PHYSICAL REVIEW VOLUME

124,

NUMBER 2 OCTOBER 15, 1961

Bound-State Model of Weak and Strong Interactions*

C. H. AuBricHT,} R. BLANKENBECLER, AND M. L. GOLDBERGER
Princeton University, Princelon, New Jersey

(Received June 13, 1961)

The pion-nucleon coupling constant is calculated from first principles by use of the N/D matrix method.
Three models are introduced which contain pions, nucleons, and weakly interacting intermediate bosons
of the scalar, pseudoscalar, and vector variety. The basic interactions are taken to be parity and isotopic
spin conserving. Certain physical assumptions in the nature of boundary conditions and the known fact
that the weak coupling is very weak, together with use of the Born approximation for N, enable us to
obtain an eigenvalue equation which expresses the pion-nucleon coupling constant in terms of the three
masses in the problem. The correct value for g% can be obtained for an intermediate vector meson of mass
comparable to the nucleon mass with essentially no cutoff employed; on the other hand, the experimental
value is also obtained with a spin-zero boson and a relatively small cutoff energy.

I. INTRODUCTION

NE of the most intriguing problems in physics is
that of understanding the relation (which most
people believe exists) between coupling constants and
masses. In an effort to understand this fundamental
question, there have been many attempts to produce
field-theoretical models in which not all the parameters
are independent. As an example of such theories,
van Hove! has considered a modified Lee model in which
weak-interaction effects appear in the presence of only
basically strong-coupling terms in the interaction
Lagrangian. Fermi and Yang? have pictured the pion as
a bound state of a nucleon-antinucleon pair, the binding
effect by nonlinear terms in the interaction. This idea
has been extended to the strange particles by Sakata and
Goldhaber.? Nambu and Jona-Lasinio* have constructed
a model nonlinear theory of elementary particles based
upon an analogy with the theory of superconductivity.
In spite of the attractiveness of these various models,
there has not been too much progress because of the
difficulty of making convincing calculations. This is not
a particularly rare phenomenon in field theory. The two
standard approaches to the calculation of bound states
are the Tamm-Dancoff method® and the Bethe-Salpeter
equation.® Both of these schemes have well-known
shortcomings. Thirring” has recently devised an ex-
tremely clever method of solving the Bethe-Salpeter
equation for two fermions in the limit of large binding.
This method was applied to a model of a pion assumed
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to be a bound state of a nucleon-antinucleon pair. The
latter are taken to interact via the exchange of a vector
meson of very large mass weakly coupled to the nucleon
field. It is necessary to regularize the interaction because
of the singular nature of the spinor Bethe-Salpeter
equation. When the weak-coupling constant and cutoff
are chosen to fit the pion mass, the effective pion-nucleon
coupling constant (which is easily computed from the
pion wave function) turns out to be

g 2m

_— a1
4 In(my/M)?

The experimental value is about fourteen®; neverthe-
less this is not bad agreement from such a simple calcu-
lation. There is however one very weak point: Once the
pion is formed as a bound state it will contribute by far
the most important part of the potential. It has a longer
range and stronger coupling to the nucleon than the
weakly interacting vector meson. What this means is
that crossing symmetry is being badly violated in the
Bethe-Salpeter ladder approximation used by Thirring.

We shall present a method of calculation which at
least avoids this criticism. It is a generalization of the
procedure of Blankenbecler and Cook in their treatment
of the deuteron binding energy.? Our model is basically
the same as Thirring’s in that we have a weakly coupled
boson (hereafter called a ¥ meson), nucleons, and pions.
In our dispersion theoretic approach we need not
commit ourselves as to whether the pion or the V meson
are bound states. Except for the fact that we shall ulti-
mately make certain physical assumptions in the nature
of boundary conditions, we treat the ¥V and the pion
quite symmetrically. We derive a set of coupled integral
equations for the vertex functions describing pion-
nucleon and V-nucleon interactions. This set of equa-
tions is solved assuming that the V-nucleon vertex
function vanishes for large energies and also assuming
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that the V-nucleon interaction is very weak. We obtain
an eigenvalue condition which expresses the pion-
nucleon coupling constant in terms of the three masses.
We try various models for the V meson, scalar, pseudo-
scalar, and vector, where in all cases it is taken to have
isotopic spin unity and to interact in such a way as to
conserve parity.

Naturally we will have to make approximations,
many of which are difficult to assess. It is our feeling
that our approach is a sensible and perphaps amusing
one. We share what will probably be the great skepticism
of the reader about some of the approximations and the
final numerical results.

II. N/D MATRIX METHOD

We present in this section a sketch of the essential
steps of our procedure which enables us to calculate
the pion-nucleon coupling constant from first principles
by use of the N/D matrix method. The arguments for
making various approximations are discussed in some
length, but many of the specific details are deferred to
the following sections in order to clarify the procedure.

