Supporting Information

Gold Nanocages Covered with Thermally-responsive Polymers for Controlled Release by High-intensity Focused Ultrasound**

Weiyang Li†,a, Xin Cai†,a, Chulhong Kim†,ab, Guorong Suna, Yu Zhanga, Rui Denga, Miao Xin Yanga, Jingyi Chena, Samuel Achilefu,c, Lihong V. Wang*a, and Younan Xia*a

aDepartment of Biomedical Engineering, Washington University, St. Louis, Missouri 63130
bCurrent address: Department of Biomedical Engineering, The State University of New York, Buffalo, NY 14260
cDepartment of Radiology, Washington University School of Medicine, St. Louis, MO 63110

*Corresponding authors. E-mail: xia@biomed.wustl.edu (for nanocage and polymer syntheses) and lhwang@biomed.wustl.edu (for high-intensity focused ultrasound experiments)

†Weiyang Li, Xin Cai, and Chulhong Kim contributed equally to this work.
Figure S1. (A) 1H-NMR and (B) quantitative 13C NMR spectra of the as-prepared poly(NIPAAm-co-AAm) copolymers.
Figure S2. The LCST measured spectrophotometrically, with the solution being heated at a rate of 1.0 °C/min. The measurement was conducted in water (black line) and PBS buffer solution (red line), respectively. The temperature at 90% light transmittance (at 600 nm) of the original polymer solution was defined as the LCST.
Figure S3. UV-vis extinction spectra of an aqueous suspension of Au nanocages before (dashed line) and after functionalization with poly(NIPAAm-co-AAm) copolymers (solid line).
Figure S4. UV-vis absorption spectra taken from the supernatant immediately after preparation of the dye-loaded nanocages (black line) and after the sample had been heated at 37 °C for 48 h (red line).
Figure S5. Photograph showing the white spot, indicated by the white arrow, on the bottom surface of the petri dish after HIFU irradiation at a power of 15 W for 5 seconds.