SOCIAL CHOICE THEORY, GAME THEORY, AND POSITIVE POLITICAL THEORY

David Austen-Smith
Department of Political Science, Northwestern University, Evanston, Illinois 60208

Jeffrey S. Banks
Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125

KEY WORDS: core existence, Nash equilibrium, minimal democracy

ABSTRACT

We consider the relationships between the collective preference and non-cooperative game theory approaches to positive political theory. In particular, we show that an apparently decisive difference between the two approaches—that in sufficiently complex environments (e.g. high-dimensional choice spaces) direct preference aggregation models are incapable of generating any prediction at all, whereas non-cooperative game-theoretic models almost always generate prediction—is indeed only an apparent difference. More generally, we argue that when modeling collective decisions there is a fundamental tension between insuring existence of well-defined predictions, a criterion of minimal democracy, and general applicability to complex environments; while any two of the three are compatible under either approach, neither collective preference nor non-cooperative game theory can support models that simultaneously satisfy all three desiderata.

1. INTRODUCTION

Positive political theory is concerned with understanding political phenomena through the use of analytical models which, it is hoped, lend insight into why outcomes look the way they do and not some other way. Examples of such
phenomena include which parties or candidates are elected at certain times, which bills are adopted by legislative bodies, and when and how wars are fought between countries. Most of the models begin with the presumption that these phenomena result from decisions made by the relevant individuals, be they voters and candidates in the first example, elected representatives and appointed ministers in the second, or heads of state in the third. Furthermore, these decisions are to a large extent a consequence of the preferences, beliefs, and actions of these individuals.

Most models within positive theory are members of one of two families, although the demarcation line between the two is at times obscure; indeed, one of the goals of this chapter is to provide our perspective on how these two families fit together and to argue that, at times, this line should be obscure. One class of models is motivated by the canonic rational choice theory of individual decision making. (We confine attention here to formal models built around rational choice theory. Although by no means the only possible or extant sort of formal model for studying politics, rational choice models are far and away the modal sort.) In its simplest form, this theory assumes an individual has well-defined preferences over a given set of alternatives and chooses any alternative with the property that no other alternative in the set is strictly more preferred by her; that is, the individual chooses a “best” alternative. In politics, however, it is rarely the case that only one individual’s preferences are relevant for any collective choice; even dictators are sensitive to at least some others in the polity. Consequently, the first family of models in positive political theory, which we associate with the methods of social choice, examines the possibility that individual preferences are directly aggregated into a collective, or social, preference relation which, as in the theory of individual decision making, is then maximized to yield a set of best alternatives (where “best” is defined as being most preferred with respect to the collective preference relation). If a set of best alternatives for a given method of aggregation necessarily exists, then we have an internally consistent model of observed collective choices as elements from this set analogous to the model of individual choice, and it is in principle possible to ascertain whether the model does or does not provide a good explanation for what is observed in the real world of politics.

One missing piece of the direct aggregation story is the appropriate method by which the aggregation of individuals’ preferences into social preference is made, for example majority rule, unanimity, or dictatorship. Although this is typically dictated by explicit, inherent features of the political phenomenon in question (e.g. plurality-rule elections), there are occasionally more amorphous situations in which the choice might best be considered in terms of a class of rules, all of which satisfy some critical properties of the situation (e.g. although the specific rules governing within-committee decisions may be more or less
fluid, it is reasonable to suppose they all satisfy some notion of monotonicity
in that more support for an alternative improves that alternative’s chances of
selection). The key here is to think of the aggregation rule as a particular feature
of the model itself, appropriately left to the analyst to decide depending on what
she is attempting to explain. But whatever rule is appropriate for any given
model, the model itself is well specified as an explanatory model of political
outcomes only to the extent that the rule yields best alternatives. Thus, for the
direct preference aggregation approach to work as a general theory of politics,
we need to determine the extent to which different aggregation methods insure
the existence of best alternatives.

It is important to emphasize that the direct aggregation of individual prefer-
ences is not in general equivalent to indirect aggregation of preferences through
the aggregation of individual actions. For example, an individual may have
well-defined preferences over a set of candidates but choose to abstain in an
election, or to vote strategically. Consequently, there is no a priori reason to
suppose that elections lead to the same outcome that would occur if aggregation
were directly over given preferences rather than indirectly over recorded votes.
Of course, we expect the actions of purposive individuals to be intimately con-
nected to their respective preferences, and such connections are the subject of
the second principal family of models within positive political theory.

In this second family of models, individuals are no longer passive partici-
pants in the collective decision making, but rather make individual choices of
behavior that then jointly determine the collective choice of outcome. These
models then naturally fall into the methodology of game theory. Here the fun-
damental moving parts of the model include the set of possible behaviors or
strategies available to each of the participants, as well as a description of how
any list of strategies relates to the set of outcomes. As with the preference
aggregation rules in the first family of models, the analyst’s choice of the ap-
propriate moving parts may be influenced by explicit features of the political
phenomenon in question. Examples of such features are the closed rule in par-
liamentary decision making; presidential veto power; floor-recognition rules in
legislative debate and agenda setting; germaneness rules for amendments; and
party primaries for selecting electoral candidates. At other times, in contrast,
there may not exist such explicit features to provide a roadmap to the “correct”
model. Perhaps the quintessential example is the modeling of any bargaining
process for, say, within-committee or within-party decision making; the analyst
must decide who has the right to make what proposals and when, how to treat
nonbinding communication or the possibility of renegotiation, etc. And the
extent to which one model is “better than” another here depends in part on the
empirical evaluation of their various predictions, the relative degree to which
they generate insights into the workings of the institution, and so on.
Unlike direct preference aggregation models, the game theory models do not presume that collective outcomes are best elements relative to some underlying social preference relation. Rather, they are the consequences of a set of mutually consistent individual decisions within a given game. It is thus the composition of preferences and game structure that explains collective choices in this family of models and not, as in the first family, the application of an aggregation rule to preferences per se. A simple example illustrates the two classes of models.

Three individuals, 1, 2, and 3, must come to some collective choice from a set of three mutually exclusive alternatives, \(x\), \(y\), and \(z\). Let \(z\) be a given status quo policy and assume \(x\) and \(y\) are the only feasible alternatives to \(z\). Individual 1 is assumed to prefer \(x\) most, followed by \(y\), and finally to consider \(z\) the worst option; individual 2 strictly prefers \(z\) to \(x\), and strictly prefers \(x\) to \(y\); individual 3 prefers alternative \(y\) most, ranks \(x\) next best, and considers \(z\) the worst outcome.

Then under simple majority rule, a direct preference aggregation model predicts a collective choice of \(x\) (since \(x\) is pairwise majority-preferred to both \(y\) and \(z\)), and the explanation for such a prediction is that \(x\) is uniquely best relative to the underlying aggregation rule.

Now suppose that instead of direct preference aggregation by majority rule, the choice of an alternative from the list \(x\), \(y\), and \(z\) is determined according to the following game form or set of rules. Individual 3 has the sole right to propose a take-it-or-leave-it change in policy away from the status quo, \(z\). So individual 3 can either make no proposal, in which case \(z\) remains the collective choice, or can propose alternative \(x\) or \(y\) as the new policy; if individual 3 does offer a proposal, then the collective decision is reached via majority vote between \(z\) and the proposal. Under this institutional arrangement, it is clear that individual 3 offers alternative \(y\), \(y\) defeats \(z\), and \(y\) becomes the collective choice. Thus, in this example, the institutionally explicit model of indirect preference aggregation offers a distinct prediction of a collective choice, \(y\), and this is supported by reference not only to individuals’ preferences and the aggregation rule, but also to the institutional rules governing the choice process and the particular choices individuals make.

Prima facie, it seems reasonable to infer that results from the direct collective preference models have little, if any, relevance to those from the indirect game theory models. We consider such an inference inappropriate. In particular, we argue that the choice between collective-preference and game-theoretic models cannot be predicated on a claim that the former typically fail to predict any choice whereas the latter almost always do yield a prediction. Indeed, such a claim is true only to the extent that game-theoretic, in contrast to collective-preference, models do not insist that all collective choices satisfy a certain normative requirement. First, however, we review in more detail the structure of the two families of models. The aim is not to provide a comprehensive survey of positive political theory. Instead, we offer a (probably idiosyncratic)
perspective on what goes into a formal model and how the two methodological approaches within positive political theory hang together. Our arguments are illustrated by four examples from the literature on legislative behavior.

