Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma

Wei Lu1,#, Marites P. Melancon1,2, Chiyi Xiong1, Qian Huang1, Andrew Elliott2, Shaoli Song1, Rui Zhang1, Leo G. Flores II1, Juri G. Gelovani1, Lihong V. Wang3, Geng Ku1, R. Jason Stafford2, and Chun Li1,*

1Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 2Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, and 3Department of Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University, St. Louis, Missouri

Abstract

Advancements in nanotechnology have made it possible to create multifunctional nanostructures that can be used simultaneously to image and treat cancers. For example, hollow gold nanospheres (HAuNS) have been shown to generate intense photoacoustic signals and induce efficient photothermal ablation (PTA) therapy. In this study, we used photoacoustic tomography (PAT), a hybrid imaging modality, to assess the intravenous delivery of HAuNS targeted to integrins that are overexpressed in both glioma and angiogenic blood vessels in a mouse model of glioma. Mice were then treated with near-infrared laser, which elevated tumor temperature by 20.7 °C. We found that PTA treatment significantly prolonged the survival of tumor-bearing mice. Taken together, these results demonstrate the feasibility of using a single nanostructure for image-guided local tumor PTA therapy using photoacoustic molecular imaging.

Introduction

With nanotechnology, it is possible to create multifunctional nanostructures capable of mediating diagnostic imaging, treatment, and monitoring of therapeutic response. For example, pegylated gold nanorods were used for both X-ray computed tomography and photothermal ablation (PTA) (1). This approach sometimes referred to as “theranostics”, holds a great promise for cancer diagnosis and therapy. Photoacoustic tomography (PAT) is a hybrid imaging modality that detects absorbed photons ultrasonically through the photoacoustic effect (2). PAT is capable of detecting optical contrast agents with high sensitivity and specificity (3-5). With the metal nanocomposites, photoacoustic imaging and temperature measurement for photothermal cancer therapy was investigated in tissue-mimicking phantoms and excised animal tissues (6).

We hypothesize that PAT is an accurate and sensitive imaging modality for cancer diagnosis and for assessing targeted delivery to brain tumors of gold nanostructures used for PTA therapy. Silica-cored gold nanoshells, which are under clinical investigation, have been
shown to mediate effective PTA therapy and improve survival in a murine glioma model (7). In this work, we demonstrated that intravenous injection of hollow gold nanospheres (HAuNS) targeted to integrins that are overexpressed in both glioma and angiogenic blood vessels (4, 8, 9), permitted PAT of orthotopically inoculated U87 glioma in nude mice and mediated selective antitumor effect when mice were irradiated with near-infrared (NIR) laser. Although there have been numerous reports on theranostic applications of cancer nanotechnology, to the best of our knowledge, this is the first report to demonstrate simultaneous molecular PAT and PTA therapy for cancer with a single platform of targeted nanoparticles.

Materials and Methods

Nanoparticle synthesis

HAuNS were synthesized as previously described (10). Cyclic RGD peptide c(KRGDf) was synthesized manually using PL-DMA resin and Nα-Fmoc chemistry (11). Cyclic RGD peptides have been used for imaging and treatment of glioma (4, 8, 9) because of their high binding affinity to integrin receptors such as αvβ3 receptors (IC50=2-40 nM) (12, 13). The peptide was conjugated to one terminus of a heterodifunctional poly(ethylene glycol) (PEG) precursor, N-hydroxysuccinimidyl-PEG-S-acetylthioacetate (NHS-PEG-SATA; molecular weight 5,000), through its ε-amine of lysine residue and activated ester in NHS-PEG-SATA. The sulfhydryl group on the other terminus of c(KRGDf)-PEG-SATA was released by treatment with 0.5 M hydroxylamine in PBS (Supplementary Fig. S1). HAuNS (8.5×10^12 particles/mL) were then added to argon-purged aqueous solution containing c(KRGDf)-PEG-SH (50 μg/mL) and PEG-SH (500 μg/mL, Sigma) and the solution was stirred overnight at room temperature to give c(KRGDf)-PEG-HAuNS (Fig. 1A). PEG-SH was conjugated to HAuNS similarly to give PEG-HAuNS (nonspecific control).

Photoacoustic imaging

PAT of mouse brain inoculated with human glioblastoma stably transfected with luciferase gene (U87-TGL) was carried out as we previously described (3). A brief description of the PAT technique is provided in the supplemental information. The cell line provided by Dr. Juri G. Gelovani (University of Texas) in January 2008 was validated by STR DNA fingerprinting by the Characterized Cell Line Core Facility at UT MD Anderson Cancer Center on April 12, 2011. The STR profiles were compared to known ATCC fingerprints, and to the Cell Line Integrated Molecular Authentication database (CLIMA) version 0.1.200808 (http://bioinformatics.istge.it/clima/). The STR profiles matched known DNA fingerprints of U87-MG.

