1(Ω), ‖v − Ivv‖Z′ ≤ Khm|v|Hm+1(Ω)2 .(3.17)

Proof. Let Iuu ∈ Uh be the interpolant of u. By the definition of Z-norm,

‖Iuu− u‖2
Z =

∫
Ω

(B∗(Iuu− u))2 dx +
∑
σ∈E0

v

(hσ)−1

∫
σ

[Iuu− u]2 dσ.

The first term will be estimated by using the inverse inequality and the interpolation
estimate (2.5) ∫

Ω

(B∗(Iuu− u))2 dx ≤ Kh2k|u|2Hk+1(Ω).

For the second term, we will use the trace inequality∫
σ

(Iuu− u)2 dσ ≤ K(‖Iuu− u‖L2(R(τ))‖∇(Iuu− u)‖L2(R(τ))

+h−1‖Iuu− u‖2
L2(R(τ))).

So, ∫
σ

[Iuu− u]2 dσ ≤ Kh2k+1|u|2Hk+1(Ω),

and this implies

‖Iuu− u‖Z ≤ Khk|u|Hk+1(Ω).

The estimate for ‖v − Ivv‖Z′ can be proved by a similar argument.
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4. Stability and convergence analysis. In this section, we will prove the
stability and convergence of the scheme (3.3)–(3.4). We write 〈u, v〉 =

∫
Ω
uv dx and

‖u‖ = 〈u, u〉 1
2 . In order to obtain an optimal error estimate, we will assume the

following.
The inf-sup conditions:

inf
ψ∈Vh

sup
φ∈Uh

Bh(ψ, φ)

‖ψ‖Z′‖φ‖W
≥ K,(4.1)

inf
φ∈Uh

sup
ψ∈Vh

B∗
h(φ, ψ)

‖φ‖Z‖ψ‖W ′
≥ K.(4.2)

For a general introduction to this topic; see Brezzi and Fortin [2].
Consequently, we have

‖Bhψ‖W ≥ K‖ψ‖Z′ ,(4.3)

‖B∗
hφ‖W ′ ≥ K‖φ‖Z .(4.4)

By the continuity conditions (3.12) and (3.13), we have

K1‖ψ‖Z′ ≤ ‖Bhψ‖W ≤ K2‖ψ‖Z′ ,(4.5)

K1‖φ‖Z ≤ ‖B∗
hφ‖W ′ ≤ K2‖φ‖Z .(4.6)

So, the discrete H1 norm is equivalent to the discrete L2 norm of the discrete derivative
operator. Notice that, the above two inf-sup conditions (4.3)–(4.4) imply the existence
of projection operators Pv and Pu such that

Bh(Pvv − v, φ) = 0 ∀φ ∈ Uh,(4.7)

B∗
h(Puu− u, ψ) = 0 ∀ψ ∈ Vh.(4.8)

Regarding the initial condition uh(0) and vh(0), we can obtain them by solving
the following:

Bh(Pvv0 − v0, φ) = 0 ∀φ ∈ Uh,(4.9)

B∗
h(Puu0 − u0, ψ) = 0 ∀ψ ∈ Vh;(4.10)

then set uh(0) = Puu0 and vh(0) = Pvv0. However, in order to retain the accuracy
of the approximation, the initial conditions can also be defined as uh(0) = Iuu0 and
vh(0) = Ivv0, where Iu and Iv are some interpolation operators with the same order
of accuracy and stability estimates ‖uh(0)‖ ≤ K‖u0‖ and ‖vh(0)‖ ≤ K‖v0‖.

One important property of the numerical approximation (3.3)–(3.4) is that energy
is conserved, as is the case for the continuous problem (1.1)–(1.2). In particular, the
method (3.3)–(3.4) is stable in the discrete L2 norm. Moreover, the convergence in
the L2 norm is optimal. We state these results in the following theorem.

Theorem 4.1. Let u ∈ U and v ∈ V be the solution to (1.1)–(1.2) and let
uh ∈ Uh and vh ∈ Vh be the solution to the numerical scheme (3.3)–(3.4). Then,
energy is conserved, namely

d

dt
(‖uh‖2 + ‖vh‖2) = 0.(4.11)
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Moreover, for 0 ≤ t ≤ T , we have

‖(u− uh)(t)‖ + ‖(v − vh)(t)‖

≤ K

{
inf

φ∈Uh

‖u− φ‖W + inf
ψ∈Vh

‖v − ψ‖W ′

+

∫ t

0

(
inf

φ∈Uh

‖ut − φ‖W + inf
ψ∈Vh

‖vt − ψ‖W ′

)
ds

}
.

(4.12)

Proof. Taking φ = uh and ψ = vh in (3.3)–(3.4) yields

a1

〈
duh

dt
, uh

〉
+ Bh(vh, uh) = 0,

a2

〈
dvh
dt

, vh

〉
−B∗

h(uh, vh) = 0.

Adding the two equations and using (3.7), we obtain (4.11).
In the following, we will prove (4.12). Let Iuu and Ivv be arbitrary elements in

Uh and Vh, respectively. First, we have

a1

〈
d(u− uh)

dt
, φ

〉
+ Bh(v − vh, φ) = 0 ∀φ ∈ Uh,(4.13)

a2

〈
d(v − vh)

dt
, ψ

〉
−B∗

h(u− uh, ψ) = 0 ∀ψ ∈ Vh.(4.14)

By the definitions of the projection operators Pu and Pv, we obtain

a1

〈
d(u− uh)

dt
, φ

〉
+ Bh(Pvv − vh, φ) = 0 ∀φ ∈ Uh,(4.15)

a2

〈
d(v − vh)

dt
, ψ

〉
−B∗

h(Puu− uh, ψ) = 0 ∀ψ ∈ Vh.(4.16)

Let Q2
u : Uh → ker(B∗

h)⊥ and Q2
v : Vh → ker(Bh)⊥ be the projection operators.