2. THE BASIC ENVIRONMENT

The primitives of any rational choice–theoretic formal model of politics include a specification of a set of the relevant individuals, denoted \(N \); a set of feasible alternatives or outcomes, \(X \); and, for each individual in \(N \), a description of her preferences over the set \(X \). Examples of \(N \) are the members of a congressional district, of an interest group, of a parliamentary committee, or of a jury. Corresponding examples of the alternatives from which such groups are to choose are, respectively, candidates for legislative office, alternative policies to the status quo, or the guilt or innocence of a defendant. Although many of the results below have analogs when the set of feasible alternatives is finite, for pedagogic reasons we concentrate on the spatial model, in which the set \(X \) of feasible alternatives constitutes a nicely shaped geometric object in that it is a closed, bounded, and convex subset of \(d \)-dimensional Euclidean space. Thus \(X \) could be the unit square, with an element of \(X \) then describing two numbers between zero and one (for instance, two tax rates); or \(X \) could be the two-dimensional unit simplex, with an element in \(X \) describing how one dollar is to be divided among three groups. (Although there are three groups, the feasible set of alternatives is two-dimensional, since the three numbers have to add up to one; thus any two amounts completely determine the third.) In general we will interpret the parameter \(d \), the number of issues to be resolved, as a crude measure of the complexity of the collective-decision problem at hand, in that for example single-issue decision problems are in a sense easier to solve than are multi-issue decision problems.

We observe particular policies or outcomes being selected at different points in time and by different polities, as well as a variety of contemporaneous and exogenously given parameters (more on the latter below). As described in Section 1, one of the goals of positive political theory is to explain these observed policy choices as functions of the observed parameters. A maintained hypothesis in most positive theory models is that these observed collective choices somehow reflect the underlying preferences (tastes, values, opinions, etc) of some or all of the individuals in the relevant group. To formalize the idea of individual preferences, each individual in \(N \) is assumed to possess a binary preference relation on \(X \), denoted \(R_i \), where, for any two alternatives \(x \) and \(y \), “\(x R_i y \)” is shorthand for the statement “according to individual \(i \), \(x \) is at least as good as \(y \).” From \(R_i \) one can define \(i \)’s strict preference relation, \(P_i \) (where “\(x P_i y \)” reads “according to individual \(i \), \(x \) is strictly better than \(y \)” and \(i \)’s indifference relation, \(I_i \) (where “\(x I_i y \)” reads “according to individual \(i \), \(x \) and \(y \) are equally good”).
For any given group of individuals $N = \{1, \ldots, n\}$, the list of all individuals’ preferences is described by a preference profile, denoted $R = (R_1, \ldots, R_n)$.

Various restrictions are placed on individual preferences to keep the models relatively tractable. The most basic of these are imposed to guarantee that individual-level decision problems are well defined; these restrictions then imply that any subsequent negative results concerning collective “rationality” are not due to any individual-level irrationality, but are rather the consequence of the interaction between individuals with disparate preferences, as summarized by the profile R. Typical assumptions for the spatial model are given by the “four Cs,” namely, that individual preferences are complete (for all x, y in X either $x R_i y$ or $y R_i x$, or both); consistent, e.g. transitive preferences (if both $x R_i y$ and $y R_i z$ then $x R_i z$); continuous (if $x P_i y$ then for any alternative z sufficiently close to y and alternative w sufficiently close to x, $w P_i z$); and (strictly) convex (if $x R_i y$ then for any distinct alternative z lying on the straight line between x and y, $z P_i y$). Together these four assumptions imply that for each individual, the set of preference-maximizing alternatives or ideal points, $m(R_i)$, is necessarily nonempty and single-valued, and that preferences decline as outcomes move away from this ideal point in any direction.\(^1\) In the special case where the outcome space X is one-dimensional, such preferences are known as single-peaked. Let \mathcal{R} denote the set of preference profiles $R = (R_1, \ldots, R_n)$ such that each R_i satisfies the above four assumptions.

3. SOCIAL CHOICE

Suppose we hypothesize that the observed collective choices are in fact the best alternatives from, say, individual 1’s perspective. We could then develop a model of how various parameters, for example 1’s income or socioeconomic background, influence her preferences and hence her best alternative in any set of choices, and subsequently test the model using the observables (i.e. realized choices and given parameter values). The basic premise in most positive political theory models, however, is that more than one individual’s preferences matter. Consequently, even if we have a firm grasp of how individual preferences depend on some list of exogenous parameters, we still need a theory of how the possibly different and conflicting preferences of individuals get translated into policy choices. Any such theory can be represented as a mapping from the set of preference profiles \mathcal{R} into the set of outcomes X. Let c denote a generic theory of this sort, and refer to the mapping c as a social choice.

\(^1\)These assumptions are useful for keeping various models comparable. Strictly speaking, however, they are stronger than necessary for some of the results below and a little weaker than necessary for others. Also, the assumptions are emphatically not the same as assuming “Euclidean” preferences, where outcomes equidistant from i’s ideal point are judged to be indifferent by i. Euclidean preferences are a (relatively small) subset of those allowed for here.
correspondence; thus $c(R) \subseteq X$ denotes the outcomes selected by the collective N when the preference profile is R, where in general we allow $c(R)$ to be empty (that is, the theory does not make a prediction at R).

The difficulties in aggregating heterogeneous preferences have been known at least since Condorcet (1785), who formulated the following famous paradox associated with majority rule: Let there be exactly three individuals, $N = \{1, 2, 3\}$, and suppose their respective preferences are given by the profile

$$R = \left\{ xyP_1 yP_1 z, \atop yP_2 zP_2 x; \atop zP_3 xP_3 y. \right\}$$

Here each alternative has a majority that prefers some other alternative, thereby causing a fundamental problem for the method of majority decision. More generally, the problem inherent in this profile is that each alternative has, by symmetry of the preference profile, an identical claim on being the chosen outcome. Equivalently, we could say that none of the alternatives has such a claim, because for each there exists another that is preferred by all but one of the individuals. Therefore modeling how the collective decides in this case requires more structure than simply an assumption of aggregation by majority preference.

Say that a preference profile R exhibits the Condorcet problem if for every x in X, there exists another alternative y in X such that the number of individuals strictly preferring y to x is at least $n - 1$. Thus, when a profile exhibits the Condorcet problem, no one alternative stands apart as a natural selection, because for every alternative one can find another that is preferred by all but one of the individuals. Our first result shows that the existence and prevalence of such profiles depends on the complexity of the decision problem at hand.

(a) If $d \geq n - 1$ then there exists a preference profile in R that exhibits the Condorcet problem. (b) If $d \geq 3(n - 3)/2$ then almost all preference profiles in R exhibit the Condorcet problem.² (Theorem 1)

²These results are simply restatements of the nonexistence results for q-rules, whereby x is ranked better than y if and only if at least q individuals strictly prefer x to y (with $n \geq q > n/2$), when $q = n - 1$. Part (a) follows from Greenberg (1979) and part (b) follows from Banks (1995) and Saari (1997). Strictly speaking, (b) requires an additional technical assumption that individual preferences be representable by continuously differentiable utility functions, and that $n \geq 5$. A version of (b) holds for n equal to 3 or 4 as well, but the precise statement is a little more involved due to some special cases and, in the interest of continuity, we omit it here; see Saari (1997) for details. Finally, while the qualifier “almost all” has a precise mathematical meaning, the caveat can be interpreted here as “except in some extremely unlikely circumstances.”
Therefore the only way to avoid such unpleasant profiles is to assume a simple enough decision problem, or else assume them away directly by positing a tighter restriction on individual preferences. Alternatively, for complex environments with unrestricted preferences any social choice correspondence must necessarily come to grips with the question of how collectives decide on outcomes when the preferences of the individuals exhibit a high degree of heterogeneity.