On day 8 after tumor inoculation, mice were imaged using a prototype PAT scanner. Mice were then injected intravenously with c(KRGDf)-PEG-HAuNS or PEG-HAuNS (2.5×10^11 particles per mouse). Contrast-enhanced photoacoustic images were acquired 24 h after nanoparticle injection. Imaging data were reconstructed using modified delay and sum back-projection reconstruction algorithm. After data acquisition, mice were sacrificed by overexposure to CO2. Open-skull surgery was performed to permit photography of the brain tumors.

Micro-positron emission tomography (μPET)

To further confirm the accuracy of PAT imaging of U87 tumors, c(KRGDf)-PEG-HAuNS were labeled with the positron emitter ^64Cu (t1/2=12.7 h) (14). Tumor-bearing mice were injected intravenously with ^64Cu-labeled c(KRGDf)-PEG-HAuNS or ^64Cu-labeled PEG-HAuNS at a dose of 7.5 mCi/kg (n=3 per agent). Twenty-four hours later, mice were anesthetized with 2% isoflurane (Baxter). Mice were subjected to a 7-min micro-computed
tomography (μCT) scan followed by a 20-min μPET scan using an Inveon μPET/CT Scanner (Siemens). The μPET/CT images were generated separately and then fused using Inveon Research Workplace version 3.0 (Siemens).

Photothermal therapy

On day 8 after tumor inoculation, mice were injected intravenously with D-luciferin (4 mg/kg) for bioluminescence imaging. Mice were randomly allocated into five groups of 15 mice each. Groups I and IV were injected intravenously with c(KRGDf)-PEG-HAuNS, group II with PEG-HAuNS (both 2.5×10^{11} particles per mouse), and groups III and V with saline. Groups I-III were also treated with NIR laser irradiation (16 W/cm², 3 min, 808 nm) 24 h after nanoparticle injection. In each group, 5 mice were subjected to luciferase bioluminescence imaging at various times after nanoparticle injection to measure tumor burden (response to PTA therapy), and 10 mice were subjected to survival monitoring. Survival data were presented using Kaplan-Meier plots and analyzed using a log-rank test. P < 0.05 was considered statistically significant.

Results

PAT permits visualization of U87 gliomas in intact nude mice

Transmission electron microscopy showed that c(KRGDf)-PEG-HAuNS were spherical, had hollow interiors, had average diameter of ~40 nm, and had an absorption peak tuned to ~800 nm (Fig. 1B). We previously demonstrated that the molar extinction coefficient associated with the optical absorption cross-section of HAuNS (1.4×10^{11} M⁻¹·cm⁻¹) is much higher than that of hemoglobin (~1×10^{3} M⁻¹·cm⁻¹). Indeed, PEG-HAuNS at a concentration as low as 20 pM displayed the same optical absorption as hemoglobin at its typical blood concentration of 2.3 mM (3). The strong absorption of PEG-HAuNS in the NIR region permitted intense contrast in PAT.

Images of mice with U87 glioma before and after intravenous injection of c(KRGDf)-PEG-HAuNS or PEG-HAuNS are shown in Figure 1C. Precontrast PAT only showed the normal brain vasculature. There was a low signal-to-background ratio between tumor and normal brain with no significant difference in photoacoustic (PA) signal intensities (Fig. 1D). However, 24 h after injection of c(KRGDf)-PEG-HAuNS, PAT clearly revealed brain tumor, and the tumor location on PAT correlated with mouse brain anatomy. Quantitative analysis confirmed that the mean contrast-enhanced PA signal ratio of tumor-to-contralateral normal brain 24 h after c(KRGDf)-PEG-HAuNS injection was about twice as high as that obtained from precontrast images (p=0.0375). In contrast, 24 h after injection of PEG-HAuNS, there was no change in tumor-to-brain PA ratio compared to that obtained from precontrast PAT images (p=0.4677). These data supported that selective accumulation of c(KRGDf)-PEG-HAuNS enhanced PAT of U87 glioma.

μPET/CT confirms accuracy of PAT imaging of U87 gliomas with c(KRGDf)-PEG-HAuNS

At 24 h after intravenous injection, ^{64}Cu-labeled c(KRGDf)-PEG-HAuNS showed 2.9-fold higher uptake than ^{64}Cu-labeled PEG-HAuNS in U87 tumors (1.12±0.22%ID/g versus 0.38±0.12%ID/g, Fig. 2 and Supplementary Fig. S2), and autoradiography showed higher radioactivity in tumor with c(KRGDf)-PEG-HAuNS than PEG-HAuNS. In addition to integrin α_vβ_3, recent study showed that c(KRGDf) may also interact with other integrins such as α_vβ_5 (15). Here, we used immunohistochemical staining of integrin α_vβ_3 receptors in tumors to confirm HAuNS localization. The intracranial distribution of radioactivity matched well with the site of tumor inoculation as well as the distribution of integrin α_vβ_3. Selective uptake of c(KRGDf)-PEG-HAuNS in U87 tumors was further supported by
microscopy, which revealed greater accumulation of c(KRGDf)-PEG-HAuNS than PEG-
HAuNS in tumors (Fig. 2).

