Tests of CPT symmetry in B^0-\bar{B}^0 mixing and in $B^0 \to c\bar{c}K^0$ decays

J. P. Lees,1 V. Poireau,1 V. Tisserand,1 E. Grauges,2 A. Palano,3 G. Eigen,4 D. N. Brown,5 Yu. G. Kolomensky,5
H. Koch,6 T. Schroeder,6 C. Hearty,7 T. S. Mattison,7 J. A. McKenna,7 R. Y. So,7 V. E. Blinovabc,8
A. R. Buzylaevabc,8 V. P. Druzhininabc,8 V. B. Golubevabc,8 E. A. Kravchenkoabc,8 A. P. Onuchinabc,8
S. I. Serednyakovabc,8 Yu. I. Skovenabc,8 E. P. Solodovabc,8 K. Yu. Todyshevabc,8 A. J. Lankford,9 J. W. Gary,10
K. T. Flood,12 D. G. Hitlin,12 J. Kim12 T. S. Miyashita,12 P. Ongmangkolkul,12 F. C. Porter,12 M. Röhrken,12
Z. Huard,13 B. T. Meadows,13 B. G. Pushpawela,13 M. D. Sokoloff,13 L. Sun,13,∗ J. G. Smith,14 S. R. Wagner,14
D. Bernard,15 M. Verdeni,15 D. Bettonia16 C. Bozzi16 R. Calabrese16b,16 G. Cibinetto16b,16 E. Fioravantes16b,16
I. Garzía16b,16 E. Luppi16b,16 V. Santoro16b,16 A. Calcaterra,17 R. de Sangro,17 G. Finocchiaro,17 S. Martellotti,17
P. Patteri,17 I. M. Peruzzi,17 M. Piccolo,17 A. Zallo,17 S. PASSAGGINI,18 C. Patrignani,18,∗ B. Bhuyan,19
Sw. Banerjee,29 D. N. Brown,29 C. L. Davis,29 A. G. Denig,30 M. Fritsch,30 W. Gradi,30 K. Griesinger,30
R. Cowan,33 R. Chernih,33 S. H. Robertson,34 B. Dey35 N. Neri35 F. Palombo35 L. Cremaldi,36 R. Godang,36,§
K. Honscheid,41 R. Kass,41 A. Gazzè42 M. Margoni42 M. Posocco42 M. Rotondo42 G. Simi42
F. Simonetto43,42 R. Strollo43 S. Alak,43 E. Ben-Haim,43 M. Bomben,43 G. R. Bonneauad,43 G. Calderini,43
J. Chauveau,43 M. Marchiori,43 J. Ocari43 B. Biasini43 E. Manoni43 A. Rossi43 G. Batignani43
S. Bettarini43 M. Carpinelli43 G. Casarosa43 M. Chrsaszc43 F. Folti43 M. A. Giorgi43
A. Lusiani43 B. Oberhopf43 E. Paolini43 M. Rama43 G. Rizzo43 J. J. Walsh43 A. J. S. Smith,46
F. Anulli47 R. Faccinati48 F. Ferrarotto47 F. Ferroni47 A. Piloni47 G. Piredda47 C. Bünger,48
S. Dittrich,48 O. Grünberg,48 M. Heß,48 T. Leddigh,48 C. Voß48 R. Waldli,48 T. Adye,49 F. F. Wilson,49 S. Emery,50
G. Vasseur,50 D. Aston,51 C. Cartaro51 M. R. Convery,51 D. J. Dorfan,51 W. Dunwoodie,51 M. Ebert,51 R. C. Field,51
J. Va’vra,51 W. J. Wisniewski,51 M. V. Purohit,52 J. R. Wilson,52 A. Randle-Conde,53 S. J. Sekula,53 M. Bellis,54
P. R. Burchat,54 M. T. Puccio,54 M. S. Alam,55 Y. A. Ernst,55 R. Gorodeisky,56 N. Buttman,56 D. R. Peimer,56
F. De Mori59,60 A. Filippi59,60 D. Gamba59,60 L. Lanceri,61 L. Vitale,61 F. Martinez-Vidal,62 A. Oyanguren,62
J. Albert63 A. Beaulieu63 F. U. Bernlochner63 G. J. King,63 R. Kowalewski,63 T. Lueck,64 I. M. Nugent,63
J. M. Roney,63 N. Tasneem,63 T. J. Gershow,64 F. P. Harrison,64 T. E. Latham,64 R. Prepost,65 and S. L. Wu65

