Supporting Information:

Halogen Radical Chemistry at Aqueous Interfaces

Shinichi Enami*, Michael R. Hoffmann†, A. J. Colussi‡

†National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki
305-8506, Japan, ‡Linde Center for Global Environmental Science, California Institute of
Technology, California 91125, U.S.A

*Author to whom correspondence should be addressed: S.E. enami.shinichi@nies.go.jp,
phone: +81-29-850-2770
Gaseous methyl iodide, CH$_3$I(g), sparged by ultra-pure (> 99.999 %) N$_2$(g) from CH$_3$I(l) maintained at 293 K in a temperature-controlled bath (THOMAS, TRC-4C), was diluted with O$_2$(g) (> 99.995 %) before being injected into the spraying chamber of the mass spectrometer (Fig. S1). O$_2$(g) was used as effective quencher of excited iodine atoms (see below). Carrier gas flow rates were regulated by calibrated digital mass flow controllers (Horiba, STEC, SEC-400 MARK 3). Conditions in the present experiments were: drying gas flow rate: 13 L min$^{-1}$; drying gas temperature: 340 $^\circ$C; inlet voltage: +3.5 kV relative to ground; fragmentor voltage value: 80 V. CH$_3$I (purity > 99.5 %, Nacalai Tesque), NaI (> 99.5 %, Nacalai Tesque), NaBr (> 99.5 %, Kanto Chemical), H$_2^{18}$O (97 %, Santa Cruz Biotechnology, Inc.) and D$_2$O (99.9 atom % D, Sigma-Aldrich) were used as received. All solutions were prepared in purified water (Resistivity \geq18.2 MΩ cm at 298 K) from a Millipore Milli-Q water purification system. All experiments were performed at 298 \pm 2 K.

Calculation of I·(g) concentration

The dissociation of CH$_3$I(g) by 266 nm photons produces I·(g) + ·CH$_3$(g).1 We estimate that under present experimental conditions 0.07 \sim 6.6 % CH$_3$I(g) is converted in I·(g). The concentration of I·(g) is derived from the CH$_3$I(g) absorption cross sections, laser fluence, and reported gas-phase kinetic parameters. Since the number of photons is always larger than number of CH$_3$I(g) molecules under present conditions, we estimate the initial I·(g) concentrations from Beer’s law:

$$\ln(N_0/N) = I_0 \sigma \Phi_{dis} \quad (E \ 1)$$
$$N = N_0 \exp(-I_0 \sigma \Phi_{\text{dis}})$$ \hspace{1cm} \text{(E 2)}$

where σ is the absorption cross section, Φ_{dis} is the dissociation quantum yield, I_0 is the laser fluence in number of photons per unit area, N_0 is the number of molecules before laser irradiation, and N is the number of molecules after laser irradiation. We derive $N/N_0 \sim 0.934$, meaning $[I\cdot(g)]_0 \approx 0.066 \times [\text{CH}_3I(g)]$ at the largest 266 nm laser pulse energy $\sim 40 \text{ mJ pulse}^{-1}$. $[I\cdot(g)]_0$ can be varied from 10 ppbv to 40 ppmv under present conditions. ·CH$_3$ radicals reacts with excess O$_2$ to form CH$_3$O$_2$ within $\sim 50 \text{ ns}$, $k(\text{·CH}_3 + \text{O}_2 + \text{M}) = 4.5 \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$. About 70% of the I-atoms from the photodissociation of CH$_3$I at 266 nm are formed in the excited state I($^2P_{1/2}$), I*, which in the presence of excess O$_2$, are quenched to the ground state within $\sim 20 \text{ ns}$ (from $k(I* + O_2) = 2.6 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) under present conditions. Hence, in our experiments I-atoms colliding with the aqueous microjets are in the ground state. The gas-phase reaction of $I\cdot + I\cdot + (\text{M}) \rightarrow I_2 (\text{+ M})$ is sufficiently slow ($\tau > 50 \text{ ms}$) and hence negligible.

