
CORRESPONDENCE 

Finally, we note that by taking M = L + T, the ensemble of 
R,L,T,M trellis codes becomes exactly the ensemble of R,L,T tree 
codes. We have already noted that, for M = T, the ensemble of 
R,L,T,M trellis codes becomes the ensemble of trellis codes de- 
fined by Massey [l]. HenEur Theorem is a generalization from 
which upper bounds on P[e] for both these ensembles follow as 
special cases. 
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III. RESULTSOFSIMULATIONS [41 

Although the above theory was developed for true maxi- 
mum-likelihood (i.e., Viterbi) decoding where one almost never 
uses a tail, its practical application is to sequential decoding 
where a tail is often used. The undetected error phenomenon is 
more complex for sequential decoding and, hence, we have to be 
careful with our conclusions. Nevertheless, it is well-known [5], 
[6] that, with the appropriate bias term, the exponent of error 
probability for sequential decoding is the same as that for true 
maximum-likelihood or Viterbi decoding. Thus we have con- 
ducted sequential decoding simulations to test the dependence 
of P[e] on T and M. 
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The particular sequential decoding algorithm employed was 
the stack algorithm [7], [8]. The simulations were all performed 
with rate R = l/2 optimum distance profile codes [9], [lo]. The 
simulated binary symmetrical channel (BSC) had “crossover 
probability” p = 0.045, which corresponds to R = Ro = l/2. For 
three different code memory lengths, a very large number 
(100 000) of received “frames;” i.e., complete received sequences 
of length n(L + T), were decoded so that the decoding error 
probability could be accurately inferred. 

illI 

In Fig. 1, we give the simulation results for the sequential de- 
coding undetected error probability P[e] as a function of the tail 
length T of the convolutional code. Because of the extreme 
variability of the computation in sequential decoding when M 
is large, there were occasions where the decoding had to be 
stopped, and hence, the frames had to be erased because the 
computation exceeded the alloted maximum. The number of 
erased frames is indicated in Fig. 1 and had negligible effect on 
the curves. These curves show that the actual P[e] decreases ex- 
ponentially with T having an exponent very close to that of the 
bound (5) for the range T I M - [nEvr/(R)]-l loge L + 1, while 
further increases in T beyond this point have virtually no effect 
on P[e]. 

An Improved Upper Bound on the Block Coding Error 
Exponent for Binary-Input Discrete Memoryless 

Channels 

ROBERTJ.McELIECE, MEMBER,IEEE,AND JIMK.OMURA, 
MEMBER, IEEE 

Abstract-The recent upper bounds on the minimum distance 
of binary codes given by McEliece, Rodemich, Rumsey, and Welch 
are shown to result in improved upper bounds on the block coding 
error exponent for binary-input memoryless channels. 

The range of T for which the bound becomes independent of 
L, viz., T I M - [nEvu(R)]-l logs L, is close to the range where 
the true P[e] becomes independent of L. Hence, relation (6) can 
be taken as a slightly conservative design rule for choosing M so 
that P[c] is reduced to the minimum possible for the tail length 
T that can be allocated to an encoded frame. 

IV. REMARK 

Finally, we should remark that, if we wanted solely to minimize 
the undetected error probability with sequential decoding for a 
given memory length and were not concerned with holding the 
tail size to a minimum to maximize the true rate of the trellis 
code, then the optimal value of the tail length is, of course, the 
memory length, i.e., T = M. Probably this fact has caused some 
investigators to ignore the distinction between the tail and the 
memory so that the memory length came to be honored for work 
actually done by the tail. 

Consider a binary-input memoryless channel with input al- 
phabet A = {O,l), output alphabet B, and transition probabilities 
{p(y 1x):x E A,y E B). Let e = (xi,xz, . e. ,XM) be a binary code 
of length n and rate R = n-l logs M for this channel, and assume 
that each of the M codewords is sent with probability l/M. Let 
o!,in(e) denote the minimum Hamming distance between dis- 
tinct codewords, and let P,(e) denote the probability of maxi- 
mum-likelihood decoder error when the code @  is used on the 
given channel. 

Now define 

where the maximum and minimum in (1) and (2) are taken over 
the set of all codes of length n and rate R or greater. And finally 
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6(n,R) = i max d,i,(@) 

P,(n,R) = min PC(@), 

(1) 

(2) 
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Fig. 1. Error exponents for binary symmetric channel. 

define 
6(R) = lim sup 6(n,R) 

n-m 
(3) 

d(R) = lim inf 6(n,R) 
n-m 

E(R) = lim sup L (- logs P&R)) 
n-m n 

E(R) I as* (R) (7) 

which can be evaluated, and which is already better than any 
previously known upper bound for small values of R. 

