Tensor-product state approach to spin-$\frac{1}{2}$ square J_1-J_2 antiferromagnetic Heisenberg model: Evidence for deconfined quantum criticality

Ling Wang,1,2 Zheng-Cheng Gu,3,4 Frank Verstraete,5,6 and Xiao-Gang Wen7,4

1Beijing Computational Science Research Center, 10 West Dongbeiwang Road, Beijing 100193, China
2Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
3Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
5Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
6Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium
7Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 24 May 2016; published 19 August 2016)

The ground state phase of a spin-$\frac{1}{2}$ J_1-J_2 antiferromagnetic Heisenberg model on a square lattice around the maximally frustrated regime ($J_2 \sim 0.5J_1$) has been debated for decades. Here we study this model using the cluster update algorithm for tensor-product states (TPSs). The ground state energies at finite sizes and in the thermodynamic limit (with finite size scaling) are in good agreement with exact diagonalization study. Through finite size scaling of the spin correlation function, we find the critical point $J_{c1}^2 = 0.572(5)J_1$ and critical exponents $\nu = 0.5(8)$, $\eta_s = 0.28(6)$. In the range of $0.572 < J_2/J_1 \leq 0.6$ we find a paramagnetic ground state with an exponentially decaying spin-spin correlation. Up to a 24×24 system size, we observe power law decaying dimer-dimer and plaquette-plaquette correlations with an anomalous plaquette scaling exponent $\eta_p = 0.24(1)$ and an anomalous columnar scaling exponent $\eta_c = 0.28(1)$ at $J_2/J_1 = 0.6$. These results are consistent with a potential gapless $U(1)$ spin-liquid phase. However, since the $U(1)$ spin liquid is unstable due to the instanton effect, a valence bond solid order with very small amplitude might develop in the thermodynamic limit. Thus, our numerical results strongly indicate a deconfined quantum critical point at J_{c1}^2. Remarkably, all the observed critical exponents are consistent with the J-Q model.

DOI: 10.1103/PhysRevB.94.075143

I. INTRODUCTION

The spin-$\frac{1}{2}$ J_1-J_2 antiferromagnetic Heisenberg model on a square lattice has drawn great attention for the last two decades owing to its close relation to the disappearance of antiferromagnetic (AF) long-range order (LRO) in high-T_c superconducting materials [1,2], and has been proposed as a possible simple model to realize a topologically ordered chiral spin-liquid state [3,4] or Z_2 spin-liquid state [5–9]. The Hamiltonian of this model is given by

$$H = J_1 \sum_{(i,j)} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{(i,j)} \mathbf{S}_i \cdot \mathbf{S}_j \quad (J_1, J_2 > 0),$$

(1)

where (i,j) represents the nearest-neighbor (NN) pair and (i,j) represents the next-nearest-neighbor (NNN) pair. For convenience, we set $J_1 = 1$ throughout the paper. It has long been believed that the frustration from the NNN interaction competes with the NN one and drives the system through a quantum phase transition from an AF LRO phase to a magnetically disordered phase. In two extreme cases, the ground state phases of the model are well established: At very small J_2, the ground state has AF LRO, and at very large J_2, the system falls into two weakly coupled sets, and the magnetic susceptibility peaks at momentum $(\pi, 0)$ or $(0, \pi)$. In the intermediate coupling regime, quantum fluctuation is meant to destroy the AF LRO near the maximally frustrated point $J_2 = 0.5$ of the classical model and establish a new paramagnetic phase. The nature of such a quantum phase is of great interest.

Numerous efforts have been made using many different approaches, such as the exact diagonalization (ED) [10–15], spin-wave theory [16,17], series expansion [18,19], large-N expansion [5], the coupled cluster method (CCM) [20], variational methods (including short-range resonating valence bond (SRVB) method) [21–23], and the fixed-node quantum Monte Carlo (QMC) [24]. The results turned out to be controversial: A series expansion calculation of a general magnetic susceptibility over different perturbation fields suggests that within the Ginzburg-Landau paradigm the type of phase transition from the Neel to paramagnetic phase is of first order [19]. However, the same general magnetic susceptibility calculated with a coupled cluster method suggests a second-order phase transition [20]. The nature of the phase near $J_2 = 0.5$ was as unclear: A fixed-node QMC study indicates a plaquette valence bond solid (VBS) state [24], whereas the series expansion argues for a columnar VBS state [19]. A relatively direct investigation of the nature of the ground state order is using the SRVB approximation [22], where with another term J_3 included in the Hamiltonian, a plaquette VBS state along the line of $J_2 + J_3 = 0.5$ is found. Most recently, the density matrix renormalization group (DMRG) has demonstrated its power in simulating quasi-one-dimensional cylinders for the kagome Heisenberg model. Different groups applied it to the spin-$\frac{1}{2}$ J_1-J_2 model as well, however, the results were different: Jiang et al. claim a Z_2 spin-liquid state [25] while Gong et al. suggest a plaquette VBS state [26].