Calculation of I\cdot(g) uptake coefficient

The rate at which I\cdot(g) are incorporated onto the surface of the microjets is given by the kinetic theory of gases, equation SE1:

$$\dot{n} = \frac{1}{4} n c \gamma = 1.3 \times 10^{18} \frac{\gamma \text{ molecules cm}^{-2} \text{ s}^{-1}} \text{ (SE1)}$$

for the experiment of Figure 1, where: $n = 2.3 \times 10^{14} \text{ molecules cm}^{-3}$, $c = 2.2 \times 10^4 \text{ cm s}^{-1}$ is the mean speed of I\cdot(g) at 300 K, and γ is the uptake coefficient on 0.1 mM NaBr solutions. Therefore, the number of I\cdot(g) incorporated onto the surface of water during $\tau = 10^5 \text{ s}$ contact times is: $N = 1.3 \times 10^{13} \gamma \text{ atoms cm}^{-2}$. Figure 1 shows that in such
events the concentration of Br\(^{-}\) in interfacial layers of thickness $\delta \sim 10^{-7}$ cm drops by 50%, i.e., the number of Br\(^{-}\) ions consumed per unit area is: $\Delta N = (\frac{1}{2} \times 10^{-4} \text{ mol L}^{-1} \times 10^{-3} \text{ L cm}^{-3}) \times (6 \times 10^{23} \text{ molecules mol}^{-1}) \times (10^{-7} \text{ cm}) = 3 \times 10^{9} \text{ ions cm}^{-2}$. By assuming a one-to-one stoichiometry, i.e., by equating $N = \Delta N$, we estimate that $\gamma \sim 2 \times 10^{-4}$.
Figure S1 Schematic diagram of an in-situ measurement of laser-induced halogen radical reactions at the air-water interface. HG stands for harmonic generator. MFC stands for mass flow controller.
Fig. S2 Ultra-violet absorption spectra of CH$_3$I(g) as a function of flow rate
Fig. S3 Negative ion electrospray mass spectra of milli-Q water (resistivity ≥ 18.2 MΩ cm) microjets exposed to CH₃I(g)/N₂(g) mixtures at [CH₃I(g)] = 2.0 x 10¹⁶ molecules cm⁻³ with (red)/without (cyan) 266 nm laser beam irradiation. Note that the signal intensities are below background noises.

Fig. S4 Negative ion electrospray mass spectra of 0.1 mM NaBr microjets with/without 266 nm laser beam irradiation under N₂ atmosphere. Note that the signal intensities are unchanged within errors upon laser irradiation.
Fig. S5 Negative ion electrospray mass spectra of 0.1 mM NaI microjets with/without 266 nm laser beam irradiation or exposed to CH₃I(g). Note that the signal intensities are unchanged within errors upon laser irradiation.

Figure S6 Negative ion electrospray mass spectra of 0.1 mM NaBr in 99 vol. % D₂O microjets exposed to gaseous CH₃I/O₂/N₂ at [CH₃I(g)] = 1.4 x 10¹⁶ molecules cm⁻³ irradiated by 266 nm laser beams.
Figure S7 Negative ion electrospray mass spectra of 0.1 mM NaI microjets exposed to CH$_3$(g)/N$_2$(g)/O$_2$(g) mixtures at variable [CH$_3$(g)] under 266 nm laser beam irradiation.
Figure S8 A) Electrospray mass spectral signal intensities acquired from aqueous 0.1 mM NaI microjets exposed to gaseous CH$_3$I/O$_2$/N$_2$ at [CH$_3$I(g)] = 6.2 \times 1015 molecules cm$^{-3}$ irradiated by 266 nm laser beams as a function of laser energy mJ pulse$^{-1}$. B) as a function of [CH$_3$I(g)].
Fig. S9 Negative ion electrospray mass spectra of 0.1 mM NaI microjets with (yellow, gray, red)/without (cyan) 266 nm laser beam irradiation with 2.0×10^{16} molecules cm$^{-3}$ CH$_3$(g) under no O$_2$-flow condition.
SI REFERENCES