Taking φ = Q2
u(Puu − uh) and ψ = Q2

v(Pvv − vh), we have, by adding the two
equations,

a1

〈
d(u− uh)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(v − vh)

dt
,Q2

v(Pvv − vh)

〉
= 0,(4.17)

which implies

d

dt
(a1‖Q2

u(Puu− uh)‖2 + a2‖Q2
v(Pvv − vh)‖2)

= a1

〈
d(Puu− u)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(Pvv − v)

dt
,Q2

v(Pvv − vh)

〉
.

This can be rewritten as

d

dt
(a1‖Q2

u(Puu− uh)‖2 + a2‖Q2
v(Pvv − vh)‖2)

= a1

〈
d(Puu− Iuu)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(Pvv − Ivv)

dt
,Q2

v(Pvv − vh)

〉

+ a1

〈
d(Iuu− u)

dt
,Q2

u(Puu− uh)

〉
+ a2

〈
d(Ivv − v)

dt
,Q2

v(Pvv − vh)

〉
.
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Consequently,

‖a1Q
2
u(Puu− uh)‖ + ‖a2Q

2
v(Pvv − vh)‖

≤ K

∫ t

0

{
‖Q2

u(Puut − Iuut)‖ + ‖Q2
v(Pvvt − Pvvt)‖

}
ds

+ K

∫ t

0

{
‖Iuut − ut‖ + ‖Ivvt − vt‖

}
ds.

Using the triangle inequality, we finally have

‖a1Q
2
u(Iuu− uh)‖ + ‖a2Q

2
v(Ivv − vh)‖

≤ K(‖Q2
u(Puu− Iuu)‖ + ‖Q2

v(Pvv − Ivv)‖)

+ K

∫ t

0

{
‖Q2

u(Puut − Iuut)‖ + ‖Q2
v(Pvvt − Pvvt)‖

}
ds

+ K

∫ t

0

{
‖Iuut − ut‖ + ‖Ivvt − vt‖

}
ds.

It suffices to estimate the norms ‖Q2
v(Pvv−Ivv)‖ and ‖Q2

u(Puu−Iuu)‖. In particular,
we will prove ‖Q2

v(Pvv−Ivv)‖ ≤ K‖v−Ivv‖W ′ and ‖Q2
u(Puu−Iuu)‖ ≤ K‖u−Iuu‖W .

We consider the following variational problem: Given u2 ∈ ker(B∗
h)⊥, find ψ̃ ∈ Vh

such that

Bh(ψ̃, φ) = 〈u2, φ〉 ∀φ ∈ Uh.(4.18)

The existence of ψ̃ is ensured by the fact that Bh : Vh → ker(B∗
h)⊥ is surjective.

Taking the supremum in φ and using (4.3), we derive the following estimate:

‖ψ̃‖Z′ ≤ K‖u2‖.(4.19)

Now, we have

‖Q2
u(Puu− Iuu)‖2 = Bh(ψ̃, Q2

u(Puu− Iuu))

= B∗
h(Q2

u(Puu− Iuu), ψ̃)

= B∗
h(Puu− Iuu, ψ̃)

= B∗
h(u− Iuu, ψ̃)

≤ ‖ψ‖Z′‖u− Iuu‖W
≤ K‖Q2

u(Puu− Iuu)‖‖u− Iuu‖W .

Hence, we have

‖Q2
u(Puu− Iuu)‖ ≤ ‖u− Iuu‖W .(4.20)

Replacing u by ut, we have

‖Q2
u(Puut − Iuut)‖ ≤ ‖ut − Iuut‖W .(4.21)

Similarly, we consider the problem: Given v2 ∈ ker(Bh)⊥, find φ̃ ∈ Uh such that

B∗
h(φ̃, ψ) = 〈v2, ψ〉 ∀ψ ∈ Vh(4.22)
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with the estimate

‖φ̃‖Z ≤ K‖v2‖.(4.23)

Hence, we have

‖Q2
v(Pvv − Ivv)‖ ≤ ‖v − Ivv‖W ′ .(4.24)

Replacing v by vt, we have

‖Q2
v(Pvvt − Ivvt)‖ ≤ ‖vt − Ivvt‖W ′ .(4.25)

This finishes the proof of estimates of the components of the errors in ker(B∗
h)⊥ and

ker(Bh)⊥. In the following, we will estimate the components of errors in ker(B∗
h) and

ker(Bh).
Define Q1

u : Uh → ker(B∗
h) and Q1

v : Vh → ker(Bh) as the orthogonal projection
operators. Taking φ = Q1

u(Iuu− uh) and ψ = Q1
v(Ivv − vh), we have

a1

〈
d(u− uh)

dt
,Q1

u(Iuu− uh)

〉
+ a2

〈
d(v − vh)

dt
,Q1

v(Ivv − vh)

〉
= 0.

Hence, we obtain

‖a1Q
1
u(Iuu− uh)‖ + ‖a2Q

1
v(Ivv − vh)‖ ≤

∫ t

0

{
‖Iuut − ut‖ + ‖Ivvt − vt‖

}
ds.

Combining all results,

‖Iuu− uh‖u + ‖Ivv − vh‖v ≤ K
{
‖Q1

u(Iuu− uh)‖u + ‖Q2
u(Iuu− uh)‖u

+ ‖Q1
v(Ivv − vh)‖v + ‖Q2

v(Ivv − vh)‖v
}
.

The proof is complete by noticing that

‖u− uh‖ ≤ ‖u− Iuu‖ + ‖Iuu− uh‖,
‖v − vh‖ ≤ ‖v − Ivv‖ + ‖Ivv − vh‖.

Now, we will state the convergence theorems. The following is the convergence in
L2 norm. We see that the numerical scheme is O(hk+1) when the FE spaces Uh and
Vh contain polynomials of degree k.

Corollary 4.2. Let (u, v) ∈ W 1,1(0, T ;W k+1,∞(Ω))3 be the exact solution to
the wave propagation problem (1.1)–(1.2) and let (uh, vh) be the solution to (3.3)–(3.4).
Then

‖u− uh‖ + ‖v − vh‖ ≤ Khk+1(‖u‖W 1,1(0,T ;Wk+1,∞(Ω)) + ‖v‖W 1,1(0,T ;Wk+1,∞(Ω))2).