B(R) = lim inf i (- logs P, (n,R)). (4) n-m n 
It is widely believed that the limits in (3) and (4) exist. How- 

ever, for z(R), this is known only for R = 0 and 1: 6(O) = 6(O) = 1/2, 
6( 1) = c?( 1) = 0. For E(R), the limit is known to exist, and-its value 
is known at R = 0 and for R L Rcrit, R,--it being a number to be 
defined below. We shall now briefly survey the known upper and 
lower bounds on E(R), and indicate how the new upper bound 
6* (R) on 6(R) obtained in [l] can be used to improve the known 
upper bounds on E(R) for small values of R. 

First, we have the sphere-packing bound E,,(R) and the 
random coding bound E,.(R), both valid for all rates R less than 
channel capacity [a], [3]: 

E,.(R) 5 E(R) 5 i?(R) I E,,(R). (5) 
The two bounds in (5) are equal for sufficiently large R, and in 
fact the number Rcrit cited above is the point where these two 
bounds meet. (Formulas for E, and E,, for binary symmetric and 
binary erasure channels are given in the Appendix.) 

Next, we have bounds which depend on the Bhattacharya 
parameter [4], [s] for the channel, which is defined by 

Finally, Shannrn et al. [3] have shown that if Eo(R) is any 
upper bound to E(R), then so is the convex hull of the curves 
Eo(R) and E,,(R). In particular, by takingEe(R) = Y~LY (from (6) 
and the fact that 6(O) = 1/2), we see that E(R) is bounded from 
above by the line passing through the point (O&2) which is 
tangent to E,,(R). This bound is called the straight-line bound 
E,l(R). However, by taking Eo(R) = ut6* (R) (cf. (7)), we can 
obtain an upper bound which is significantly better than min 
(E,l(R), E,,(R)) for a considerable range of R. We illustrate this 
in Fig. 1 with a binary symmetric channel with crossover proba- 
bility t = 0.01, 01 = -logs ~‘4t(l - t) = 2.329, and in Fig. 2 with 
a binary erasure channel with erasure probability t = 0.01, CY = 
-logs t = 6.644. In both figures, the unknown region for 0 5 R 5 
Rcrit bounding (@(R),E(R)) is shaded. A final point worth men- 
tioning is that the new upper bound (7) on E(R) always matches 
the expurgated bound E,,(R) in slope at R = 0. (Both slopes are 
-a; this slope is well-known for the expurgated bound, and fol- 
lows for the bound (7) from the results of [I] .) This fact supports 
the conjecture that E(R) = E(R) = E,,(R) for R 5 Rcrit for bi- 
nary-input channels. 

a = - log2 c (P(Y IO)P(Y I 1))1’2. 
Y~B 

These bounds are For a binary symmetric channel with crossover probability t, 
the random coding exponent is given by 

11 - R - logs (1 + m), 
CUD 5 E(R) 5 E(R) 5 as(R), (6) 

where 0 I D I ‘/2 is defined implicitly by R = 1 - Hz(D), where 
HZ(X) is the binary entropy function. (The lower bound in (6) is 
called the expurgated bound E,,(R); it is valid only for 0 5 R I 
R’, where R’ is the rate at which the expurgated bound meets the 

0 
0 .2 .4 .6 .a 1.0 

Rlbitsl 

Fig. 2. Error exponents for binary erasure channel. 

random coding bound.) As mentioned, the function 6(R) is un- 
known, so the upper bound in (6) is ineffective. However, by using 
the bound 6(R) i 6* (R) obtained in [l] (for numerical values of 
6* (R), see Table 1 in [l]), we obtain an upper bound 

APPENDIX 
E,(R) AND E,,(R) FORBINARYSYMMETRICANDBINARY 

ERASURECHANNELS 

E,(R) = 
OIR51-H2(v$/(~+v’i?)) 

T,(D) -H&J), 
I - Hz(-\/;/(& + m) 5 R 5 1 - Hz(t), 



CORRESPONDENCE 

where T,(D) = -D logz c - (1 - D) logz (1 - c), and where D 
satisfies (7). The sphere packing exponent is 

Es,(R) = T,(D) - Hz(D), 0 5 R I 1 -Hz(c). 