In this paper, we revisit this problem with a tensor-product state (TPS) [27] ansatz for the ground state wave function, accessed by the recently proposed cluster update
algorithm [28], and reveal the answer to both questions. By fitting a universal scaling function for the spin-spin correlation we observe a continuous phase transition from the Néel to paramagnetic phase at $J_2^c = 0.572(5)$ with critical exponents $\nu = 0.50(8)$ and $\eta_s = 0.28(6)$. In the paramagnetic phase we find exponentially decaying spin-spin correlation functions. Up to a 24×24 system size, we observe power law decaying dimer-dimer and plaquette-plaquette correlation functions, which indicate a nonzero spin triplet gap and a zero spin singlet gap. These properties are consistent with the previously proposed $U(1)$ gapless spin-liquid state [29] by using a one-parameter TPS ansatz. Nevertheless, it is well known that the $U(1)$ gapless spin liquid is unstable due to the instanton effect, and we argue that a very small VBS order might eventually develop in the thermodynamic limit. Interestingly, at $J_2 = 0.6$ the scaling of plaquette (columnar) VBS order parameter suggests an anomalous VBS scaling exponent $\eta_p = 0.24(1)$ [$\eta_s = 0.28(1)$]. Remarkably, all observed exponents are consistent with those of the $J-Q$ model [30–32]. Thus, our numerical results strongly indicate a deconfined quantum critical point scenario (DQCP) [33,34] from Néel order to VBS order at $J_2 = 0.572(5)$.

II. RESULTS

We divide the square lattice into four sublattices A, B, C, D that form a 2×2 unit cell, and associate each type of site with one of the four different sublattice tensors. Such a choice of tensor-product state ansatz aims at describing potential VBS orders and studying their competing effects. We use the cluster update imaginary time evolution method [28] to evolve from a TPS with random initialized tensor elements to converged state of the J_1-J_2 Hamiltonian. Such an obtained state is often called infinite TPS, since there is no system size information entering into this evolution scheme. Once the infinite TPS (with a bond dimension $D = 9$) converges, we cover a $L \times L$ torus with repeated 2×2 unit cells and form a finite size wave function. Without further finite size ground state optimization, we measure the size-dependent variational energies, staggered magnetizations, spin-spin, dimer-dimer, and plaquette-plaquette correlations on $L \times L$ tori for $L = 4, 6, 8, 12, 16, 20, 24,$ and 28. Our tensor measurement strategy is to use variational Monte Carlo (VMC) [35] to sample spin configurations, whose weights are computed by the tensor renormalization idea [36,37]. With these combined techniques, we can make precise measurements (for periodic systems) and perform a careful finite size scaling analysis. Hereafter, all our numerical results are obtained from TPSs with a bond dimension $D = 9$.

Ground state energies. We present the ground state energies on tori of $L \times L$ (at $L = 8$ and 16) as functions of $D_c (D_c = 8, 10, 12, 16, 20, 24,$ and 28) in Fig. 1, where D_c is the Schmidt number kept in calculating the importance weight of the sampled spin configurations [35]. We find that the variational ground state energies decrease monotonically with increasing D_c. Using a quadratic function in $1/D_c^2$, we extrapolate the finite size energies to the $D_c \to \infty$ limit. The fitted results are shown in the dashed curves in Fig. 1. Note that our measurement scheme [35] makes approximations to the importance weight of the sampled spin configurations, where error is controlled by D_c. However, the VMC principle guarantees that all measured energies at finite D_c are variational. Furthermore, the almost-converged energies at $D_c = 28$ make sure that the extrapolations are reliable.

We compare our variational energies on tori with the SU(2) symmetric DMRG results on tori [26] and the best VMC with Lanczos projection steps [9] on tori. As seen in Fig. 2, a system size $L = 8$, our results are consistent with the DMRG and VMC results.
results. Interestingly, our variational energies on tori of $L = 16$ are lower than the DMRG energies on tori of $L = 10$. This means that the ground state entanglement on tori of 10×10 are beyond the resolution of the DMRG if we keep only 8000 SU(2) Schmidt states, which also explains why DMRG often relies on cylinder studies instead of tori. Very impressively, our variational ground state energy for $L = 16$ is comparable to (at $J_2 = 0.5$) or better than (at $J_2 = 0.55$) the best VMC results for a smaller size $L = 14$ torus with one-step Lanczos projections [9].