(4.26)

Theorem 4.1 and Corollary 4.2 state that the numerical scheme (3.3)–(3.4) is
stable and convergent, with optimal rate, with respect to the discrete L2-norms. The
L2 stability can be satisfied by a very large class of spaces Uh and Vh. However, with L2

stability only, it is not sufficient to deduce the weak convergence to the true solution;
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see Joly [11]. As a result, the numerical solution may behave badly and the optimal
rate of convergence is not achieved. This fact can be seen by some numerical examples
in the following sections. The extra conditions needed are the inf-sup conditions (4.1)–
(4.2), as many mixed FE methods require some compatibility conditions between the
two spaces Uh and Vh. These conditions yield a stability in the discrete H1 norm and
we state this result in the following theorem.

Theorem 4.3. Let uh ∈ Uh and vh ∈ Vh be the solution to the numerical scheme
(3.3)–(3.4). Then

‖uh‖Z + ‖vh‖Z′ ≤ K

{∥∥∥∥du0

dt

∥∥∥∥ +

∥∥∥∥dv0

dt

∥∥∥∥ +

∫ t

0

(∥∥∥∥dF1

dt

∥∥∥∥ +

∥∥∥∥dF2

dt

∥∥∥∥
)

ds

}
.(4.27)

Proof. Taking t-derivative in (3.3)–(3.4), we have

a1

〈
d2uh

dt2
, φ

〉
+ Bh

(
dvh
dt

, φ

)
=

〈
dF1

dt
, φ

〉
∀φ ∈ Uh,

a2

〈
d2vh
dt2

, ψ

〉
−B∗

h

(
duh

dt
, ψ

)
=

〈
dF2

dt
, ψ

〉
∀ψ ∈ Vh.

Taking φ = duh

dt and ψ = dvh
dt and adding the two equations, we obtain

1

2

d

dt

(
a1

∥∥∥∥duh

dt

∥∥∥∥
2

+ a2

∥∥∥∥dvhdt
∥∥∥∥

2)
=

〈
dF1

dt
,
duh

dt

〉
+

〈
dF2

dt
,
dvh
dt

〉
,

and consequently

∥∥∥∥a1
duh

dt

∥∥∥∥ +

∥∥∥∥a2
dvh
dt

∥∥∥∥ ≤ K

{∥∥∥∥du0

dt

∥∥∥∥ +

∥∥∥∥dv0

dt

∥∥∥∥ +

∫ t

0

(∥∥∥∥dF1

dt

∥∥∥∥ +

∥∥∥∥dF2

dt

∥∥∥∥
)

ds

}
.

By using (4.3),

‖vh‖Z′ ≤ K‖Bhvh‖W = K sup
φ∈Uh

|Bh(vh, φ)|
‖φ‖W

≤ K sup
φ∈Uh

|〈duh

dt , φ〉|
‖φ‖W

= K

∥∥∥∥duh

dt

∥∥∥∥.
Similarly, we have

‖uh‖Z ≤ K

∥∥∥∥dvhdt
∥∥∥∥.

This completes the proof.
Before we state the convergence theorem, we will state a L2 convergence result

which is very similar to Theorem 4.1—that all functions are replaced by their time
derivative. It can be proved in exactly the same way as the proof of Theorem 4.1.

Lemma 4.4. Let u ∈ U and v ∈ V be the solution to (1.1)–(1.2) and let uh ∈ Uh

and vh ∈ Vh be the solution to the numerical scheme (3.3)–(3.4). Then for 0 ≤ t ≤ T ,
we have

∥∥∥∥ d

dt
(u− uh)(t)

∥∥∥∥+

∥∥∥∥ d

dt
(v − vh)(t)

∥∥∥∥ ≤ K

{
inf

φ∈Uh

‖ut − φ‖W + inf
ψ∈Vh

‖vt − ψ‖W ′

+

∫ t

0

(
inf

φ∈Uh

‖utt − φ‖W + inf
ψ∈Vh

‖vtt − ψ‖W ′

)
ds

}
.

(4.28)
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The following theorem states the convergence of the method (3.3)–(3.4) in the
discrete H1 norm. It can be seen that the H1 error is optimal with respect to the
norms and the FE spaces.

Theorem 4.5. Let u ∈ U and v ∈ V be the solution to (1.1)–(1.2) and let
uh ∈ Uh and vh ∈ Vh be the solution to the numerical scheme (3.3)–(3.4). Then for
0 ≤ t ≤ T , we have

‖v − vh‖Z′ ≤ K

(∥∥∥∥ d

dt
(u− uh)

∥∥∥∥ + inf
ψ∈Vh

‖ψ − v‖Z′

)
,(4.29)

‖u− uh‖Z ≤ K

(∥∥∥∥ d

dt
(v − vh)

∥∥∥∥ + inf
φ∈Uh

‖φ− u‖Z
)
.(4.30)

Proof. By the inf-sup condition (4.3), we obtain

‖Pvv − vh‖Z′ ≤ K‖Bh(Pvv − vh)‖W = K sup
φ∈Uh

Bh(Pvv − vh, φ)

‖φ‖W
.

Recalling (4.15), we have

〈
d(u− uh)

dt
, φ

〉
+ Bh(Pvv − vh, φ) = 0 ∀φ ∈ Uh,

and consequently,

‖Pvv − vh‖Z′ ≤ K

∥∥∥∥ d

dt
(u− uh)

∥∥∥∥.
Let Ivv ∈ Vh be an arbitrary element of the FE space Vh, using the triangle inequality

‖v − vh‖Z′ ≤ ‖v − Ivv‖Z′ + ‖Ivv − Pvv‖Z′ + ‖Pvv − vh‖Z′ .

Following the proof of Theorem 4.1, we have

‖Ivv − Pvv‖Z′ ≤ K‖Ivv − v‖Z′ .