(Hence, Rcrit = 1 - Hz(&/(& + G)  and E(R) = E,.(R) = 
E,,(R) for R 1 Rcrit.) For the binary erasure channel with erasure 
probability 6, 

Er(R) = I 
1 -R - logz (1 + c), 0 I R I 1 - 241 + 6) 
Esp(R), 1 - 2641 + t) 5 R r: 1 - c, 

where 
pc2p 

Es,(R) = (1 _ c) + ~2p - lwz ((1 - 4 + ~2~1, 

where p is determined by R = 1 - t2~/(1 - c  + t2P). 
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Concatenated Codes with Large Minimum Distance 

LIH-JYHWENG, MEMBER,IEEE 

Abstract-Some concatenated codes of length 128 and less are 
constructed. Nineteen of these codes are superior to the best pre- 
viously known linear codes, as shown by the fact that the well- 
known lower bound on the minimum distance of the concatenated 
code as the product of the minimum distances of its component 
codes exceeds the minimum distance of the best previously known 
code. 

I. INTRODUCTION 

Concatenated codes [l] are usually considered to be effective 
codes for channels with burst errors as well as random errors. 
Most studies concerning concatenated codes treat the inner and 
outer codes separately. The purpose of the inner code is to correct 
random errors and detect burst errors, while the principal pur- 
pose of the outer code is to correct both the “erasures” detected 
by the inner codes and some erroneously decoded inner blocks. 
In this correspondence, we study concatenated codes as block 
codes. An (N,K;D) concatenated code of block length N, di- 
mension K and minimum distance D consists of an outer 
(ne,hs;do) code over GF(2m) and an inner (n;,ki;di) binary code. 
For convenience, we also refer to this as an (ns,kc;ds) 8 (n&;di) 
code. 
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The relation of the parameters N, K, and D of a concatenated 
code to those of its outer and inner codes is established in Section 
II. A class of concatenated codes with easily computed weight 
distributions is then introduced. In Section III, 38 concatenated 
codes of length less than 128 with known weight distributions are 
listed. All the codes listed in Section III are as good as any pre- 
viously known linear codes in the sense that the minimum dis- 
tance of each code is the same as, or greater than, that of the best 
previously known linear code with the same length and dimen- 
sion. In Section IV, 19 concatenated codes of length 128 or less 
which have larger minimum distances than the best previously 
known codes are tabulated. 

II. MINIMUMDISTANCEOFACONCATENATEDCODE 

Let us arrange a codeword of the (N,K;D) = (no,ko;d,) 8 
(n&i&) concatenated code into an ni X no matrix as 

A= 

L 

‘al,1 aI,2 . . . aLno 
a2,l a2,2 . . . a2,no 

am,1 %,2 . . . aWnO 
h+l,l am+l,2 --- %l+1,n, 

a2m,1 a2m,2 a** a2m,no 
. 

ski, 1 ak,,2 . . . %+a 

an, 1 an,,2 . . . a%nO 

D 
1. 

(1) 
Each column of the matrix A is a codeword of the inner binary 
(ni,hi;di) code. The first ki rows of the matrix A can be grouped 
into C sets, each of which contains m consecutive binary rows. If 
each set of these m binary rows is considered as one row of sym- 
bols of GF(2m), then each set of these rows forms a codeword of 
the outer (nc,ho;da) code over GF(2m). Note that in this corre- 
spondence, we always assume ki = Cm, where C and m are posi- 
tive integers. For each nonzero codeword of a concatenated code 
arranged in the form of (I), there exists at least one codeword over 
GF(2m), which contains at least do nonzero elements. Thus the 
matrix A has at least do nonzero columns; each of the nonzero 
columns, which are codewords of the inner code, contains at least 
di ones. Therefore, the weight of a nonzero concatenated code- 
word is at least DL = d&i. Also, each element of the ki X ko 
submatrix of A in (1) in the upper left corner can be assigned 
arbitrarily as “0” or “1.” Hence, the dimension of the concaten- 
ated code is hi X ko. Thus we have the following well-known 
theorem. 

Theorem: Let the inner and outer codes of an (N,K;D) con- 
catenated code be a binary (ni,ki;di) code and an (no,ko;do) code 
over GF(2m), respectively, with ki = Cm. Then 

N = ninO K = kiko D I DL = dido. 

We also state the following immediate corollary. 
Corollary: If C  = 1, i.e., if k; = m, and if the inner code is a code 

whose nonzero codewords are of constant weight, then D = DL 
= dido. 

The truth of this corollary can be seen from the fact that the 
weight of A in (1) will be did0 when there are exactly do nonzero 
columns since each of these columns will have weight exactly 
di. 

It should be noted that the lower bound on the minimum dis- 
tance DL, of a concatenated code is a more important parameter 
to consider than the actual minimum distance D when we employ 
deletions-and-errors decoding for the outer code [ 11. With this 
decoding algorithm, all possible error patterns of weight TL = 
1 (DL - 1)/2J or less can be correctly decoded. In addition, many _. - 
error patterns of weight exceeding 7’~ can be corrected; for ex- 