(The BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Bari and Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Novosibirsk State University, Novosibirsk 630090,
Using the eight time dependences \(e^{-\Gamma t}(1 + C \cos \Delta mt + S \sin \Delta mt) \) for the decays \(T(4S) \rightarrow B^\pm \overline{B}^0 \rightarrow f_j f_k \), with the decay into a flavor-specific state \(f_j = \ell^\pm X \) before or after the decay into a CP eigenstate \(f_k = \pi^0 K_{\pm L} \), as measured by the \textit{B}abar experiment, we determine the three CPT-sensitive parameters \(\text{Re} \) (z) and \(\text{Im} \) (z) in \(B^0 - \overline{B}^0 \) mixing and \(|A/A| \) in \(B^0 \rightarrow \pi^0 K^0 \) decays. We find \(\text{Im} \) (z) \(\approx 0.010 \pm 0.030 \pm 0.013 \), \(\text{Re} \) (z) \(= -0.065 \pm 0.028 \pm 0.014 \), and \(|A/A| \) \(= 0.999 \pm 0.023 \pm 0.017 \), in agreement with CPT symmetry.

INTRODUCTION

The discovery of CP violation in 1964 \([1]\) motivated searches for \(T \) and CPT violation. Since CPT = \(CP \times T \), violation of \(CP \) means that \(T \) or CPT or both are also violated. For the \(K^0 \) system, the two contributions were first determined \([2]\) in 1970, by using the Bell-Steinberger unitarity relation \([3]\) for \(CP \) violation in \(K^0 - \overline{K}^0 \) mixing: \(T \) was violated with about 5\(\sigma \) significance and no CPT violation was observed. Large \(CP \) violation in the \(B^0 \) system was discovered in 2001 \([4, 5]\) in the interplay of \(B^0 - \overline{B}^0 \) mixing and \(B^0 \rightarrow \pi^0 K^0 \) decays, but an explicit demonstration of violation is described by three parameters, \(|q/p| \), \(\text{Re} \) (z), and \(\text{Im} \) (z), defined by analyzing the time dependence of the four decay rates \(T(4S) \rightarrow B^\pm \overline{B}^0 \rightarrow f_j f_k \), with the decay into a flavor-specific state \(f_j = \ell^\pm X \) before or after the decay into a CP eigenstate \(f_k = \pi^0 K_{\pm L} \), as measured by the \textit{B}abar experiment, we determine the three CPT-sensitive parameters \(\text{Re} \) (z) and \(\text{Im} \) (z) in \(B^0 - \overline{B}^0 \) mixing and \(|A/A| \) in \(B^0 \rightarrow \pi^0 K^0 \) decays. We find \(\text{Im} \) (z) \(\approx 0.010 \pm 0.030 \pm 0.013 \), \(\text{Re} \) (z) \(= -0.065 \pm 0.028 \pm 0.014 \), and \(|A/A| \) \(= 0.999 \pm 0.023 \pm 0.017 \), in agreement with CPT symmetry.