Hence, we obtain

‖v − vh‖Z′ ≤ K

(∥∥∥∥ d

dt
(u− uh)

∥∥∥∥ + ‖Ivv − v‖Z′

)
.

Since Ivv is arbitrary,

‖v − vh‖Z′ ≤ K

(∥∥∥∥ d

dt
(u− uh)

∥∥∥∥ + inf
ψ∈Vh

‖ψ − v‖Z′

)
.

So, (4.29) is proved. The estimte (4.30) can be proved in a similar fashion.
Now, we state and prove the convergence in the discrete H1 norm. We see that

the numerical scheme is O(hk) in the discrete H1 norm when the FE spaces Uh and
Vh contain polynomials of degree k.

Corollary 4.6. Assume k ≥ 0 is the largest integer such that Uh and Vh contain
polynomials of degree k. Let (u, v) ∈ W 1,p(0, T ;Hk+1(Ω))3 ∩W 2,p(0, T ;W k,∞(Ω))3,
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for p > 1, be the exact solution to the wave propagation problem (1.1)–(1.2), and let
(uh, vh) be the solution to the numerical scheme (3.3)–(3.4). Then

‖u− uh‖Z + ‖v − vh‖Z′ ≤ Khk(‖(u, v)‖W 1,p(0,T ;Hk+1(Ω))3

+ ‖(u, v)‖W 2,p(0,T ;Wk,∞(Ω))3).
(4.31)

Next, we prove a superconvergence result for some component of the derivative
of uh. We state this result as the following theorem.

Theorem 4.7. Let u be the exact solution to the wave propagation problem (1.1)–
(1.2) and let uh be the solution to the numerical method (3.3)–(3.4). Then

‖L⊥B∗(u− uh)‖L2(Ω)

≤ Khk+1
{
‖(u, v)‖W 2,1(0,T ;Wk+1,∞(Ω))3 + ‖u‖W 1,1(0,T ;Hk+2(Ω))

}
.

(4.32)

Proof. To prove this, we observe that for all ψ ∈ Vh

a2

∫
Ω

∂

∂t
(v − vh) · ψ dx−B∗

h(u− uh, ψ) = 0.

Let πhu be a function such that πhu|τ is a (k+ 1)th degree polynomial interpolant of
u|τ . Then we have

B∗
h(uh − πhu, ψ) = B∗

h(u− πhu, ψ) − a2

∫
Ω

∂

∂t
(v − vh) · ψ dx.

Recalling the definition of B∗
h, we have

B∗
h(uh − πhu, ψ) =

∫
Ω

B∗(uh − πhu)ψ dx +
∑
σ∈Eu

∫
σ

[uh − πhu]Lψ dσ.

Now, we choose ψ ∈ Vh such that Lψ = 0 and L⊥ψ = L⊥B∗(uh − πhu). This is
equivalent to sets (VD2) and (VD3) to being zero. Therefore,

B∗
h(uh − πhu, ψ) =

∫
Ω

(L⊥B∗(uh − πhu))2 dx,

‖ψ‖L2(Ω) = ‖L⊥B∗(uh − πhu)‖L2(Ω).

Consequently, we have

‖L⊥B∗(uh − πhu)‖2
L2(Ω) = B∗

h(u− πhu, ψ) − a2

∫
Ω

∂

∂t
(v − vh) · ψ dx.(4.33)

Now we will estimate the right-hand side of (4.33). By Lemma 4.4 and interpola-
tion error estimates (3.16), the second term on the right-hand side of (4.33) can be
estimated by

∥∥∥∥ ∂

∂t
(v − vh)

∥∥∥∥
L2(Ω)

≤ Khk+1(‖u‖W 2,1(0,T ;Wk+1,∞(Ω)) + ‖v‖W 2,1(0,T ;Wk+1,∞(Ω))2).

Using inverse type inequalities, we have

‖B∗(u− πhu)‖L2(Ω) ≤ Khk+1|u|Hk+2(Ω), ‖ψ · l‖L2(σ) ≤ Kh− 1
2 ‖ψ‖L2(τ ′),
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and by the trace inequality, we obtain

‖u− πhu‖L2(σ) ≤ Khk+ 3
2 |u|Hk+2(Ω).

Then the first term on the right-hand side of (4.33) can be estimated by

B∗
h(u− πhu, ψ) ≤ ‖B∗(u− πhu)‖L2(Ω)‖ψ‖L2(Ω)

+
∑
σ∈Eu

‖u− πhu‖L2(σ)‖Lψ‖L2(σ)

≤ Khk+1|u|Hk+2(Ω)‖ψ‖L2(Ω).

Combining the result, we prove the theorem.
Now, we will discuss the condition (1.4). In the following theorem, we show that

the numerical solution vh satisfies (1.4) in a weak sense. Let Sh be the space of
standard H1-conforming FE space of degree k + 1, namely p ∈ Sh if p|τ ∈ P k+1(τ)
and p is continuous across each σ ∈ E .

Theorem 4.8. Let v be the exact solution of the wave propagation problem (1.1)–
(1.2) and let vh be the numerical solution to the numerical scheme (3.3)–(3.4). Then

∫
Ω

∂(v − vh)

∂t
ψ dx = 0(4.34)

if and only if ψ = B⊥p for p ∈ Sh.
Proof. If ψ = ∇p for p ∈ Sh, then ψ ∈ Vh. Using (4.16), we have proved (4.34).

Assume (4.34) holds. Then, using (4.16), we have B∗
h(Puu− uh, ψ) = 0. By (4.3), we

have ‖ψ‖Z′ = 0. By the definition of Z ′-norm, we have Bψ = 0 and [Lψ]|σ = 0 for
all σ ∈ Eu. Using Bψ = 0, we have ψ = B⊥p for some p. Since ψ|τ ∈ P k(τ)2, we
have p|τ ∈ P k+1(τ). Notice that Lψ is continuous on each edge in E0

v . Using this and
[Lψ]|σ = 0 for all σ ∈ Eu, we have that p is continuous across each edge in Eu ∪ E0

v .
So, the proof is complete.