Theorem 1 has an immediate implication for social choice correspondences once we identify a suitable analog to the Condorcet problem. Say that the correspondence \(c \) satisfies minimal democracy at the profile \(R \) if it is the case that \(x \) is not in \(c(R) \) whenever there exists an alternative \(y \) such that all but at most one individual prefers \(y \) to \(x \).3

(a) If \(d \geq n-1 \) then there exists a preference profile \(R \) such that either \(c(R) \) is empty or else \(c \) does not satisfy minimal democracy at \(R \). (b) If \(d \geq 3(n-3)/2 \) then for almost all preference profiles \(R \) either \(c(R) \) is empty or \(c \) does not satisfy minimal democracy at \(R \). (Theorem 1')

Thus there exists a fundamental tension in preference-based theories of collective decision making, in that either existence of solutions or the notion of minimal democracy must be sacrificed at some, and at times most, preference profiles. We shall see below that the principle “negative” result of the collective preference approach can be viewed as sacrificing existence in the name of minimal democracy, whereas the principle “positive” result of the game theory approach sacriﬁces minimal democracy in the name of existence. A distinguishing feature of the two approaches therefore is the trade-off they make between these two concepts.

4. COLLECTIVE PREFERENCE

The collective preference approach to politics seeks to understand the properties of various methods for taking preference profiles into some collective or social preference relation; such methods we term preference aggregation rules. As the basis for a positive model of political phenomena, the premise would then be that, analogous to models of individual decision making, the observed outcomes

3This definition derives from Ferejohn et al (1982). It is worth pointing out that “minimally democratic” rules as defined here (such as majority rule) may not be very palatable in other respects. For instance, a minimally democratic rule might endorse a transfer of all individual 1’s possessions away from 1 to everyone else in society if all individuals other than individual 1 strictly prefer such a reallocation to leaving 1 alone. See Sen (1970) and the subsequent literature on the “liberal paradox” for discussion of how collective decision making and individual rights can conflict.
of the collective decision making are those that are judged to be optimal from the perspective of this social preference relation. If such optimal outcomes necessarily or frequently exist for different aggregation rules, it would then be an empirical question for the positive models as to which is the “right” rule for a given circumstance (and a philosophical question for the normative models).

Formally, a preference aggregation rule, denoted \(f \), specifies for every profile \(R \) in the set of admissible profiles \(\mathcal{R} \) a social preference relation \(R_s \) (with strict aspect \(P_s \) and indifferent aspect \(I_s \)), where, analogous to the interpretation of individual preference relations, the statement “\(x R_s y \)” is read “based on the individual preferences \(R \), and the method of aggregating them into a social preference relation \(f \), \(x \) is judged to be at least as good as \(y \)” (for notational simplicity we keep the dependence of \(R_s \) on \(R \) and \(f \) implicit). Thus a preference aggregation rule generates from the individuals’ preferences a social or collective preference relation according to some procedure or rule, and so we can think of an aggregation rule \(f \) as a mapping from the set \(\mathcal{R} \) of admissible preference profiles on \(X \) into the set, call it \(B \), of complete binary relations on \(X \). (Despite the language, however, there is no sense in which it is presumed that societies per se have “preferences” in the same way as individuals; social “preferences” depend not only on the given list of individual preferences, but also on the aggregation rule in use.) Common examples of preference aggregation rules include (a) majority rule: \(x P_s y \) if and only if the number of individuals strictly preferring \(x \) to \(y \) is more than half the population, (b) unanimity: \(x P_s y \) if and only if every individual strictly prefers \(x \) to \(y \), and (c) dictatorship: there is some specific individual in \(N \), say individual \(i \), such that if \(i \) strictly prefers \(x \) to \(y \) then \(x P_s y \).

Consistent with the theory of individual choice, models of direct preference aggregation posit that the alternatives selected from \(X \) are those that are best or maximal with respect to the underlying (social) preference relation; as above, we let \(m(b) \) denote the set of maximal elements with respect to an arbitrary element of the set \(B \). Thus the mapping \(f \) takes preference profiles as input and generates elements in the set of binary relations, \(B \), while the mapping \(m \) takes binary relations as input and generates elements in the set of outcomes \(X \); see Diagram 1:

\[
\mathcal{R} \xrightarrow{f} B \xrightarrow{m} X. \quad \text{(Diagram 1)}
\]

[Note that, unlike individual preferences, we have not imposed any structure to guarantee \(m(b) \) is a singleton]. Composing the mappings \(f \) and \(m \), we label the set of best elements given a profile \(R \) and an aggregation rule \(f \) as the core of \(f \) under \(R \). Predictions from a direct preference aggregation
model are thus core alternatives, and we can think of the core as itself defining a social choice correspondence, i.e. a mapping from preference profiles into outcomes.

A natural question then is, when is the core of an aggregation rule \(f \) guaranteed to be nonempty? That is, when are there best elements in \(X \) as judged by the social preference relation derived from \(R \) via \(f \)? From the Condorcet example above we know that this question is nontrivial when \(X \) is finite, since there the majority rule core is seen to be empty. Hence in this instance one cannot in principle describe any choice from this set as the best alternative according to majority rule.

Two additional features of the Condorcet example deserve emphasis at this point. The first is that for other preference profiles the majority rule core is nonempty, as for instance when all individuals have the same preferences. Thus the nonexistence of a majority rule core requires a sufficient amount of preference heterogeneity, as exemplified in the profile \(R^e \) above. For a wide class of preference aggregation rules we can identify precisely when such heterogeneity exists and hence when core alternatives do or do not exist. Further, this characterization depends, as in Theorem 1 above, on the complexity of the decision problem at hand. Say that an aggregation rule \(f \) satisfies monotonicity if it is true that for any \(x, y \in X \), if \(x \) is socially preferred to \(y \) at the profile \(R \) and the profile \(R' \) is such that \(x \) does not fall relative to \(y \) in any individual's ordering, then \(x \) remains socially preferred to \(y \) at the profile \(R' \); and that \(f \) satisfies neutrality if the rule is symmetric with respect to alternatives (i.e. the names of the alternatives are immaterial); see Sen (1970) for formal definitions. Then we have the following:4

For any neutral and monotonic aggregation rule \(f \) there exists a number
\[d(f) \geq 1 \] such that if \(d \leq d(f) \) then the core of \(f \) is nonempty for all \(R \) in \(\mathcal{R} \).

(Theorem 2)

In particular, when the outcome space is one-dimensional any neutral and monotonic aggregation rule, including majority rule, will have a nonempty core. [Technically, this implies that there is insufficient preference heterogeneity in one dimension to construct a cycle as in the Condorcet example, whereas in two or more dimensions there does exist such heterogeneity (Schofield 1983).] Additionally, from Black (1958) we know that when \(n \) is odd the majority rule core point is unique and possesses the well-known “median voter” characterization: If we align the individuals’ ideal points along the one dimension from left to right, then the (unique) core alternative is

simply the ideal point of an individual, say \(k \), at which \(k \) and all those with ideal points at or to the left of \(k \)'s ideal point constitute a majority, and \(k \) and all those with ideal points at or to the right of \(k \)'s ideal point constitute a majority.

Thus settings in which an assumption of a unidimensional outcome space can be justified are readily amenable to empirical analysis under majority rule in that we have all we could hope for: existence, uniqueness, and a straightforward characterization. Romer & Rosenthal (1979) provide an excellent review of much of the empirical work based on the median voter theorem up to 1979, and they argue that the results are equivocal with respect to whether it is indeed the median voter’s preferences that determine political decisions. For a more positive assessment of the theorem’s predictive value, see Bueno de Mesquita & Stokman (1994).

Alternatively, often a theoretical model will presume a unidimensional outcome space to justify use of Black’s theorem and thereby conveniently summarize a particular collective choice process that is but a part of the larger theoretical enterprise (see below).