Injection of c(KRGDf)-PEG-HAuNS plus NIR laser irradiation elevates temperature of U87 gliomas

Representative magnetic resonance temperature imaging (MRTI) maps of mouse brains at
the end of laser irradiation are shown in Fig. 3A. Dynamic temperature curves based on
MRTI analysis revealed that NIR laser irradiation in mice injected with c(KRGDf)-PEG-
HAuNS reached a maximum temperature of 57.75 ± 0.46 °C (Fig. 3B), which is above
the threshold of temperature of 54°C needed for irreversible cell damage (16, 17). In contrast,
NIR laser irradiation in mice injected with nontargeted PEG-HAuNS or saline resulted in
maximum temperatures of 48.14 ± 0.12 °C and 41.65 ± 0.09 °C, respectively, which were
insufficient to induce irreversible cell damage (Fig. 3B).

PTA therapy with c(KRGDf)-PEG-HAuNS prolongs survival of mice with orthotopic U87 gliomas

Bioluminescence imaging showed significantly decreased luminescence intensity in tumors
of mice treated with c(KRGDf)-PEG-HAuNS injection and laser irradiation (Fig. 4A and
4B). This tumor-ablation effect was observed during the first 9 days after laser treatment
days 9-17, when the luminescence intensity was lower than that before laser treatment (day
8). On day 19 and later, the luminescence intensity exceeded that before laser treatment,
indicating brain tumor recurrence. In mice treated with PEG-HAuNS plus laser,
luminescence intensity in tumors decreased only on day 9. In mice treated with laser alone,
c(KRGDf)-PEG-HAuNS alone, or saline, luminescence intensity increased throughout
treatment.

The median survival time of mice treated with c(KRGDf)-PEG-HAuNS plus laser (28 d)
was significantly longer than that of the other groups (P < 0.001): PEG-HAuNS plus laser,
19.5 d; laser alone, 17.5 d; c(KRGDf)-PEG-HAuNS alone, 17.5 d; and saline, 16.5 d (Fig.
4C). Histologic examination confirmed that c(KRGDf)-PEG-HAuNS plus laser was the
treatment causing the most extensive necrotic response (Fig. 4D). Extensive pyknosis,
cytoplasmic acidophilia (10, 17), and corruption of the extracellular matrix of the tumor
appeared throughout tumors of mice treated with c(KRGDf)-PEG-HAuNS plus laser. The
tumor cells were completely ablated; there were no discernible residue viable tumor cells in
the tumor periphery (Fig. 4D, arrow). In mice treated with PEG-HAuNS plus laser or laser
alone, about 45% and 30% of tumor tissues were necrotized, characterized as pyknosis and
medium cytoplasmic acidophilia, and there were large numbers of viable tumor cells in the
periphery (Fig. 4D, asterisks). In tumors of mice treated with c(KRGDf)-PEG-HAuNS alone
or saline alone, most tumor cells were intact.

Discussion

We have demonstrated effective PAT imaging and PTA therapy of glioma mediated by a
single preparation of targeted HAuNS based on their intrinsically high optical absorption
cross-section. The findings from our current study suggest potential applications of HAuNS
as a novel theranostic platform. First, c(KRGDf)-PEG-HAuNS can serve as efficient optical
contrast agents for photoacoustic imaging, which may provide cancer diagnosis with high-
resolution and high-sensitivity in addition to conventional imaging modalities. The PAT
may also be useful for pretreatment diagnosis, real-time monitoring of treatment, as well as
assessment of treatment outcome. Second, under the guidance of PAT imaging, accurate and
efficient PTA of tumor cells would be instituted simply by switching the laser power from
diagnostic level (pulsed laser, 50 mW/cm²) to therapeutic level (diode laser, 16 W/cm²) on
the basis of the high photothermal coupling efficiency of HAuNS. Third, given that μPET/CT using ⁶⁴Cu-labeled c(KRGDF)-PEG-HAuNS confirms selective uptake of the nanoparticles in U87 tumors, PET/CT with ⁶⁴Cu-labeled targeted HAuNS should provide alternative imaging method for HAuNS mediated PTA therapy.