5. Verification of inf-sup conditions. Now, we are in a position to prove that
the choice of Uh and Vh above satisfies the inf-sup condition (4.1)–(4.2).

Theorem 5.1. There is a uniform constant K > 0 such that

inf
ψ∈Vh

sup
u∈Uh

B∗
h(u, ψ)

‖u‖W ‖ψ‖Z′
≥ K.(5.1)

Proof. Let ψ ∈ Vh. It suffices to find u ∈ Uh such that

B∗
h(u, ψ) ≥ K‖ψ‖2

Z′ and ‖u‖ ≤ K‖ψ‖Z′ .(5.2)

Recalling the definition of B∗
h, we have

B∗
h(u, ψ) =

∫
Ω

u(Bψ) dx +
∑
σ∈Eu

∫
σ

[Lψ]u dσ.

First, we will define u1 ∈ Uh such that

∫
Ω

u1(Bψ) dx ≥ K

∫
Ω

(Bψ)2 dx and

∫
Ω

(u1)
2 dx ≤

∫
Ω

(Bψ)2 dx.(5.3)
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Let τ ∈ T . We define the function u1 such that u1|τ = λτ,2λτ,3Bψ. Notice that
Bψ|τ ∈ P k−1(τ) and u1|τ is zero on the two edges of τ that belong to Eu, so u1|τ ∈
Rk(τ). Since λτ,2λτ,3 ≤ 1, the second equation in (5.3) holds. Notice that the quantity∫
τ
q2
k−1λτ,2λτ,3 dx defines a norm for qk−1 in the space P k−1(τ). Since norms in finite

dimensional spaces are equivalent, we have∫
τ

λτ,2λτ,3(Bψ)2 dx ≥ K

∫
τ

(Bψ)2 dx.

Summing up this equation for all τ ∈ T proves the first equation in (5.3).
Next, we will define u2 ∈ Uh such that

∑
σ∈Eu

∫
σ

[Lψ]u2 dσ =
∑
σ∈Eu

(hσ)−1

∫
σ

[Lψ]2 dσ,(5.4)

∫
Ω

(u2)
2 dx ≤ K

∑
σ∈Eu

(hσ)−1

∫
σ

[Lψ]2 dσ.(5.5)

To do so, we define u2 so that
1. u2 = (hσ)−1[Lψ] at the k + 1 Gaussian points of σ for all σ ∈ Eu, and
2.

∫
τ
u2qk−1 dx = 0 for all qk−1 ∈ P k−1(τ) and τ ∈ T .

Then, clearly, (5.4) is satisfied. We will define a subspace U0
h of Uh by

U0
h =

{
φ ∈ Uh |

∫
τ

φqk−1 dx = 0,∀qk−1 ∈ P k−1(τ),∀τ ∈ T
}
.

Then the following quantity

∑
σ∈Eu

h2
σ

k+1∑
j=1

φ(αj)
2

defines a norm for U0
h . Since norms in finite dimensional spaces are equivalent, we

have

∫
τ

u2
2 dx ≤ K

∑
σ∈Eu

h2
σ

k+1∑
j=1

u2(αj)
2.

By the definition of u2,

∫
τ

u2
2 dx ≤ K

∑
σ∈Eu

k+1∑
j=1

[Lψ(αj)]
2.

Since [Lψ] is a polynomial of degree k, we have

k+1∑
j=1

[Lψ(αj)]
2 ≤ K(hσ)−1

∫
σ

[Lψ]2 dx,

which follows from norm equivalence in finite dimensional spaces. So, (5.5) is proved.
To prove (5.2), we take u = u1 + u2. Notice that by the definitions of u1 and u2,

we have ∫
τ

u2(Bψ) dx = 0 and

∫
σ

[Lψ]u1 dσ = 0.
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Using this together with (5.3), (5.4), and (5.5), we have proved (5.2).
Theorem 5.2. There is a uniform constant K > 0 such that

inf
φ∈Uh

sup
v∈Vh

Bh(v, φ)

‖v‖W ′‖φ‖Z
≥ K.(5.6)

Proof. Let φ ∈ Uh. As in the proof of the previous theorem, we find v ∈ Vh such
that

Bh(v, φ) ≥ K‖φ‖2
Z and ‖v‖ ≤ K‖φ‖Z .(5.7)

Recalling the definition of Bh, we have

Bh(v, φ) =

∫
Ω

(B∗φ)v dx−
∑
σ∈E0

v

∫
σ

(Lv)[φ] dσ.

We define v1 ∈ Vh such that∫
Ω

(B∗φ)v1 dx ≥ K1

∫
Ω

|B∗φ|2 dx and

∫
Ω

|v1|2 dx ≤ K

∫
Ω

|B∗φ|2 dx.(5.8)

We define the set

V 1
h (τ) = {v|τ | v ∈ Vh;Lv|σ = 0 ∀σ ∈ Ev}

and the linear functional

fτ (η) =

∫
τ

(B∗φ)η dx

for η ∈ V 1
h (τ). With the standard L2 norm, V 1

h (τ) is a Hilbert space. By the Riesz
representation theorem, there exist v1,τ ∈ V 1

h (τ) such that

fτ (η) =

∫
τ

v1,τη dx and ‖v1,τ‖L2(τ) = ‖fτ‖L2(τ)∗ ,

where ∗ denotes a norm in the dual space. That is,

‖fτ‖L2(τ)∗ = sup
η∈V 1

h (τ)

fτ (η)

‖η‖L2(τ)
.