On the other hand, we know from the logic of Condorcet’s example that the majority rule core will be empty whenever the preference profile \(R \) exhibits the Condorcet problem, and from Theorem 1 such profiles necessarily exist when the decision problem is sufficiently complex. In this sense, then, majority rule cannot provide a general theory of social decision making. Furthermore, Theorem 1’ suggests that any such general theory under the collective preference approach, i.e. any aggregation rule which has a nonempty core for all \(R \) in \(\mathcal{R} \) and for any \(d \), must come at a price. This is shown by the second important feature of the Condorcet example, which is that for certain aggregation methods core points exist even with the preference profile \(R^\circ \). For example, if we use the dictatorship rule and simply take the social preference relation to be the same as (say) individual 1’s preference relation, then (since 1’s most preferred alternative is \(x \)) there will necessarily be a core. Alternatively, under the unanimity method each alternative is judged to be indifferent to every other, and so all three alternatives are in the core (note that the latter prediction is useless from an empirical perspective).

Both of these aggregation rules generate core correspondences that, when viewed as social choice correspondences, fail to satisfy minimal democracy. In fact, any aggregation rule for which existence is guaranteed invariably involves some combination of normatively unappealing (as in the case of dictatorship) and empirically unappealing (as in the case of unanimity) qualities. To state this negative result formally, say that an aggregation rule is minimally democratic if \(x \) is judged socially preferred to \(y \) by the rule whenever all but at most one individual strictly prefer \(x \) to \(y \). Then the following is a straightforward
consequence of Theorem 1.

For any minimally democratic aggregation rule, (a) the core is empty for some preference profiles when \(d \geq n - 1 \) and (b) the core is empty for almost all preference profiles when \(d \geq 3(n - 3)/2 \).

(Corollary 1 to Theorem 1)

From a modeling perspective, therefore, Corollary 1 tells us that any minimally democratic aggregation rule (e.g. majority rule) possesses a serious shortcoming as the basis for a general theory of politics, in that such a rule in principle cannot explain collective decision making in certain environments while simultaneously allowing some modest amount of latitude in the specification of individual preferences. Put another way, any explanatory theory of collective choice in complex environments based on a model of direct preference aggregation under minimal democracy must describe how individual preferences consistently live along the razor’s edge of profiles that admit nonempty cores.

Now it is reasonable to consider the direct preference aggregation theory of collective choice as a formal theory of political decision making in terms of some notion of a “collective will,” where the latter is reflected in the desiderata (including minimal democracy) defining the particular aggregation rule in use. As such, Corollary 1 renders any such conception of political decision making suspect (Riker, 1982)—when there is no core, the view that observed policy choices embody a “collective will” seems hard to maintain, because for any alternative there exists a policy that is socially preferable according to that same “will.” And this inference is reinforced by the (somewhat unfortunately termed) “chaos theorems.” Specifically, although we know that when a core does not exist a social preference cycle must exist, as in the Condorcet paradox above, McKelvey (1976, 1979) demonstrates further that in the spatial model such cycles are essentially all-inclusive for aggregation methods like majority rule. Thus his result implies that when social preference breaks down, in the sense of not admitting a core alternative, it breaks down completely—social preference cycles fill the space, and one can get from any alternative to any other (and back again) via the social preference relation. In general, individual preferences per se place almost no constraints on collective preference. [It is perhaps worth emphasizing here that McKelvey’s theorem says nothing about whether the core is empty; it concerns only the properties of social preferences (not choices) given the core is empty. See also Schofield (1984).]

Some have interpreted McKelvey’s Theorem as predicting that anything can happen in politics (Riker 1980), meaning that political behavior under minimally democratic institutions (in the technical sense of the term used here) is necessarily chaotic or unpredictable. We do not agree with this interpretation. The theory, as exemplified by Corollary 1 above, does not predict that anything
can happen—it does not predict anything at all, which is the fundamental problem in employing the theory as a positive model of politics. The chaos result of McKelvey simply emphasizes the impossibility of any general theory of political behavior based solely on the notion of preference aggregation under the constraint of minimal democracy and, from a normative perspective, implies that any hope of finding substantive content in the idea of a “collective will” with respect to policy choice is slender indeed. The “chaos” that McKelvey’s Theorem addresses is not from our perspective an equilibrium phenomenon, as is found for instance in various recent macroeconomic models (e.g. Grandmont 1985), but rather demonstrates how badly any minimally democratic social preference relation can behave. Hence attempts to render this an empirical prediction, and then ask questions such as “Why so much stability?” (Tullock 1981) are moot.5

5. STRUCTURE AND STRATEGY

An alternative to the direct preference aggregation approach to understanding political behavior, is the class of choice aggregation models. All such models require a theory of how individuals make choices in collective decision-making settings, and the most widely employed of these theories is noncooperative game theory.

As before, we begin with a set of alternatives X and a list of individuals’ preferences, summarized by the profile R. But now it is necessary to specify exactly what choices are available to individuals, to describe the outcome in X resulting from any given list of possible choices, and to offer a theory of how individuals’ preferences and choices are related. Formally, the primitives of the model include, for each individual i in the polity N, a set of available strategies S_i, where a strategy is understood as a complete description of how an individual behaves in every logically possible circumstance she might confront. Analogous to a preference profile, we will label a specific list of strategies $s = (s_1, \ldots, s_n)$, one for each individual, as a strategy profile, and we will let S denote the set of all possible strategy profiles. For the second component, an outcome function g specifies which alternative in X is chosen when a given list of strategies is chosen by the individuals; that is, the function g takes elements of S as input and gives elements of X as output, and so $g(s)$ is an element of the

5 One possible escape route from this argument is to weaken the second mapping in Diagram 1; that is, rather than look solely for maximal elements with respect to the social preference relation, identify some other (with luck nonempty) set of alternatives. The two most well-traveled routes with respect to majority rule are the top cycle set (Schwartz 1972) and the uncovered set (Miller 1980) (actually, one could equivalently treat this as modifying f to generate the transitive closure relation and the covering relation, and then still use m). However, McKelvey’s Theorem shows that the former is just about the entire set when the majority rule core is empty, thereby nullifying any empirical content. The second option holds a higher promise; see McKelvey (1986).
set X. Taken together, $G = (S, g)$ is known as a game form. Adding the list of individuals’ preferences to the game form G yields the game (G, R).

Although the idea of a game form is somewhat abstract, a natural interpretation within political science is that game forms are succinct descriptions of institutions: Strategy sets define the choices available to individuals under the rules of the institution, and outcome functions specify the collective decisions consequent on any list of such choices. Examples include various electoral procedures (e.g. plurality rule vs proportional representation), voting procedures (e.g. amendment agendas vs successive, open vs closed rules), committee systems, executive vetoes, and the like that have been the focus of much of the formal analysis in the recent past. Indeed, to the extent that these elements are readily observable, game-theoretic models permit a test of both outcomes and behavior. Furthermore, they allow the analyst to compare and make judgments about different institutions with respect to both the behavior they induce and the outcomes they generate.

Note that an individual’s preferences over the set of outcomes X, together with the outcome function g, induce preferences for her over the set of strategy profiles S by equating a strategy profile with the outcome it ultimately produces. That is, a strategy profile s is judged to be at least as good as another s' if the outcome associated with s, namely $g(s)$, is at least as good as that associated with s', $g(s')$. This allows for a more concise description of a game as simply the available strategy sets (S_1, \ldots, S_n), together with the individuals’ induced preferences over S; this is what is known as a game in normal form. We wish to maintain the “spatial” structure on the decision problem as before, so assume each S_i is a closed, bounded, and convex subset of d_i-dimensional Euclidean space, and that an individual’s induced preferences on S satisfy the “4 Cs,” above. (Note that these implicitly place continuity and convexity assumptions on the admissible set of outcome functions. Also, as before, these assumptions are somewhat stronger than necessary.)

Finally it remains to specify how individuals select strategies, where such a selection can be predicated on the specifics of the game form. If one were to fix the strategy choices for all individuals other than, say, individual i, then i’s problem of finding an optimal or preference-maximizing strategy is well posed; in particular, for any list of others’ strategies there would exist a uniquely optimal strategy for i. For a certain class of games this optimal strategy for i is actually independent of the others’ strategies, and so constitutes (in game theory parlance) a dominant strategy. The most well-known example of such a game is the prisoners’ dilemma. For games in which each individual has a dominant strategy there is then a straightforward theoretical prediction, namely that each will adopt her dominant strategy.