We first introduce the vertex functions

G= (0| fINV) (2Eko/ M)}, 2.1)
and

F=(0| f|N7)(2Exq0/ M)*, (2.2)
where one nucleon has been taken off the mass shell at
each vertex. The symbols M (p)E, m(k)ko, and u(q)qo
label the mass (momentum) energy of the nucleon,
weakly interacting ¥ meson, and pion. The operator f
represents the Heisenberg current for the nucleon. The
nucleon-V meson and nucleon-pion scattering states are
always to be regarded as “in” states and are referred to
as channel 1 and channel 2, respectively. In the time-
honored fashion we ignore the fact that the mesons are
unstable ; and we shall postpone for the moment answer-
ing the pertinent question as to which particle or parti-
cles, if any, are to be regarded as composite.

The two vertex functions can be expressed in terms
of several invariant form factors in the usual fashion,
with the explicit construction depending upon the trans-
formation properties of the mesons. The construction is
spelled out in detail in the next three sections for V
particles of the pseudoscalar, scalar, and vector varieties.
If we assume isotopic spin conservation, it is already
clear from the above equations that only total angular
momentum J=3% and isotopic spin /=% states are of
interest in discussions of the scattering states.

Next we consider the N4V and N-= scattering
amplitudes,

Tu=u(p'}V'| fINV)(4kokoE:/ M)}, (2.3)

q T12='17/(P')<V'If]Nﬂ')(‘lko’goEg/M)%, (2.4)
an

To=a(p')(r'| f|N7)(4gd' B/ M)L  (2.5)

OF WEAK AND STRONG
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Fi1G. 1. Dispersion diagrams for the scattering amplitudes
T, T12, and T'es in the “one-meson’ approximation.

These Feynman matrix elements will later be written in
terms of invariant scattering amplitudes which can be
more conveniently expanded in partial waves. Consider
the unitarity conditions for these matrix elements in the
“one-meson” approximation where only the nucleon-V
meson and nucleon-pion intermediate states are re-
tained. These relations can be illustrated graphically by
the dispersion diagrams in Fig. 1. Let M represent a
two-by-two matrix describing the two channel scattering
amplitudes in a particular partial wave. The row index
refers to the final channel, and the column index refers
to the initial channel. The unitarity conditions in matrix
notation for the given partial wave then become simply

ImM=M*M (2.6)

along the physical branch cuts in the W? plane. The
variable W is the center-of-mass energy of the NV or
N state, and ¢ is a diagonal matrix whose elements
contain phase space factors which vanish below the
relevant thresholds.

The unitarity conditions for the vertex functions G
and F in our “one-meson” approximation are pictured
by the dispersion diagrams in Fig. 2. Let H represent
the two-channel row matrix whose two elements consist

,,,,,,,

F16. 2. Dispersion diagrams for the vertex functions G and F
in the “one-meson” approximation.
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of the partial-wave form factors analogous to the same
partial wave elements of M. The unitarity conditions for
these form factors in matrix notation are then given by

ImH=H*oM. (2.7)

At this point, we introduce the N/D technique of
Chew and Mandelstam! as generalized to multichannel
processes independently by Bjorken and Nauenberg.!!
Again in matrix notation, we define

M=ND-, (2.8)

and
H=1D",

where N and D are two-by-two matrices and 2 is a row
matrix similar to H. The D matrix is analytic every-
where except for the physical branch cuts along the
positive W? axis, while N contains the dynamic singu-
larities on the left. By means of the Mandelstam repre-
sentation, Frautschi and Walecka® and Frazer and
Fulco® have located the dynamic singularities for the
partial wave pion-nucleon scattering amplitudes. They
find that the singularities lie not only along the negative
W? axis but also in the complex W2 plane. Since the only
singularities of the partial-wave form factors lie along
the positive W? branch cuts of D, the two N\ matrix
elements are merely constants, (A;,A;). We shall set
A1=0 and in the following try to justify this choice.

The form factors associated with the vertex functions
of (2.1) and (2.2) are related to the renormalized vertex
function T';(W?) of field theory by'

HI(W“’) = SF_ISF/Fi(WZ),

where SF~! is the inverse propagator of the nucleon in
the Born approximation, and Sr,’ is the corresponding
fully renormalized propagator. In the asymptotic limit
W2 — «, Sp1Sp,’ — Zy! (where Z, is the nucleon field
renormalization constant) and the above reduces to

lim H,(W*=Z;"1 lim T';(W?. (2.11)

W2ow W2— o

(2.9)

i=1,2, (2.10)