We define v1 such that v1|τ = v1,τ . Then∫
Ω

|v1|2 dx =
∑
τ∈T

∫
τ

|v1,τ |2 dx ≤
∑
τ∈T

∫
τ

|B∗φ|2 dx =

∫
Ω

|B∗φ|2 dx,

which proves the second inequality in (5.8). To prove the first inequality in (5.8),
we will first show ‖fτ‖L2(τ)∗ defines a norm for B∗Uh on τ . So, it suffices to show
B∗φ = 0 if ‖fτ‖L2(τ)∗ = 0. Assume ‖fτ‖L2(τ)∗ = 0. Then we have

∫
τ
(B∗φ)η dx = 0

for all η ∈ V 1
h (τ). Notice that B∗φ ∈ P k(τ)2. Taking Lη = 0 and L⊥η = L⊥(B∗φ)

yields
∫
τ
(L⊥(B∗φ))2 dx = 0. So, we have L⊥(B∗φ) = 0 on τ . By the definitions of

L⊥ and B∗, we have (∂λτ,2 − ∂λτ,3)φ = 0. So, we have

φ =
k+1∑
j=0

cj(λτ,2 + λτ,3)
j .
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Since φ ∈ Uh, we have ck+1 = 0 and therefore L(B∗φ) ∈ P k−1(τ). Taking L⊥η = 0
and Lη = λτ,1L(B∗φ), we have

∫
τ
λτ,1(L(B∗φ))2 dx = 0, which implies L(B∗φ) = 0.

Hence B∗φ = 0. Since norms in finite dimensional spaces are equivalent, we have
‖fτ‖L2(τ)∗ ≥ K‖B∗φ‖L2(τ). Consequently, we obtain

∫
Ω

(B∗φ)v1 dx =
∑
τ∈T

∫
τ

(B∗φ)v1,τ dx =
∑
τ∈T

fτ (v1,τ ) =
∑
τ∈T

∫
τ

v2
1,τ dx,

which proves the first inequality in (5.8).
We will find v2 ∈ Vh and a function v+ such that

−
∑
σ∈Ev

∫
σ

(L(v2 + v+))[φ] dσ ≥ K2

∑
σ∈E0

v

(hσ)−1

∫
σ

[φ]2 dσ,(5.9)

∫
Ω

|v2 + v+|2 dx ≤ K3

∑
σ∈E0

v

(hσ)−1

∫
σ

[φ]2 dσ.(5.10)

Let σ ∈ E0
v and let τ, τ̃ be the two triangles sharing the same edge σ. We define

V 2
h (τ ∪ τ̃) as follows:

V 2
h (τ ∪ τ̃) = {v|τ∪τ̃ + ∇(λτ,2λτ,3qk) | v ∈ Vh, (V D1) = (V D2) = 0; qk ∈ P k(τ ∪ τ̃)}.

Here, by (VD1) = (VD2) = 0, we mean both the degrees of freedom defined by (VD1)
and (VD2) are equal to zero. Also, the polynomial qk is fixed and will be chosen in
the following. With the standard L2(τ ∪ τ̃)2 norm, V 2

h (τ ∪ τ̃) is a Hilbert space. We
also define the following linear functional:

gτ (η) =

∫
σ

(Lη)[φ] dσ

for all η ∈ V 2
h (τ ∪ τ̃). By the Riesz representation theorem, there is an element

v2,τ + v+
τ ∈ V 2

h (τ ∪ τ̃) such that

gτ (η) =

∫
τ∪τ̃

(v2,τ + v+
τ )η dx and ‖v2,τ + v+

τ ‖L2(τ∪τ̃)2 = ‖gτ‖(L2(τ∪τ̃)2)∗ ,

where the norm ‖gτ‖(L2(τ∪τ̃)2)∗ is defined as

‖gτ‖(L2(τ∪τ̃)2)∗ = sup
η∈V 2

h (τ∪τ̃)

gτ (η)

‖η‖L2(τ∪τ̃)2
.

We then define v2 by v2|τ = v2,τ and v+ by v+|τ = v+
τ . Since

∫
σ
(Lη)2 dσ ≤ K(h−1

σ )∫
τ∪τ̃

|η|2 dx, we have

‖gτ‖2
(L2(τ∪τ̃)2)∗ ≤ 1

‖η‖2
L2(τ∪τ̃)2

∫
σ

(Lη)2 dσ

∫
σ

[φ]2 dσ ≤ Kh−1
σ

∫
σ

[φ]2 dσ.

Summing up all τ ∈ T proves (5.10). To prove (5.9), we will first show that [φ]|σ =
0 if ‖gτ‖(L2(τ∪τ̃)2)∗ = 0. Now, we assume ‖gτ‖(L2(τ∪τ̃)2)∗ = 0. Then we have
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∫
σ
(Lη)[φ] dσ = 0 for all η ∈ V 2

h (τ ∪ τ̃). We take η|τ ∈ P k(τ)2 and η|τ̃ ∈ P k(τ̃)2

such that Lη = [φ] at the k + 1 Gaussian points of σ. Then, η ∈ V 2
h (τ ∪ τ̃) and

hσ

k+1∑
j=1

wj [φ(αj)]
2 dx =

∫
σ

(Lη)[φ] dx = 0,

where the first equality follows from the Gaussian quadrature rule; here wj denotes
the weight and αj denotes the quadrature point. Since the weights wj > 0, we have
[φ] = 0 at the k + 1 Gaussian points of σ. Notice that [φ]|σ is a polynomial of degree
k + 1. So, we have that [φ]|σ is a scalar multiple of the (k + 1)th degree Legendre
polynomial, namely [φ]|σ = bPk+1 for some constant b, where Pk+1 is the Legendre
polynomial of degree k + 1. We take η = ∇(λτ,2λτ,3qk) with qk to be determined
below. Notice that Lη is the tangential derivative of λτ,2λτ,3qk along σ. By a change
of variable, we have

∫
σ

(Lη)[φ] dσ = d

∫ 1

−1

d

dz
((1 − z2)qk(z))[φ(z)] dz

= d

∫ 1

−1

d

dz
((1 − z2)qk(z))bPk+1(z) dz

for some constant d > 0. Notice that Pk+1 satisfies the Legendre differential equation

d

dz

(
(1 − z2)

dPk+1

dz

)
= −(k + 1)(k + 2)Pk+1.