For many games, however, dominant strategies do not exist. Consequently, any individual’s optimal strategy will depend nontrivially on the choices made...
by others, so we need a richer behavioral theory for describing how individuals within a game choose their respective strategies. The fundamental concept describing strategy choices under such circumstances is Nash equilibrium. In a Nash equilibrium each individual’s chosen strategy constitutes her optimal strategy, given the strategy choices of all the other individuals. Thus a Nash equilibrium is a profile of strategies \(s^* = (s_1^*, \ldots, s_n^*) \) with the feature that no individual \(i \) in \(N \) can unilaterally change her strategy to something else, say \(s'_i \), and generate a strictly better outcome. Largely for this reason, any list of Nash equilibrium strategies is self-enforcing: if \(s^* \) is a list of Nash equilibrium strategies, then no individual \(i \) has any incentive to do anything other than use the prescribed strategy \(s_i^* \) when all others are likewise using their respective strategies under \(s^* \).

For any game form \(G \) and behavioral theory \(h \) (e.g., dominant strategy or Nash), we can compose the mappings \(h \) and \(g \) to identify the set of equilibrium outcomes, i.e., those outcomes \(x \) in \(X \) such that \(x = g(s) \), where \(s \) is an equilibrium strategy profile at \(R \) according to the theory \(h \). This composition then generates a particular social choice correspondence in much the same way that a preference aggregation rule generated a social choice correspondence via the core. Notice however that, in contrast to the collective preference approach, the influence of individual preferences on collective outcomes is occurring more indirectly, through the individuals’ strategic choices under the constraints imposed by the game form. Thus we can think of the collective choices as being codetermined by the individuals’ preferences and the specifics of the game form, and so any test of a game-theoretic model is a joint test of the behavioral theory embodied in the equilibrium concept and the institutional assumptions defining the game form. (Similarly, any test of a direct preference aggregation model is a joint test of the rule \(f \) and the presumption that choices reflect core outcomes under \(f \).)

Letting \(h \) denote any arbitrary behavioral theory (mapping preference profiles into strategy profiles), we have a diagram analogous to that for direct preference aggregation (Diagram 2):

\[R \xrightarrow{h} S \xrightarrow{g} X. \]

(Diagram 2)

Our next result shows that well-defined equilibrium outcomes for normal form games are the rule rather than the exception (Nash 1950, Debreu 1952).⁶

Any normal form game satisfying the above assumptions has a Nash equilibrium.

(Theorem 3)

⁶Theorem 3 can be used to prove existence of mixed strategy Nash equilibria in games with finite strategy sets.
Indeed, the main problem with most game-theoretic analyses is not that Nash equilibria fail to exist for any profile R but rather that there are too many of them. In this respect the concept of a Nash equilibrium is too weak; it places few restrictions on what outcomes might be observed. For example, consider a plurality voting game in which any individual’s strategy is a vote choice for one of a large finite set of alternatives, and the outcome function selects the alternative that receives the largest total of votes. In this game any outcome can be supported as a Nash equilibrium outcome, irrespective of individuals’ preferences, when there are at least three individuals; if everyone votes the same way at every stage, then, under plurality rule, no single individual can change the outcome by switching her voting strategy and so each may as well vote with the crowd. This silly prediction is ruled out by the additional requirement on the choice of equilibrium strategies that they be “perfect.” “Perfection” is one example of an equilibrium refinement. Over the past 20 years or so a literature on equilibrium refinements has developed in which further assumptions are made on how individuals select strategies, thereby imposing further constraints on predictions generated by any model using these assumptions. Since the issues here, although important, are quite technical we do not pursue them further; the interested reader can consult, for example, Morrow (1994) or Fudenberg & Tirole (1993).

Returning to the notion of political institutions as game forms, suppose we have a set of possible institutions, G (with common elements $G = (S, g)$, $G' = (S', g')$, etc), and suppose for ease of exposition that associated with each game form is a unique equilibrium, and hence (through the outcome function g) a unique element of the outcome set X. Then it is meaningful to compare institutions via the equilibrium outcomes that they support (Myerson 1995, 1996). Such an approach has generated a rich set of empirical predictions regarding how institutional constraints influence political behavior and outcomes (e.g. Huber 1996, Krehbiel 1991). In addition, by focusing solely on the equilibrium outcomes, this method also provides a foundation for normative arguments regarding institutional choice (Austen-Smith & Banks 1988, Cox 1990, Myerson 1993, Diermeier & Myerson 1995, Diermeier & Feddersen 1996, Persson et al 1996).\footnote{A different perspective on games and institutions is provided by Calvert (1995). He argues that social institutions are appropriately viewed as equilibria of a loosely specified game played over time, rather than as game forms per se. This approach seems particularly useful for developing a theory of institutional evolution and stability.}

All of this is predicated to an extent on the existence result found in Theorem 3, namely that, regardless of the heterogeneity in individuals’ preferences, a Nash equilibrium (or a refinement) will exist for a wide class of games. But the Nash equilibrium outcome correspondence is “just” another example
of a social choice correspondence as defined in Section 3, and hence the negative implications of Theorem 1 must hold true for the game theory approach to politics as they do for the collective preference approach. In fact, Theorem 1 has an immediate implication for game theory, analogous to Corollary 1 for collective preference.

Let G be any game form such that, for all profiles R in \mathcal{R}, the set of equilibrium outcomes is non-empty. (a) If $d \geq n - 1$ then there exists a preference profile and alternatives x and y in X such that x is an equilibrium outcome and y is strictly preferred to x by at least $n - 1$ individuals. (b) If $d \geq 3(n - 3)/2$ then statement (a) is true for almost all preference profiles. (Corollary 2 to Theorem 1)

(Note that as stated Corollary 2 holds for any behavioral theory, not just Nash.)

For sufficiently complex problems, therefore, game-theoretic models of indirect preference aggregation avoid the implications of Theorem 1 only by giving at least one individual some veto power, or dictatorial control, over at least one collective decision. Less prosaically, any appearance that Theorem 3 avoids the consequences of Theorem 1 is illusory; if surrendering minimal democracy is deemed acceptable to obtain equilibrium existence in game-theoretic models, then it is acceptable to give up the condition to obtain core existence in social choice models. And as Diagram 3 (we hope) makes clear, the collective preference approach and game theory approach should be considered two sides of the same coin, two complementary methods for generating social choice correspondences. [Diagram 3 is a minor variation on the familiar Mount-Reiter diagram in economic theory (Reiter 1977).]

\[B \quad f \quad \mathcal{R} \quad g \quad X \quad \text{(Diagram 3)} \]

Corollary 1 and Theorem 3 differ not so much in their respective existence claims as in their relative adherence to the minimal democracy condition, suggesting that to insist on this condition a priori is unproductive for development of a positive political theory. Any selection of game theory over collective preference as a method of political analysis, therefore, cannot be predicated on the issue of existence, but must depend on the problem of concern. For example, it is sensible to use game theory to understand the behavioral incentives induced

\[S \]
by, and the strategic properties of, various political institutions (e.g., voting with amendment agendas). On the other hand, collective preference theory is better suited for normative analysis of such properties and for decision problems with little or obscure detailed institutional structure (e.g., open rules in Congress).

6. MORE CONNECTIONS

The preceding argument centered on whether preference-based models invariably provide a prediction, and it tapped the common underlying properties of the collective preference and game theory approaches to politics. In certain circumstances the two approaches are observationally equivalent, in the sense that the predictions of the collective preference approach and the game theory approach coincide.

Suppose we have a social choice correspondence \(c \) that is nonempty for all \(R \) in \(\mathcal{R} \), and recall from Theorem 2 that the majority rule core is such a mapping when the outcome space \(X \) is one-dimensional. Say that a game form \((S, g)\) implements \(c \) in dominant strategies if for all \(R \) in \(\mathcal{R} \), each \(i \) in \(N \) has a dominant strategy in \(S_i \), and the set of outcomes supported by such strategies is the same as the set of outcomes selected by \(c \). In such an instance we can think of the game form \((S, g)\) as performing indirectly the operation that \(c \) performs directly on preferences. We then have the following (Moulin 1980):

When \(d = 1 \) there exists a game form which implements the majority rule core in dominant strategies.