With these advantages, we envision that for treating an entire tumor volume, delivery of laser energy to the region of interest would be achieved in a way similar to that of interstitial high-dose rate brachytherapy in that multiple applicators are used to cover the area of interest (18). For small recurrent tumors, which are a large and important patient population, this would provide a minimally invasive technique to both diagnose and target the recurrence using a single fiber. Remaining PAT signal from the tumor bed or beyond after surgery could guide further resection and/or provide opportunity for selective ablation mediated by the targeted HAuNS. If successfully implemented in the clinical setting, our approach described here offer an alternative option over current clinical investigations of glioma theranostics involving CT-guided thermotherapy with superparamagnetic iron-oxide nanoparticles in an alternating magnetic field (19, 20). In this case, the nanoparticles are administered intratumorally under neuronavigational control and pretreatment MRI.

Although no viable tumor cells were found on histologic evaluation after treatment with c(KRGDF)-PEG-HAuNS plus NIR irradiation, we did observe regrowth of tumor, suggesting the presence of residual tumor cells after treatment. Combining PTA therapy and other treatment modalities, such as photothermal chemotherapy made possible with drug-loaded HAuNS or photothermal transfection made possible with HAuNS coated with therapeutic siRNA (14), should lead to further enhanced therapeutic outcome and even cure. Studies towards this goal are currently under way.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Stephanie Deming for editing the manuscript.

Grant support: This work was supported in part by grants from the National Institutes of Health (grant R01 CA118387 05 S1 and MD Anderson’s Cancer Center Support Grant CA016672), the John S. Dunn Foundation, SPORE Head and Neck Career Development Award P50CA097007 (to M.P.M), and an Odyssey Fellowship (to M.P.M.). Funding as an Odyssey Fellow is supported by the Odyssey Program and The Cockrell Foundation Award for Scientific Achievement at the University of Texas M. D. Anderson Cancer Center. The ⁶⁴Cu was provided by Washington University Medical School, which is partially funded by National Cancer Institute grant R24 CA86307.

References

Figure 1.
A, scheme for c(KRGDF)-PEG-HAuNS bioconjugation. B, c(KRGDF)-PEG-HAuNS characteristics on transmission electron microscopy (bar, 20 nm) and UV-Vis spectrum (measured in water). C, PAT images of U87 human glioma in mouse brains before (0 h) and 24 h after intravenous injection of nanoparticles (bar, 5 mm). Photographs of corresponding mouse brains were used to confirm tumor location. Arrows, locations of tumors; L, left. D, PA signal intensity ratio of tumor-to-contralateral brain in mice before (0 h) and 24 h after injection of HAuNS. Data are presented as mean ± SD. c(KRGDF)-PEG-HAuNS group, n=5; PEG-HAuNS group, n=4. * indicates significant difference between precontrast and 24 h postcontrast groups (p<0.05).
Figure 2.
Targeted delivery of 64Cu-labeled c(KRGDF)-PEG-HAuNS to U87 human glioma in mouse brains. Shown are μPET/CT images (obtained 24 h after intravenous injection of nanoparticles); photographs of mouse brains stained with hematoxylin-eosin and $\alpha_v\beta_3$ and autoradiographs of mouse brains; and immunofluorescence micrographs of tumor tissue at high magnification. Red, $\alpha_v\beta_3$; green, scattering signal of HAuNS under dark field; blue, DAPI-stained cell nuclei; arrows, tumors; bar, 10 μm.
Figure 3.
Real-time MRTI of U87 human gliomas in mouse brains 24 h after injection of HAuNS. A, overlap of mouse brain T1-weighted MRI with Magnevist and MRTI at the end of laser irradiation. B, tumor temperature change versus time in the region of interest (blue rectangles in Fig. 3A). Laser (16 W/cm² at 808 nm) was applied for 3 min between the time points indicated by the arrows.
Figure 4.
Photothermal ablation of U87 human gliomas in mouse brains. A, representative bioluminescence images of nude mice bearing U87-TGL tumors with different treatments (see Materials and Methods). B, quantitative analysis of bioluminescence beginning with treatment administration on day 8 after tumor inoculation (n=5 per group). C, Kaplan-Meier survival curve of tumor-bearing mice treated as in B (n=10 per group). D, histologic evaluation of tumor necrosis. Left lane, representative photographs of tumor-bearing mouse brains stained with hematoxylineosin 24 h after NIR laser irradiation. Right three lanes, representative microphotographs at high magnification of the areas corresponding to the boxed areas in the left lane. Arrow indicates no discernible residual viable tumor cells in the tumor periphery. Asterisks indicate viable tumor cells in mice treated with PEG-HAuNS plus laser or laser alone. Bars (left to right), 1 mm, 200 μm, 20 μm, 20 μm.