The \(T \)-sensitive mixing parameter \(|q/p| \) has been determined in several experiments, the present world average \([7]\) being \(|q/p| = 1 + (0.8 \pm 0.8) \times 10^{-3} \). The CPT-sensitive parameter \(\text{Im} \) (z) has been determined by analyzing the time dependence of dilepton events in the decay \(T(4S) \rightarrow B^0 \overline{B}^0 \rightarrow (\ell^\pm \nu X) (\ell'^\mp \nu X) \); the \textit{B}abar result \([8]\) is \(\text{Im} \) (z) \(= (-13.9 \pm 7.3 \pm 3.2) \times 10^{-3} \). Since \(\Delta \Gamma \) is very small, dilepton events are only sensitive to the product \(\text{Re} \) (z) \(\Delta \Gamma \). Therefore, \(\text{Re} \) (z) has so far only been determined by analyzing the time dependence of the decays \(T(4S) \rightarrow B^0 \overline{B}^0 \) with one \(B \) meson decaying into \(\ell^\pm \nu X \) and the other one into \(\pi^0 K^0 \). With \(88 \times 10^6 \overline{B}B \) events, \textit{B}abar measured \(\text{Re} \) (z) \(= (19 \pm 48 \pm 47) \times 10^{-3} \) in 2004 \([9]\), while Belle used \(535 \times 10^6 \overline{B}B \) events to measure \(\text{Re} \) (z) \(= (19 \pm 37 \pm 33) \times 10^{-3} \) in 2012 \([10]\).

In our present analysis, we use the final data set of the \textit{B}abar experiment \([11, 12]\) with \(470 \times 10^6 \overline{B}B \) events for a new determination of \(\text{Re} \) (z) and \(\text{Im} \) (z). As in Refs. \([9, 10]\), this is based on \(\pi^0 K^0 \) decays with amplitudes \(A \) for \(B^0 \rightarrow \pi^0 K^0 \) and \(\overline{A} \) for \(\overline{B}^0 \rightarrow \pi^0 K^0 \), using the following two assumptions:

(1) \(\pi^0 K \) decays obey the \(\Delta S = \Delta B \) rule, i.e., \(B^0 \) states do not decay into \(\pi^0 K^0 \), and \(\overline{B}^0 \) states do not decay into \(\pi^0 K^0 \).

(2) \(CP \) violation in \(K^0 - \overline{K}^0 \) mixing is negligible, i.e. \(K^0 \) = \((K^0 + \overline{K}^0)/\sqrt{2} \), \(K^0 \) = \((K^0 - \overline{K}^0)/\sqrt{2} \).

The \(CP \)-sensitive parameters are determined from the measured time dependences of the four decay rates \(B^0 \rightarrow \pi^0 K^0 \) decays. In \(T(4S) \) decays, \(B^0 \overline{B}^0 \) mesons are produced in the entangled state \((B^0 \overline{B}^0 - \overline{B}^0 B^0)/\sqrt{2} \). When the first meson decays into \(f = f_1 \) at time \(t_1 \), the state collapses into the two states \(f_1 \) and \(B_2 \). The later decay \(B_2 \rightarrow f_2 \) at time \(t_2 \) depends on the state \(B_2 \) and, because of \(B^0 - \overline{B}^0 \) mixing, on the decay-time difference \(t = t_2 - t_1 \geq 0 \).

Note that \(t \) is the only relevant time here, it is the evolution time of the single-meson state \(B_2 \) in its rest frame.
The present analysis does not start from raw data but uses intermediate results from Ref. [6] where, as mentioned above, we used our final data set for the demonstration of large T violation. This was shown in four time-dependent transition-rate differences

$$R(B_j \rightarrow B_i) - R(B_i \rightarrow B_j)$$

(6)

where $B_i = B^0$ or \bar{B}^0, and $B_j = B_+ or B_-$. The two states B_i were defined by flavor-specific decays [13] denoted as $B^0 \rightarrow \ell^+X, \bar{B}^0 \rightarrow \ell^-X$. The state B_+ was defined as the remaining state B_2 after a $\bar{c}\pi K_0^0$ decay, and B_- as B_2 after a $c\pi K_0^0$ decay. In order to use the two states for testing T symmetry in Eq. (6), they must be orthogonal; $\langle B_+ | B_- \rangle = 0$, which requires the additional assumption

(3) $|A/A| = 1$.