(Theorem 4)

As a simple example of such a game form, let \(S_i = X \) for all \(i \) in \(N \), with the outcome function \(g \) then being the selection of the median of the chosen alternatives. Then each player has a dominant strategy to choose her ideal point, since choosing any other alternative can only move the median away from her ideal point (and by convex preferences she prefers alternatives closer to her ideal point).\(^8\)

Thus we can think of the median voter theorem as either an exercise in direct preference aggregation as in Section 4, or as the equilibrium outcome associated with a specific game form as in Section 5. In other words, the median

\(^8\) Alternatively, consider the following (intuitively described) game: there is a given status quo policy, \(q \), and each individual proposes an alternative to \(q \), say \(p_i \), as the collective choice. Once all individuals have made a proposal, the collective decision is made from the set \(\{p_1, \ldots, p_n, q\} \) according to the “amendment” procedure that first determines the majority vote between \(p_1 \) and \(p_2 \), then puts the winner against \(p_3 \), etc, until eventually the collective choice is given by the majority winner in a contest between the surviving proposal and the status quo \(q \). Given the assumptions (\(X \) one-dimensional, etc) it turns out that the unique (perfect) Nash equilibrium outcome to this game is the median voter’s most preferred outcome.
voter theorem has a non-cooperative strategic foundation. From an empirical perspective it does not matter which model one adopts, because as constructed the models arrive at the same predicted outcome.

Theorem 4 starts with the core concept, namely majority rule, and then shows the existence of a game form for which the outcomes of the two coincide when the outcome space is one-dimensional. For a class of game forms it is possible to go in the other direction as well; that is, for a given game form one can find a preference aggregation rule such that the core of this rule and the Nash equilibria of the game form coincide. Say that the outcome function \(g \) is one-to-one if \(g(s) \) is different from \(g(s') \) whenever \(s \) is different from \(s' \).

If the game form \((S, g)\) is such that \(g \) is one-to-one, then there exists a monotonic preference aggregation rule \(f \) such that for all \(R \) in \(R \) the core outcomes under \(f \) are equivalent to the Nash equilibrium outcomes under \((S, g)\).9 (Theorem 5)

(A proof for this theorem is given in Section 9.) Thus, when the outcome function is one-to-one, the distinction between the collective preference approach and game theory approach is again attenuated, in that one could have just as readily taken the former approach while employing a particular monotonic aggregation rule (the first model of the next section provides an example of a game form with such an outcome function). If \(d \geq n - 1 \) and the game form \(G \) is such that Nash equilibria exist for all preference profiles in \(R \), then we know something more about this associated aggregation rule, namely that this rule must fail to satisfy the criterion of minimal democracy (by Corollary 1).

7. EXAMPLES FROM LEGISLATIVE POLITICS

This section reviews four theoretical models drawn from the literature on legislative politics to illustrate some of the issues we have raised. The first two models have as their environment the basic multidimensional structure found in Section 2; the third is a one-dimensional model with the added twist of incomplete information; and the fourth is a distributional problem. The first three employ observed institutional structures as the foundation for their models, whereas in the fourth no such observable structure exists.

9Even if \(g \) is not one-to-one in a game form \(G \), it is always possible to construct a preference aggregation \(f_G \) for which the core coincides with the set of Nash equilibrium outcomes. For any game \((G, R)\) and any \(x, y \) such that \(x \) is, and \(y \) is not, a member of the equilibrium set of outcomes, let \(f_G \) rank \(x \)P \(y \), and for any other pair of alternatives, let \(f_G \) rank \(x \)I \(y \). This rule violates both monotonicity (as defined in the text) and the weaker Arrovian condition of Independence of Irrelevant Alternatives.
7.1 Ministers and Policy Portfolios

Laver & Shepsle (1990) and Austen-Smith & Banks (1990) model governmental decision making in parliamentary democracies as being predicated on a decomposition of complex, multidimensional choice problems into a family of smaller, “dictatorial” choice problems. Each issue of the policy space is associated with exactly one cabinet minister, who has complete control over the outcome along this dimension. A minister is allowed to hold multiple issues or “portfolios,” and so we define an issue allocation as an assignment of the set of policy issues to individuals such that every issue is assigned to some individual and no issue is assigned to more than one individual. Assuming for convenience that the set of outcomes \(X \) is “rectangular” or separable and so is itself decomposable, any issue allocation generates a well-defined game among the ministers, i.e. those individual legislators holding portfolios. [Banks & Duggan (1997) show how to get around this “rectangular” assumption.] For example, if \(X \) is the unit square, and the issue allocation assigns dimension 1 to the first individual and dimension 2 to the second, \(i \) selects a point \(s_i \) in \([0,1]\), and the collective outcome is then simply \((s_1, s_2)\). Given our earlier assumptions on individual preference, Theorem 3 guarantees the existence of a Nash equilibrium for any issue allocation. By definition of an issue allocation and the rules governing how issue-by-issue choices are made, the outcome function for the game form described here is one-to-one. So, by Theorem 5, any equilibrium outcome in the portfolio allocation model is also a core alternative for a naturally defined monotonic preference aggregation rule (see the proof in Section 9 for a construction).

The location of the equilibrium outcomes will depend on the particular issue allocation (among other factors), in that different allocations typically give rise to different equilibrium outcomes. Thus we expect individuals in \(N \) to have preferences over the allocations per se, in which case the structure-induced explanation of particular policy decisions is in a sense incomplete. Austen-Smith & Banks (1990) and Laver & Shepsle (1990) explore various concepts of the core applied to issue allocations; given that policy outcomes are determined by the relevant allocations, individuals’ induced preferences over allocations can be derived, and we can look for cores with respect to these induced preferences rather than the primitive ones. Since the set of possible equilibrium outcomes under issue allocation models is much smaller than the set of all outcomes, “allocation” cores can exist more often than in the direct preference aggregation models. Further, allocation cores then yield predictions on both the distribution of decision-making responsibility in a legislature and the policy outcomes supported by such allocations. In particular, for some distributions of preferences the model predicts minority coalition governments. [Laver & Shepsle (1996) take these and other predictions to the data on
post–World War II coalitional governments in parliamentary systems with some degree of success.]

The use of the core here to study the choice of issue allocation among legislators is largely to avoid modeling the specifics of government formation. That is, we presume that in this instance the core adequately captures the possible outcomes from a variety of conceivable game forms describing legislative bargaining over policy responsibilities. An alternate approach is to model this government formation process explicitly (e.g. Austen-Smith & Banks 1988, Baron 1991).

7.2 Committees

The motivation for the preceding structural approach to legislative decision making comes from Shepsle’s (1979) model of decision making in the US Congress. Although the principal formal result is anticipated by Black & Newing (1951) and Kramer (1972), Shepsle (1979) was the first to provide a rigorous model of policy choice via legislative committees. Shepsle’s insight was that a committee system, such as that in the US Congress, essentially decomposes a complex high-dimensional choice problem into a sequence of simpler low-dimensional problems. At this point, something akin to Theorem 2 can be invoked for within-committee decision making; the overall outcome is then (as in the model of Section 7.1) the cumulation of committee decisions.

A simple committee system is an institutional arrangement whereby, for each of the d issue dimensions, there is a unique committee, or subset of legislators, responsible for determining the collective choice on the dimension. A committee allocation is then an assignment of the set of individuals (in this case, legislators) into the d committees such that (a) no committee is empty, and (b) no individual is on more than one committee. For simplicity, assume again that the policy set X is separable, and that there are an odd number of individuals in each committee. Now suppose that each committee plays “Nash” against the others, taking the decisions on the other issues as given, and uses the majority method of preference aggregation to make its own decision. An equilibrium outcome, say $x^* = (x_1^*, \ldots, x_d^*)$, is an element of X such that for each dimension j, x_j^* constitutes the ideal outcome along dimension j for the median member of the j^{th} committee given the choices $\{x_i^*\}$ of all committees i other than j. Shepsle (1979) shows that an equilibrium outcome exists for any committee allocation in a simple committee system, thereby providing an institutionally predicated explanation for legislative policy choices in multidimensional spaces.