So, we take qk|σ = dPk+1

dz and extend the definition of qk over all of τ ∪ τ̃ . Then we
obtain ∫

σ

(Lη)[φ] dx = −bd(k + 1)(k + 2)

∫ 1

−1

P
2
k+1(z) dz.

This implies that b = 0. Hence [φ] = 0. So, ‖gτ‖(L2(τ∪τ̃)2)∗ defines a norm on L2(σ).
Since norms in finite dimensional spaces are equivalent, we obtain

‖gτ‖(L2(τ∪τ̃)2)∗ ≥ K(τ ∪ τ̃)‖[φ]‖L2(σ).

A standard scale change argument yields

‖gτ‖(L2(τ∪τ̃)2)∗ ≥ K(hσ)−
1
2 ‖[φ]‖L2(σ),

which proves (5.9).
Combining (5.8), (5.9), and (5.10), we have

Bh(δv1 + v2 + v+, φ) ≥ δK1

∫
Ω

|B∗φ|2 dx + K2

∑
σ∈Ev

(hσ)−1

∫
σ

[φ]2 dσ

+

∫
Ω

(B∗φ)(v2 + v+) dx.

By the Cauchy–Schwarz inequality,∫
Ω

(B∗φ)(v2 + v+) dx ≥ − K2

2K3

∫
Ω

|v2 + v+|2 dx− K3

2K2

∫
Ω

|B∗φ|2 dx.
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So, we have

Bh(δv1 + v2 + v+, φ) ≥
(
δK1 −

K3

2K2

)∫
Ω

|B∗φ|2 dx +
K2

2

∑
σ∈Ev

(hσ)−1

∫
σ

[φ]2 dσ.

Now, we choose δ such that δK1 − K3

2K2
= 1. Then we have

Bh(δv1 + v2 + v+, φ) ≥ min

(
1,

K2

2

)
‖φ‖2

Z .

Since Bh(v+, φ) = 0, we have

Bh(δv1 + v2, φ) ≥ min

(
1,

K2

2

)
‖φ‖2

Z .

We take v = δv1 + v2 ∈ Vh so that the first inequality in (5.7) is proved. To prove
the second inequality in (5.7), we first notice that ‖v2,τ‖L2(σ) defines a norm for
V 2
h (τ ∪ τ̃) since ‖v2,τ‖L2(σ) = 0 implies (VD3) = 0 which in turn implies v2,τ = 0 by

unisolvence of the FE space Vh. By norm equivalence in finite dimensional spaces, we
have ‖v2,τ‖L2(τ) ≤ Kh

1
2 ‖v2,τ‖L2(σ) ≤ ‖v2,τ‖L2(τ). Then we obtain

‖δv1 + v2‖L2(τ) ≤ δ‖v1‖L2(τ) + ‖v2‖L2(τ) ≤ K‖v1‖L2(τ) + h
1
2 ‖v2‖L2(σ).

Furthermore, we have the following orthogonality condition:

∫
σ

v2,τv
+
τ dσ =

∫ 1

−1

v2,τ
d

dz

(
(1 − z2)

dPk+1

dz

)
dz

= −(k + 1)(k + 2)

∫ 1

−1

v2,τPk+1 dz = 0

since the function Pk+1 is equal to zero at the k + 1 Gaussian points of σ. By the
orthogonality condition,

‖v2‖2
L2(σ) ≤ ‖v2‖2

L2(σ) + ‖v+‖2
L2(σ) = ‖v2 + v+‖2

L2(σ) ≤ Kh−1‖v2 + v+‖2
L2(τ∪τ̃),

where the last inequality follows from trace inequality. So, we have

‖δv1 + v2‖L2(τ∪τ̃)2 ≤ K‖v1‖L2(τ∪τ̃)2 + K‖v2 + v+‖L2(τ∪τ̃)2 .

Summing up all τ ∈ T and using estimates (5.8) and (5.10) completes the
proof.

6. Numerical examples. In this section we present a series of numerical ex-
periments which give quantitative results and confirm the rate of convergence of the
method (3.3)–(3.4). We will, in particular, consider the TE mode of Maxwell’s equa-
tions (E) and set Ω = [0, 2π]2, a1 = a2 = 1, and F1 = F2 = 0. In addition, the
function u is the magnetic field H while the vector v is the electric field E. The exact
solution to Maxwell’s equations is

H(x, t) = cos(t) cos(x1) + cos(t) cos(x2),

E1(x, t) = − sin(t) sin(x2),

E2(x, t) = sin(t) sin(x1).
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Table 6.1

L2 norm errors at T = π/4 for k = 0. Rate of convergence is 1.0298.

N NT L2 error

10 100 1.311
20 200 0.4799
40 400 0.2782
80 800 0.1301
160 1600 0.06653
320 3200 0.03378

Table 6.2

Errors in various norms at T = π/4 for k = 1.

N NT L2 error ‖H −Hh‖Z ‖E − Eh‖Z′

10 100 0.1809 1.526 0.7213
20 200 0.04528 0.6619 0.3472
40 400 0.01111 0.3498 0.1623
80 800 0.002797 0.1597 0.1019
160 1600 0.0007022 0.06220 0.04968

The domain Ω is triangulated in the following manner. First, we divide Ω into
N × N uniform squares. Then, we subdivide each square by connecting the lower
left corner and the upper right corner to obtain two triangles. We further subdivide
each triangle into three triangles by connecting the center of the triangle to its three
vertices. For the resulting ODE system in time, we use the standard leap-frog scheme.
Below we use NT to represent the number of time steps.

We first consider an example for the first order method, that is, k = 0. We then
test the rate of convergence by comparing the solution to the scheme (3.3)–(3.4) and
the exact solution at T = π

4 . Table 6.1 shows the discrete L2 errors for various mesh
sizes, from N = 10 to N = 320. Here, we choose the time step small enough so that
a suitable CFL condition for the leap-frog scheme is satisfied. We will use the results
from Table 6.1 and the least squares method to estimate the rates of convergence of the
scheme in the discrete L2 norm. More precisely, we assume the error is proportional
to hβ for some β ∈ R, and then perform a least square data fitting using the data
from Table 6.1. Doing this, the numerical rate of convergence is 1.0298. This confirms
that the scheme is first order convergence in the discrete L2 norm.