In the same 2012 analysis, we demonstrated that CPT symmetry is unbroken within uncertainties by measuring the four rate differences

$$R(B_j \rightarrow B_i) - R(B_i \rightarrow B_j).$$

(7)

For both measurements in Eqs. (6) and (7), expressions

$$R_i(t) = N_i e^{-\Gamma t} (1 + C_i \cos \Delta m t + S_i \sin \Delta m t),$$

(8)

$i = 1 \ldots 8$, were fitted to the four time-dependent rates where the ℓX decay precedes the $c\pi K$ decay, and to the four rates where the order of the decays is inverted. The rate ansatz in Eq. (8) requires $\Delta \Gamma = 0$. The time $t \geq 0$ in these expressions is the time between the first and the second decay of the entangled $B^0\bar{B}^0$ pair as defined in Eq. (5). In our 2012 analysis, we named it $\Delta \tau$, equal to $t_{c\pi K} - t_{\ell X}$ if the ℓX decay occurred first, and equal to $t_{\ell X} - t_{c\pi K}$ with $c\pi K$ as first decay. After the fits, the T-violating and CPT-testing rate differences were evaluated from the obtained S_i and C_i results. The CPT test showed no CPT violation, i.e., it was compatible with $z = 0$, but no results for $\Re (z)$ and $\Im (z)$ were given in 2012.

Our present analysis uses the eight measured time dependences in the 2012 analysis, i.e. the 16 results C_i and S_i, for determining z. This is possible without assumption (3) since we do not need to use the concept of states $B_+ and B_-$. We are therefore able to determine the decay parameter $|A/A|$ in addition to the mixing parameters $\Re (z)$ and $\Im (z)$. As in 2012, we used $\Delta \Gamma = 0$, but we show at the end of this analysis that the final results are independent of this constraint. Accepting assumptions (1) and (2), and in addition

(4) the amplitudes A and \bar{A} have a single weak phase, only two more parameters $|A/A|$ and $\Im (gA/pA)$ are required in addition to $|g/p|$ and z for a full description of CP violation in time-dependent $B^0 \rightarrow c\pi K_0^0$ decays. In this framework, T symmetry requires $\Im (gA/pA) = 0$ [14], and CPT symmetry requires $|A/A| = 1$ [15].

B-MESON DECAY RATES

The time-dependent rates of the decays $B^0, \bar{B}^0 \rightarrow c\pi K$ are sensitive to both symmetries CPT and T in B^0, \bar{B}^0 mixing and in B^0 decays. For decays into final states f with amplitudes $A_f = A(B^0 \rightarrow f)$ and $\bar{A}_f = A(\bar{B}^0 \rightarrow f)$, using $\lambda_f = gA_f/(pA_f)$ and approximating $\sqrt{1-z^2} = 1$, the rates are given by

$$R(B^0 \rightarrow f) = \frac{|A_f|^2 e^{-\Gamma t}}{4} \left| (1 - z + \lambda_f) e^{i\Delta m t} e^{i\Delta \tau/4} + (1 + z - \lambda_f) e^{-i\Delta \tau/4} \right|^2,$$

$$R(\bar{B}^0 \rightarrow f) = \frac{|\bar{A}_f|^2 e^{-\Gamma t}}{4} \left| (1 + z + 1/\lambda_f) e^{i\Delta m t} e^{i\Delta \tau/4} + (1 - z - 1/\lambda_f) e^{-i\Delta \tau/4} \right|^2.$$

(9)