Although we used the term “Nash” in the above description, Shepsle’s analysis is not strictly speaking game-theoretic in the sense of Section 4; individuals
do not have strategy sets, Nash equilibria are not identified, etc. As such, his
equilibria might be better understood as an example of core outcomes with
respect to a particular aggregation rule (Diermeier 1997). On the other hand,
since Shepsle’s model employs Theorem 2 and the median voter theorem, it
appears possible to invoke a result along the lines of Theorem 4 and provide
an explicit non-cooperative foundation for the equilibria his model generates.
Indeed, when individual preferences are separable across the d dimensions or
issues (i.e. an individual’s most preferred alternative on any one dimension is
independent of choices on other dimensions), one can use exactly the game form
following Theorem 4 to implement Shepsle’s equilibria in dominant strategies.
When individual preferences are not separable such dominant strategy imple-
mentation will not occur (Zhou 1991). However, any equilibrium in Shepsle’s
sense is a Nash equilibrium outcome of the aforementioned game, an equilib-
rium in which each individual again selects her ideal point (but now this point
depends on the choices of others). Therefore it is possible that this (or some
other) game form implements Shepsle’s equilibria in Nash equilibrium (as op-
posed to dominant strategies). The existence of such a game form would
then provide an explicit non-cooperative foundation for Shepsle’s equilibria,
thereby eliminating the distinction between a model of the social choice sort
or the game theory sort; as with the median voter theorem, we can think of the
model as both, and hence as either.

7.3 Open and Closed Rules
The committee system analyzed above rationalizes the use of such structures, in
particular the deference paid to a select subset of individuals on certain issues,
in terms of their equilibrium-generating properties. An alternative explanation
for this type of deference centers on specialization and information. In fact,
in the game-theoretic model of Gilligan & Krehbiel (1987) such deference
cannot be explained as in Shepsle (1979), for in their model the outcome space
has but a single dimension. Rather, this deference comes about as a rational
response to a presumed informational advantage held by the committee. [The
game Gilligan & Krehbiel analyze is one of incomplete information and so
technically falls outside the bounds of those discussed in Section 5. However,
Harsanyi (1967–1968) shows how to extend the concepts of normal form games
and Nash equilibrium to such environments (i.e. Bayesian games and Bayesian
Nash equilibrium). We do not worry about such matters here; the interested
reader should consult Fudenberg & Tirole (1993).]

10 The remaining issue here concerns whether there exist other Nash equilibria to the game being
used to implement Shepsle’s equilibrium set of outcomes. That is, Shepsle’s equilibria may form
a strict subset of the set of Nash equilibrium outcomes on the (implementing) game, whereas Nash
implementation requires these sets to coincide.
As mentioned, let the set of outcomes X be one-dimensional, and let a committee of individuals exist whose purpose is to propose an alternative to the current status quo policy. Here we wish to distinguish between policies and outcomes, so as before let x denote a typical outcome in X and let p denote a typical proposal or bill. Assume bills are also one-dimensional objects, and that the link between bills and outcomes is simply $x = p + t$, where the parameter t is some number between zero and one. The motivating assumption of the model is that t is known to the committee members but unknown to everyone else. Thus if the policy p is adopted, then the actual outcome is given by $x = p + t$ and this consequence is known surely only to the committee.

Both the committee and the remaining individuals in the legislature are modeled as single actors, so let C denote the former and F (for “floor”) denote the latter; the theoretical legitimacy of such a modeling choice is discussed below. Two procedures are employed to determine a final policy, thereby yielding two different game forms. Under a closed rule, C is permitted to make a take-it-or-leave-it proposal; if this proposal is rejected by F, the status quo policy p_0 remains in effect. In contrast, under an open rule, C makes a proposal but now F can select any policy it wants; F is not restricted to choosing between C’s proposal and the status quo. Thus under the open rule C’s proposal has no substantive content, in that it will not directly affect F’s chosen policy. However, C’s proposal may have informational content, because C can make its proposal dependent on, or a function of, the true value of the parameter t. In particular, if F speculates that C is offering different proposals for different values of t, then upon observing one of these proposals F can make a better inference about what the value of t is (that is, better than F’s prior belief). Under the closed rule, on the other hand, C’s proposal can have both substantive and informational content.

Specific functional forms are assumed for C’s and F’s preferences, as well as a uniform prior belief concerning t for F. Even with these niceties, however, multiple equilibria exist under either procedure, so Gilligan & Krehbiel are forced to make certain selections from the set of equilibria. Given these, they are able to show that, for certain values of the parameters, F actually has a preference (in terms of its ex ante expected payoff) for the closed rule over the open, even though the closed rule allows C to bend outcomes in its preferred direction due to the monopoly on the agenda C commands under this rule.

The logic of this result follows from the fact that at times the loss to F from surrendering some control over the agenda is outweighed by an informational gain. That is, when the committee is assured some distributional gain under the closed rule, the proposals it offers signal more information regarding t to the floor. Since the floor is assumed risk-averse, therefore, the more information it has about the consequences of legislation, the better off it becomes. Note that this induced preference for the closed rule over the open rule would never
occur under complete information, because then the floor can always do better by maintaining greater control over the final policy. Hence, informational asymmetries are seen as an alternative explanation for the existence of deference to committees, here in the form of closed rules.

Although perhaps not immediately apparent, the legitimacy of treating the committee and the floor as unitary actors rests largely on Black’s median voter theorem. That is, because of the assumption of one-dimensional outcome and bill spaces, the presumed relationship connecting bills to outcomes preserves single-peakedness of preference profiles. Consequently, under majority rule within the committee and the legislature as a whole, it is legitimate to identify the committee and the floor with their respective medians. Without these assumptions it is unclear what occurs under open rule given a proposal or even what proposals are offered, and therefore what the relevant welfare comparisons across rules are. One way to see this is to imagine the same set-up as above except that the issue space is two-dimensional rather than one, and that we break the floor into its constituent parts (i.e. a set of individuals with well-defined preferences over X). Then under the open rule it is not clear what would happen once a proposal has been made by the committee, or rather, a well-defined game form remains to be posited. Similarly, it is not immediately obvious under either rule how to model the formation of a committee proposal. Such troublesome issues are conveniently sidestepped in Gilligan & Krehbiel by the assumption of a one-dimensional policy space, a policy space with (as Theorem 2 notes) a majority rule core.

7.4 Bargaining

Finally we consider a pure distributional problem. A single dollar is to be divided among n individuals (let X denote the set of all such divisions), where each individual possesses “selfish” preferences in the sense of only caring about her own amount. Baron & Ferejohn (1989) model the determination of an element in X as occurring through the following dynamic bargaining game: In period 1 an individual is randomly selected from N, and makes a proposal x^1 in X, after which all individuals vote to accept or reject x^1. If x^1 is accepted by a majority of voters, the game ends with x^1 as the outcome; otherwise the game moves to period 2, in which an individual is randomly selected to offer a proposal x^2 in X, and so on. The process continues until a proposal is accepted. In each period individuals are equally likely to be selected proposer, and individuals are impatient and share a common discount factor δ, $0 < \delta < 1$, so that if the i^{th} proposal, x^i, is accepted individual i's payoff is worth simply $\delta^{i-1}x_i^i$ as evaluated at the start of the game. The central institutional feature of the Baron & Ferejohn model, sequential bargaining, has subsequently
been applied to a wide variation of problems; see for example Baron (1994) or Diermeier & Feddersen (1996). Alternative non-cooperative models with distributional and policy dimensions include Groseclose & Snyder (1996) and Snyder (1990). Note that the actual outcome space is X together with \{1, 2, \ldots\}, with the latter representing the time at which a proposal is accepted.

There are many Nash equilibria to this game. Baron & Ferejohn focus on a particularly simple class of equilibria, perfect stationary (essentially, history-independent) equilibria, which they show to exist and have the following qualitative properties: When an individual is selected, she proposes a split of the dollar in which she keeps the lion’s share, $(n - 1)/2$ others receive equal smaller shares, and the remaining $(n - 1)/2$ individuals receive nothing; this proposal is then accepted by the individuals receiving a positive amount. Therefore the very first proposal is accepted, avoiding any (costly) delay, and ex post (after the fact) only a bare majority of individuals receive positive amounts—although which majority is uncertain ex ante (before the fact).