Staggered magnetization. The staggered magnetization square is defined as

$$M^2 = \frac{1}{N} \sum_{r_x,r_y} (-1)^{r_x + r_y} C(r_x,r_y),$$

where $C(r_x,r_y)$ is the spin-spin correlation function,

$$C(r_x,r_y) = \frac{1}{N} \sum_{x,y} S_{(x,y)} \cdot S_{(x+r_x,y+r_y)}.$$

![FIG. 3. (a) The largest distance spin-spin correlation as a function of J_2 at $L = 8, 12, 16, 24$. The same correlations $C(L/2,L/2)$ presented against $1/L$ in a regular plot (b) and in a log-log plot (c) for various J_2.](image)

We compute the spin-spin correlation functions at the largest distance $C(L/2,L/2)$ for various L, and show their dependence with coupling J_2 in Fig. 3(a), where dashed lines are polynomial fittings. To determine the critical transition point, we present $C(L/2,L/2)$ against $1/L$ in a regular plot for various J_2 in Fig. 3(b), and extrapolate using quadratic functions (shown in the dashed lines). We find the critical point to be $0.57 < J_2^c < 0.58$. To see the critical behavior, we present $C(L/2,L/2)$ vs $1/L$ in a log-log plot in Fig. 3(c).

Taking the critical scaling as $C(L/2,L/2) \propto L^{-(1/\nu \eta_s)}$ and using a linear regression function, we find the anomalous spin scaling exponent $\eta_s = 0.19(5)$ at $J_2 = 0.57$ and $\eta_s = 0.43(10)$ at $J_2 = 0.58$. Finally, we take the finite size scaling (FSS) formula

$$C(L/2,L/2)L^{-\nu \eta_s}(1 + aL^\omega)
= F(J_2^c - J_2)L^{1/\nu}(1 + bL^\omega)$$

(4)

where we set $\nu = 0.50(8), \eta_s = 0.28(6)$, with the result presented in Fig. 4. Here, $F(x)$ is a dimensionless polynomial, and ω represents subleading finite size corrections whose values are set to 2.

Valence bond solid orders. To determine the phase at region $J_2 \in (0.572,0.6)$, dimer-dimer and plaquette-plaquette correlation functions are investigated. We define the dimer-dimer correlation function as

$$C_{dx}(r_x,r_y) = \frac{1}{N} \sum_{x,y} D_x(x,y)D_x(x + r_x,y + r_y),$$

$$C_{dy}(r_x,r_y) = \frac{1}{N} \sum_{x,y} D_y(x,y)D_y(x + r_x,y + r_y),$$

(5) (6)

with

$$D_x(x,y) \equiv S_{(x,y)} \cdot S_{(x+1,y)},$$

$$D_y(x,y) \equiv S_{(x,y)} \cdot S_{(x,y+1)}.$$

(7) (8)

Similarly, the plaquette correlation function is

$$C_{plq}(r_x,r_y) = \frac{1}{N} \sum_{x,y} Q(x,y)Q(x + r_x,y + r_y),$$

(9)

![FIG. 4. The finite size scaling function of $C(L/2,L/2)$.](image)
with $Q(x,y) ≡ \{P_\square(x,y) + P_\square^{-1}(x,y)\}$ defined as the permutation operator that permutes four spins on a plaquette by one lattice spacing.

To subtract the background expectation value, we take the modified correlation functions as follows:

$$C_{dx}^*(r,r) = C_{dx}(r,r) - C_{dx}(r-1,r-1),$$

$$C_{plq}^*(r,r) = C_{plq}(r,r) - C_{plq}(r-1,r-1).$$

We present the modified dimer-dimer and plaquette-plaquette correlations. To measure the two most possible VBS orders, namely, the columnar VBS order and the plaquette VBS order, we define the following order parameters:

$$S_{plq}^2(L) = \frac{1}{L-2} \sum_{r=2}^{L} (-1)^r C_{plq}(r,r),$$

$$S_{col}^2(L) = \frac{1}{L-2} \sum_{r=2}^{L} (-1)^r C_{dx}(r,r).$$

We show the above two VBS order parameters at $J_2 = 0.6$ as a function of $1/L$ in a log-log plot in Fig. 6. Again, we find power law decay behaviors for both the columnar and plaquette-VBS orders. Taking the critical scaling behavior as $S_{VBS}^2(L) \propto L^{-(c+\eta)}$, we find the anomalous plaquette scaling exponent $\eta_p = 0.24(1)$ and the anomalous columnar scaling exponent $\eta_c = 0.28(1)$. Our critical exponents η_p, η_c, η_p, and ν are all consistent with the results of the $J-Q$ model [30–32].