For the CP eigenstates $c\pi K^0_L$ ($CP = +1$) and $c\pi K^0_S$ ($CP = -1$) with $A_{S(L)} = A[B^0 \rightarrow c\pi K^0_{S(L)}]$ and $\bar{A}_{S(L)} = A[\bar{B}^0 \rightarrow c\pi K^0_{S(L)}]$, assumptions (1) and (2) give $A_S = A_L = A/\sqrt{2}$ and $\bar{A}_S = - \bar{A}_L = \bar{A}/\sqrt{2}$. In the following, we only need to use $\lambda_S = - \lambda_L = \lambda$. Setting $\Delta \Gamma = 0$ and keeping only first-order terms in the small quantities $|\lambda| \ll 1, z, and r = |g/p| < 1$, this leads to rate expressions as given in Eq. (8) with coefficients
The four other rates $R_5(t) \ldots R_8(t)$ with σK as the first decay and $t_{tX} - t_{\sigma K} = t$ follow from the same two-decay-time expression [16, 17] as the rates $R_1 \ldots R_4$ with $t_{\sigma K} - t_{tX} = t$. Therefore, the rates $R_5(\sigma K_L, \ell^- X)$, $R_6(\sigma K_L, \ell^+ X)$, $R_7(\sigma K_S, \ell^- X)$, and $R_8(\sigma K_S, \ell^+ X)$ are given by Eq. (8) with the coefficients

$$S_i = -S_{i-4}, \quad C_i = +C_{i-4} \quad \text{for } i = 5, 6, 7, \text{ and } 8. \quad (11)$$

The S_i and C_i results from our 2012 analysis, including uncertainties and correlation matrices, have been published as Supplemental Material [18] in Tables II, III, and IV. For completeness, we include in Table I the results and the uncertainties.

<table>
<thead>
<tr>
<th>i</th>
<th>decay pairs</th>
<th>S_i</th>
<th>σ_{stat}</th>
<th>σ_{sys}</th>
<th>C_i</th>
<th>σ_{stat}</th>
<th>σ_{sys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\ell^- X, \sigma K_L$</td>
<td>-0.51</td>
<td>0.17</td>
<td>0.11</td>
<td>-0.01</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>$\ell^+ X, \sigma K_L$</td>
<td>-0.69</td>
<td>0.11</td>
<td>0.04</td>
<td>-0.02</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>3</td>
<td>$\ell^- X, \sigma K_S$</td>
<td>-0.76</td>
<td>0.06</td>
<td>0.04</td>
<td>0.08</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>$\ell^+ X, \sigma K_S$</td>
<td>0.55</td>
<td>0.09</td>
<td>0.06</td>
<td>0.01</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>$\sigma K_L, \ell^- X$</td>
<td>-0.83</td>
<td>0.11</td>
<td>0.06</td>
<td>0.11</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>6</td>
<td>$\sigma K_L, \ell^+ X$</td>
<td>0.70</td>
<td>0.19</td>
<td>0.12</td>
<td>0.16</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>7</td>
<td>$\sigma K_S, \ell^- X$</td>
<td>0.67</td>
<td>0.10</td>
<td>0.08</td>
<td>0.03</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>$\sigma K_S, \ell^+ X$</td>
<td>-0.66</td>
<td>0.06</td>
<td>0.04</td>
<td>-0.05</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

FIT RESULTS

The relations between the 16 observables $y_i = S_1 \ldots C_8$ in Eqs. (10) and (11) and the four parameters $p_1 = (1 - |\lambda|^2)/2$, $p_2 = 2 \text{Im}(\lambda)/(1 + |\lambda|^2)$, $p_3 = \text{Im}(z)$, and $p_4 = \text{Re}(z)$ are approximately linear. Therefore, the four parameters can be determined in a two-step linear χ^2 fit using matrix algebra. The first-step fit determines p_1 and p_2 by fixing $\text{Re}(\lambda)$ and $\text{Im}(\lambda)$ in the products $\text{Re}(z)\text{Re}(\lambda)$, $\text{Im}(z)\text{Im}(\lambda)$, $\text{Im}(z)\text{Re}(\lambda)$, and $\text{Re}(z)\text{Re}(\lambda)\text{Im}(\lambda)$. After fixing these terms, the relation between the vectors y and p is strictly linear,

$$y = M_1 p, \quad (12)$$

where M_1 uses $\text{Im}(\lambda) = 0.67$ and $\text{Re}(\lambda) = -0.74$, motivated by the results of analyses assuming CPT symmetry [7]. With this ansatz, χ^2 is given by