The purely distributive politics game is the least tractable from a direct preference-aggregation approach. Since any distributional problem has dimensionality $d = n - 1$ when there are n individuals (once $n - 1$ shares are determined, the nth share is given by the residual) and since preferences are selfish, the core is surely empty under any minimally democratic preference-aggregation rule and so offers no prediction. In contrast the Baron & Ferejohn sequential bargaining model supports a well-defined prediction that only minimal majorities will garner positive amounts of the dollar. At the same time, for any equilibrium allocation x^* there is a distinct allocation x' that $n - 1$ individuals strictly prefer to x^*. Consequently, as Section 5 argues more generally must be the case, equilibrium collective choice through the Baron & Ferejohn bargaining process prima facie violates minimal democracy.

As we have already observed, empirical observation provides little structure that points to the “right” game form for modeling multilateral bargaining processes. Given this, analysts lean toward specifying the most parsimonious strategic model capable of supporting equilibria. Any judgment of the value of such a model then rests on the extent to which the equilibrium predictions yield empirical and conceptual insight regarding the forces at work. On the other hand, there is the question of why we might expect legislators to adopt stationary strategies. The importance of the “perfect stationary” equilibrium refinement lies in the fact that, as Baron & Ferejohn demonstrated, if legislators are sufficiently patient their model is subject to a folk theorem under which any allocation of the dollar can be supported as a perfect (albeit not stationary) Nash equilibrium. Therefore, although no minimally democratic direct preference aggregation model can make a prediction (and none, as we keep
insisting, predicts that anything can happen), the presence of a folk theorem in the absence of stationarity really does say that anything can happen in the Baron & Ferejohn bargaining model.

8. CONCLUSION

This brief essay makes no claim to be a general survey of positive political theory as a whole. Rather, we articulate some connections between the two main approaches to rational actor model-building in political science: direct preference aggregation (social choice theory) and indirect preference aggregation through the aggregation of choices in strategic settings (non-cooperative game theory). In so doing, we implicitly argue that the historical shift away from direct preference aggregation models toward institutionally more explicit strategic models of collective choice cannot reflect any methodological discontinuity.

Our main argument is that an apparently decisive difference between the two approaches—that in sufficiently complex environments direct preference aggregation models are incapable of generating any prediction at all, whereas non-cooperative game-theoretic models almost always generate predictions—is indeed only an apparent difference. The distinction between the two sorts of model in this regard turns out to hinge critically on the extent to which a property of minimal democracy is required. If we insist that all choices must be minimally democratic (i.e. if at least all but one member of the polity strictly prefers an alternative \(x \) to another \(y \), then \(y \) should not be chosen when \(x \) is available), then no game-theoretic model incorporating the requirement is any likelier to yield a prediction than any similarly constrained collective preference model. On the other hand, if we wish our collective choice models, whether direct preference aggregation or game-theoretic, to yield predictions in all environments, then necessarily the models must violate minimal democracy. Equivalently, if we wish our collective choice models to yield predictions and satisfy minimal democracy, then necessarily the environment must be kept relatively simple (i.e. low-dimensional).

9. A PROOF FOR THEOREM 5

Let \(G = (S, g) \) and let \(\text{Im}(G) = g(S) \) be the image of \(S \) under \(g \). Define \(f \) by:

(a) if \(x \in \text{Im}(G) \) and \(y \not\in \text{Im}(G) \), then \(x \not\succ y \) for all \(R \); and
(b) if \(x, y \not\in \text{Im}(G) \), then \(x \sim y \) for all \(R \).

For \(x, y \in \text{Im}(G) \), say that \(x \) and \(y \) are comparable if there exists \(i \in N, s_i, s'_i \in S_i, s_{-i} \in S_{-i} \) such that \(x = g(s_i, s_{-i}) \) and \(y = g(s'_i, s_{-i}) \) (where \(s_{-i} \) denotes the profile of all individuals’ strategies except for individual \(i \), etc.). Since \(g \) is one-to-one, this individual is unique, so for comparable \(x, y \) let \(i(x, y) \) denote this individual. For all non-comparable \(x, y \in \text{Im}(G) \), let \(x \sim y \)
for all \(R \), and for all comparable \(x, y \in \text{Im}(G) \) let \(xR_s y \Leftrightarrow xR_{i(x,y)} y \). Then \(R_s \) is a complete binary relation for all preference profiles \(R \). To see that \(f \) is monotonic, note that if \(x \in \text{Im}(G) \) and \(y \notin \text{Im}(G) \) then \(xP_s y \) for all \(R \), and hence monotonicity holds here. If \(x, y \in \text{Im}(G) \) and \(xP_s y \), then it must be that \(x \) and \(y \) are comparable and that \(xP_{i(x,y)} y \). But then under any new profile \(R' \) satisfying the antecedent, we still must have \(xP'_{i(x,y)} y \), and hence \(x \) socially preferred to \(y \) remains true.

Fix a profile \(R \) arbitrarily. Let \(C \) denote the core of \(f \) at \(R \) and let \(E \) denote the set of Nash equilibrium outcomes of \(G \) at \(R \).

(a) To see: \(C \subseteq E \). If \(x \in C \) then \(xR_s y \) for all \(y \in X \), in which case it must be that \(x \in \text{Im}(G) \), or \(x = g(s) \) for some \(s \in S \). For any \(j \in N \) and \(s_j \in S_j \), \(z \equiv g(s_j, s_{-j}) \) is comparable to \(x \), and so \(x \in C \) implies \(xR_j z \) and hence \(xR_j y \). But then \(s \) is a Nash equilibrium of \(G \) at \(R \), and hence \(x \in E \).

(b) To see: \(E \subseteq C \). Let \(x = g(s) \); then \(xR_s y \) for all \(y \notin \text{Im}(G) \) and all non-comparable \(y \). If in addition \(s \) is a Nash equilibrium, then for all comparable \(y \in \text{Im}(G) \), \(xR_{i(x,y)} y \), and thus \(xR_s y \) for these outcomes as well. Therefore \(xR_s y \) for all \(y \in X \), and hence \(x \in C \).

Because the profile \(R \) was chosen arbitrarily, (a) and (b) together complete the proof.

ACKNOWLEDGMENTS

This paper was completed while the second author was a Fellow at the Center for Advanced Study in the Behavioral Sciences. He gratefully acknowledges the financial support provided by the National Science Foundation under Grant SBR-9601236.

Literature Cited

Schwartz T. 1972. Rationality and the myth of
the maximum. *Nous* 7:97–117
CONTENTS

Models of Government Formation, *Michael Laver* 1

Does Democracy Cause Peace?, *James Lee Ray* 27

Social Capital and Politics, *Robert W. Jackman, Ross A. Miller* 47

Compliance with International Agreements, *Beth A. Simmons* 75

The Intellectual Legacy of Leo Strauss (1899-1973), *Nasser Behnegar* 95

Federalism, Federal Political Systems, and Federations, *Ronald L. Watts* 117

The Causes of War and the Conditions of Peace, *Jack S. Levy* 139

Communication and Opinion, *Donald R. Kinder* 167

Social Science and Scientific Change: A Note on Thomas S. Kuhn's Contribution, *Nelson W. Polsby* 199

The Party Family and Its Study, *Peter Mair, Cas Mudde* 211

Reinventing Government, *Frank J. Thompson, Norma M. Riccucci* 231

Social Choice Theory, Game Theory, and Positive Political Theory, *David Austen-Smith, Jeffrey S. Banks* 259

Domestic Politics, Foreign Policy, and Theories of International Relations, *James D. Fearon* 289

Narrative in Political Science, *Molly Patterson, Kristen Renwick Monroe* 315

Gendering Research in Political Science, *Joni Lovenduski* 333

The Decline of Parties in the Minds of Citizens, *Harold D. Clarke, Marianne C. Stewart* 357

Neglected Aspects of the Study of the Presidency, *John Hart* 379

Justice and Fairness, *Jack Knight* 425

Reflections on British Elections and Their Study, *David Butler* 451