Next, we consider an example with k = 1, that is, the FE spaces Uh and Vh, which
contain all linear polynomials and a subset of quadratic polynomials. We will test the
rates of convergence in various norms at T = π/4. Table 6.2 shows the results of error
in various norms with various mesh sizes. In the third column of Table 6.2, we give
the sum of the error for both H and E in the discrete L2 norm. In the fourth column,
we have the error for the magnetic field in the Z-norm. In the fifth column, we have
the error for the electric field in the Z ′-norm. Table 6.3 shows the estimated rates
of convergence. From the table, we see that the estimated rate of convergence in the
discrete L2 norm is approximately 2. Moreover, the estimated rates of convergence
in H1 semi-norms are approximately equal to 1. Our theoretical statements are thus
confirmed by this experiment.

In Table 6.4, we also show the error for the divergence of E as well as the normal
jump of E. We have not proved convergence results in these two norms, but they
are implied by the estimates that we proved in previous sections. The error in the
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Table 6.3

Estimated rate of convergence at T = π/4 for k = 1.

Norm Estimated rate

L2 norm 2.004

‖H −Hh‖Z 1.129

‖E − Eh‖Z′ 0.9489

Table 6.4

Normal jump and divergence errors at T = π/4 for k = 1.

N NT
∑

σ∈E (h
− 1

2
σ )‖L⊥(E − Eh)‖L2(σ) ‖div(E − Eh)‖L2(Ω)

10 100 1.212 0.2519

20 200 0.5692 0.1180

40 400 0.2610 0.05039

80 800 0.1387 0.03494

160 1600 0.06686 0.01632

divergence of E is measured by ‖div(E − Eh)‖L2(Ω) while the error in the normal

jump of E is measured by
∑

σ∈E(h
− 1

2
σ )‖L⊥(E − Eh)‖L2(σ). The estimated rates in

both norms are 0.9652 and 1.040, respectively. So, the rates of convergence are indeed
first order for these two norms.

In what follows, we will consider the one dimensional scalar wave equation on
Ω = [0, 2π],

∂u

∂t
=

∂v

∂x
,

∂v

∂t
=

∂u

∂x
,

with periodic boundary condition. The purpose is to compare our new optimal DG
with the central DG method. The central DG method is typically based on piecewise
polynomial approximation without continuity requirement across cell interfaces. Flux
integrals along cell boundaries are evaluated by using the average of two values of the
numerical solutions from the two neighboring cells, or the so called central numerical
flux; see, for example, [7]. We choose u(x, t) = esin(x−t) and v(x, t) = −esin(x−t) to
be the exact solution. We will compare the numerical solutions by the two methods
at T = 20 using 20 spatial cells and the leap-frog scheme for the time discretization.
Figure 6.1 shows the numerical solutions. First, we see that both methods preserve
energy. Second, we see that there are spurious modes in the numerical solutions
obtained by the central DG. It can be shown that the central DG does not satisfy the
inf-sup conditions that we introduce in this paper. With our new optimal DG, which
verifies the inf-sup conditions, we see that there is no spurious mode appearing in the
numerical solution.

Now we will compare our new DG with an upwind DG method. The upwind DG
method is typically based on piecewise polynomial approximation without continuity
requirement. Flux integrals along cell boundaries are evaluated by taking the upwind
value of the numerical solution from the two neighboring cells, or the so called upwind
numerical flux; see, for example, [10]. We will compare the numerical solutions by
both methods using the same setting except that T = 100 and the 4th order Runge–
Kutta method is used for time stepping for the upwind DG. Figure 6.2 shows the
numerical results. We see that both methods contain no spurious mode. For the
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Fig. 6.1. Comparison of the optimal DGM and central DGM.
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Fig. 6.2. Comparison of the optimal DGM and upwind DGM.

upwind DG, it is well known that it is dissipative as seen from the numerical result.
On the contrary, our optimal DG preserves energy well.

Before ending this section, we will compare the upwind DG, central DG, and
our new optimal DG with piecewise linear approximation. Due to the nature of the
three schemes, they are all explicit and suitable for unstructured grids. Because of
upwinding, the upwind DG is not energy preserving. In terms of the total number
of degrees of freedom (DOF), both the upwind DG and the central DG need 4N
unknowns. This is because there are 4 unknowns on each cell. On the contrary,
owing to the extra continuity conditions, our new DG needs only 3N unknowns,
which is more efficient in terms of memory storage. In addition, the central DG
is only first order accurate, which is suboptimal since we are considering piecewise
linear approximation. Both the upwind DG and our new DG have optimal order of
convergence, namely, second order in the L2 norm. We summarize all these properties
in Table 6.5.

7. Conclusion. In this paper, we have developed and analyzed a new class of
discontinuous Galerkin methods. This new DG can be seen as a compromise between
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Table 6.5

Comparison among upwind, central, and our new DG with piecewise linear polynomials.

Upwind Central Our

Explicit scheme Y Y Y

Unstructured grid Y Y Y

Energy conservation N Y Y

DOF 4N 4N 3N

Order O(h2) O(h) O(h2)

the standard DG and the FE in the sense that our new DG is explicit as standard
DG and is energy conserving as FE. Energy conservation is an important property for
a large class of applications that involves the numerical solutions of wave equations
while explicitness provides a more efficient scheme where no matrix inversion is needed
at each time step. We have shown that the new DG is stable in both the discrete L2

norm and discrete H1 norm. Moreover, the convergence rate is optimal with respect
to the order of the polynomial space. To the best of our knowledge, our new DG is the
first method that satisfies all of the following properties: explicit, energy conserving,
suitable for unstructured grids, and optimal rate of convergence.
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