$$\chi^2 = (M_1 p - \hat{y})^T G (M_1 p - \hat{y}), \quad (13)$$

where \hat{y} is the measured vector of observables, and the weight matrix G is taken to be

$$G = [C_{\text{stat}}(y) + C_{\text{sys}}(y)]^{-1}, \quad (14)$$

where $C_{\text{stat}}(y)$ and $C_{\text{sys}}(y)$ are the statistical and systematic covariance matrices, respectively. The minimum of χ^2 is reached for

$$\hat{p} = M_1 \hat{y} \quad \text{with} \quad M_1 = (M_1^T G M_1)^{-1} M_1^T G, \quad (15)$$

and the uncertainties of \hat{p} are given by the covariance matrices

$$C_{\text{stat}}(p) = M_1 C_{\text{stat}}(y) M_1^T, \quad C_{\text{sys}}(p) = M_1 C_{\text{sys}}(y) M_1^T, \quad (16)$$
with the property
\[C_{\text{stat}}(p) + C_{\text{sys}}(p) = (M^T G M)^{-1}. \] (17)
This first-step fit yields
\[p_1 = 0.001 \pm 0.023 \pm 0.017, \]
\[p_2 = 0.689 \pm 0.030 \pm 0.015. \] (18)
This leads to
\[|\lambda| = 1 - p_1 = 0.999 \pm 0.023 \pm 0.017, \]
\[\text{Im} (\lambda) = (1 - p_1) p_2 = 0.689 \pm 0.034 \pm 0.019, \]
\[\text{Re} (\lambda) = -(1 - p_1) \sqrt{1 - p_2^2} = -0.723 \pm 0.043 \pm 0.028, \] (19)
where the negative sign of \(\text{Re} (\lambda) \) is motivated by four measurements [19–22]. The results of all four favor \(\cos 2\beta > 0 \), and in Ref. [22] \(\cos 2\beta < 0 \) is excluded with 4.5 \(\sigma \) significance.

In the second step, we fix the two \(\lambda \) values according to the \(p_1 \) and \(p_2 \) results of the first step, i.e. to the central values in Eqs. (19). Equations (12) to (17) are then applied again, replacing \(M_1 \) with the new relations matrix \(M_2 \). This gives the same results for \(p_1 \) and \(p_2 \) as in Eq. (18), and
\[p_3 = \text{Im} (z) = 0.010 \pm 0.030 \pm 0.013, \]
\[p_4 = \text{Re} (z) = -0.065 \pm 0.028 \pm 0.014, \] (20)
with a \(\chi^2 \) value of 6.9 for 12 degrees of freedom.

The \(\text{Re} (z) \) result deviates from 0 by 2.1 \(\sigma \). The result for \(|\lambda| \) can be easily converted into \(|A/A| \) by using the world average of measurements for \(|q/p| \). With \(|q/p| = 1.0008 \pm 0.0008 \) [7], we obtain
\[|A/A| = 0.999 \pm 0.023 \pm 0.017, \] (21)
in agreement with \(CPT \) symmetry. Using the matrix algebra in Eqs. (12) to (17) allows us to determine the separate statistical and systematic covariance matrices of the final results, in agreement with the condition \(C_{\text{stat}}(p) + C_{\text{sys}}(p) = (M^T G M)^{-1} \), where \(M \) relates \(y \) and \(p \) after convergence of the fit. The statistical correlation coefficients are \(\rho[|A/A|, \text{Im} (z)] = 0.03 \), \(\rho[|A/A|, \text{Re} (z)] = 0.44 \), and \(\rho[\text{Re} (z), \text{Im} (z)] = 0.03 \). The systematic correlation coefficients are \(\rho[|A/A|, \text{Im} (z)] = 0.03 \), \(\rho[|A/A|, \text{Re} (z)] = 0.48 \), and \(\rho[\text{Re} (z), \text{Im} (z)] = -0.15 \).