Gapless spin liquid versus deconfined quantum criticality. The exponentially decaying spin-spin correlation and power law decaying dimer-dimer correlation indicate that the paramagnetic phase has a spin $S \geq 1$ gap but no $S = 0$ gap. These properties are consistent with the gapless $U(1)$ spin-liquid state constructed by a single variational parameter TPS ansatz [29]. However, since it is well known that a $U(1)$ gapless spin-liquid state is unstable due to the confinement of $U(1)$ gauge field in $2 + 1$ dimensions, we argue that a VBS order with an exponentially small amplitude might eventually develop at long wavelengths. Thus, our numerical results could imply a Landau forbidden phase transition from Néel order to VBS order described by the DQCP scenario.

III. CONCLUSIONS

In conclusion, we applied the cluster update algorithm for tensor-product states (TPSs) to study the frustrated spin-$\frac{1}{2}$ J_1-J_2 antiferromagnetic Heisenberg model on a square lattice. Limited to a cluster size 2×2, a rather large bond dimension $D = 9$ is feasible. Through a finite D_c scaling, our ground state energies at finite sizes are in good agreement with the results from a state-of-the-art exact diagonalization (ED) study [15], an SU(2) symmetric density matrix renormalization group (DMRG) study [26], and a variational Monte Carlo (VMC) study [9]. Applying finite size scaling (FSS) to the spin-spin correlation function, we found the staggered magnetization diminishes to zero at $J_2^c = 0.572(5)$, suggesting a continuous quantum phase transition. We further observed an exponentially decaying spin-spin correlation with power law decaying dimer-dimer and plaquette-plaquette correlations up to a 24×24 system size. All this evidence points to the emergence of a gapless $U(1)$ spin-liquid state that is consistent with a single variational parameter TPS ansatz [29]. Nevertheless, since the $U(1)$ spin liquid is unstable due to the instanton effect, a VBS order with a small amplitude could emerge in the thermodynamic limit. Remarkably, we found the critical exponents $\nu = 0.50(8)$ and $\eta_p = 0.28(6)$.
where \(v \) are the vectors of length 4, \(B_i \) are 4 \(\times \) 4 matrices, \(X_i \) are operators acting on the physical index, and \(a, b, c \) are scalar variables. In order to correctly match the coefficients in front of each term in Eq. (15), \(a, b, c \) have to be chosen to satisfy \(ac = -\tanh(\epsilon J_1/4), \quad a^2 b = -\tanh(\epsilon J_2/2), \) and \(|a|, |b|, |c| \ll 1 \). Thus the evolution operators on these sites are written as
\[
\hat{O}_1 = \sum_i v_i^T \otimes X_i, \quad \hat{O}_2 = \sum_i B_i \otimes X_i, \quad \text{and} \quad \hat{O}_3 = \sum_i v_i \otimes X_i \text{, respectively.}
\]
We present the diagrammatic representation of the evolution operators \(\hat{O}_1, \hat{O}_2, \) and \(\hat{O}_3 \) acting on sites \(A, B, \) and \(C \) in a 2 \(\times \) 2 cluster in Fig. 7(b). The corresponding simple update scheme is sketched in Fig. 7(a). In both cases, the complexity scales as \(D^2 \), and there is no cumulative error.

ACKNOWLEDGMENTS

We would like to thank J. Richter for passing along their exact diagonalization data for comparison, F. Becca for passing along their variational Monte Carlo data for comparison, and A. W. Sandvik, Leon Balents, H.-C. Jiang, D. Sheng, S.-S. Gong, and Z.-Y. Zhu for their stimulating discussions. L.W. is supported by National Natural Science Foundation of China (NSFC-11474016), National Thousand Young Talents program of China. Z.C.G. is supported by startup support from Department of Physics, CUHK. F.V. is supported by the EU Strep Project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM. The computational results presented have been achieved partially using Tianhe-2JK computing time award at the Beijing Computational Science Research Center (CSRC).