ESTIMATING THE INFLUENCE OF \(\Delta \Gamma \)

Using an accept/reject algorithm, we have performed two “toy simulations”, each with \(\sim 2 \times 10^6 \) events, i.e. \(t \) values sampled from the distributions
\[e^{-\Gamma t}[1 + \text{Re} (\lambda) \sinh(\Delta \Gamma t/2) + \text{Im} (\lambda) \sin(\Delta m t)], \] (22)
with \(\Delta \Gamma = 0 \) for one simulation and \(\Delta \Gamma = 0.01 \Gamma \) for the other one, corresponding to one standard deviation from the present world average [7]. For both simulations we use \(\text{Im} (\lambda) = 0.67 \) and \(\text{Re} (\lambda) = -0.74 \) and sample \(t \) values between 0 and \(+5/\Gamma \). We then fit the two samples, binned in intervals of \(\Delta t = 0.25/\Gamma \), to the expressions
\[N e^{-\Gamma t}[1 + C \cos(\Delta m t) + S \sin(\Delta m t)], \] (23)
with three free parameters \(N, C \) and \(S \). The fit results agree between the two simulations within 0.002 for \(C \) and 0.008 for \(S \). We, therefore, conclude that omission of the sinh term in Ref. [6] has a negligible influence on the three final results of this analysis.

CONCLUSION

Using \(470 \times 10^6 B \bar{B} \) events from \(B \bar{B} \), we determine
\[\text{Im} (z) = 0.010 \pm 0.030 \pm 0.013, \]
\[\text{Re} (z) = -0.065 \pm 0.028 \pm 0.014, \]
\[|A/A| = 0.999 \pm 0.023 \pm 0.017, \]
in agreement with the world average of measurements for \(|q/p| \). With \(|q/p| = 1.0008 \pm 0.0008 \) [7], we obtain
\[|A/A| = 0.999 \pm 0.023 \pm 0.017, \] (21)
in agreement with \(CPT \) symmetry. Using the matrix algebra in Eqs. (12) to (17) allows us to determine the separate statistical and systematic covariance matrices of the final results, in agreement with the condition \(C_{\text{stat}}(p) + C_{\text{sys}}(p) = (M^T G M)^{-1} \), where \(M \) relates \(y \) and \(p \) after convergence of the fit. The statistical correlation coefficients are \(\rho[|A/A|, \text{Im} (z)] = 0.03 \), \(\rho[|A/A|, \text{Re} (z)] = 0.44 \), and \(\rho[\text{Re} (z), \text{Im} (z)] = 0.03 \). The systematic correlation coefficients are \(\rho[|A/A|, \text{Im} (z)] = 0.03 \), \(\rho[|A/A|, \text{Re} (z)] = 0.48 \), and \(\rho[\text{Re} (z), \text{Im} (z)] = -0.15 \).

ACKNOWLEDGEMENTS

We thank H.-J. Gerber (ETH Zurich) and T. Ruf (CERN) for very useful discussions on \(T \) and \(CPT \) symmetry. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support the\(B \bar{B} \) result of 2004 [9]. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia),

\[C_{\text{stat}}(p) + C_{\text{sys}}(p) = (M^T G M)^{-1}. \] (17)
MINECO (Spain), STFC (United Kingdom), BSF (USA-Israel). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).

∗ Now at: Wuhan University, Wuhan 43072, China
† Now at: Università di Bologna and INFN Sezione di Bologna, I-47921 Rimini, Italy
‡ Now at: University of Huddersfield, Huddersfield HD1 3DH, UK
§ Now at: University of South Alabama, Mobile, Alabama 36688, USA
¶ Also at: Università di Sassari, I-07100 Sassari, Italy

[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 012007 (2004), inserting Re (λ) = −0.73.
[13] In addition to prompt charged leptons from inclusive semileptonic decays ℓ±νX, Ref. [6] used charged Kaons, charged pions from D∗ decays and high-momentum charged particles in the flavor-specific samples ℓ±X.