Under the rather general assumption that no ghost
states exist in relativistic field theory, Lehmann et al.13
have shown that the vertex function I';(IW2) must vanish
in the asymptotic limit if the theory is to possess exact
solutions. Drell and Zachariasen' have further pointed
out in an analogous situation that if the renormalization
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constant Z,™' is finite, then it follows necessarily that
H,(W? —0 as W?— . For our purposes, only the
ratio of the partial wave form factor in channel 1 com-
pared to that in channel 2 is of interest, so that we need
not make any definitive remarks about the finite vs
infinite nature of Z,™1. We simply write

H,(W?) ry(W?)
im —————= lm .
Wisw H2(W2) Wi I‘Z(WZ)

(2.12)

We now argue that the above limit is in fact zero. To
do this, we make the following two observations:

(1) Evaluated on the mass shell of the nucleon,
I'1(M?) and TI'y(M?) are proportional to gy and g, re-
spectively, by definition of the renormalized coupling
constants gy and g,. Moreover, we know experimentally
from studies of beta decay and collision processes that
if the weak intermediate V meson actually exists, then
surely gy<<gr.

(2) Imagine a model in which the ¥ meson and pion
are regarded as bound states of the nucleon-pair system.
Lee and Yang!® have pointed out that the absence of
any known K meson decays involving a ¥ meson as one
of the decay products demands mvy> uk. Therefore, on
the basis of a bound state model, the V particle must be
less strongly bound than the pion.

These two observation suggest that I';(W?) is initially
several orders of magnitude smaller than T's(IW?) and
has in addition fewer high-frequency Fourier compo-
nents; it thus seems plausible that I';(IW?) asymp-
totically approaches zero more rapidly than T'x(W?) as
W?— . Equation (2.12) then becomes

H,(W?)
=0

lim —=0. (2.13)
Weowo H 2 (W2)

We offer this bound-state model simply as a physical
interpretation of the choice of boundary conditions im-
posed by the above procedure. We are well aware that
this is not the only plausible interpretation and the
reader may feel free to substitute some other model as
he sees fit.

From Eq. (2.9) we form the ratio

Hi/Hy= (\das—Noda1)/ (—Md1atHNod1r).  (2.14)

The normalization of the D matrix is arbitrary, and we
choose to fix it by setting

lim D(W?)=1,
W2— e

(2.15)

where the right-hand side represents the unit matrix.

It then follows from Eq. (2.14) that the limit of this
ratio is given by

H(WH M

lim ———=—;

Wi HZ(WZ) A2

16T, D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960).

(2.16)
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and in view of Eq. (2.13), we are led to set \;=0, which
was to be shown. For arbitrary W2, Eq. (2.14) now
reduces to

H (W) /Hy(W?) = —doy(W?)/d0n(W2);  (2.17)

and in particular, on the nucleon mass shell, correspond-
ing to W2=M?, the ratio becomes

gv/gr=—dau(M?)/du (M?). (2.18)

Now, the unitarity conditions (2.6) and (2.7) are
satisfied if we set

ImD=—pN (2.19)
along the physical W? branch cuts, and
ImN=[ImM]D (2.20)

along all the dynamic singularities. An application of
Cauchy’s theorem together with unitarity then requires
that

1 p= p(WHN(W')
D) =1—— f a2 g0
T Y (M4p)? W"2—W?2—ie
1 M (772)]D ("2
N(7?)=— f gt IDT
T J_g W2—W2—ie

In writing the above, we have made a subtraction at
infinity in D consistent with the limit (2.15), but we
have explicitly assumed that no other subtractions are
necessary. Moreover, we have ignored the possibility
that the partial-wave scattering amplitudes might
vanish in the physical range which automatically pre-
cludes the existence of the familiar ambiguities found in
the solution of the Low equation by Castillejo et al.'”
Both of these assumptions are absolutely vital to the
success of our prescription for computing the pion-
nucleon coupling constant; if either is invalidated, arbi-
trary constants must be introduced into the above
equations which prove self-defeating. Needless to say,
we proceed under the above assumptions. It is perhaps
instructive for the reader to consider the number of
assumptions made in treating bound states by more
standard methods, the Bethe-Salpeter equation, for
example.®

If Eq. (2.22) is then substituted into Eq. (2.21), one
obtains a system of coupled integral equations for the
matrix elements of D(W?). Even in our “one-meson”
approximation, an exact solution of these equations
would be possible only if ImM(W2) were known
along the dynamic singularities, which are all con-
tained in N(W?). The same situation obtains for
the pion-pion and pion-nucleon problems where the
integral equations are uncoupled. In such cases, ap-
proximate solutions have been found by the use of
iteration procedures!® or by the replacement of the

17 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

18 G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev.
119, 478 (1960).

627

dynamical singularities by a set of poles.’? Our program
is considerably less ambitious, and we simply replace
N(W?) in the integrand of (2.21) by the first Born
approximation B(W?) for the partial-wave scattering
amplitude M(W?). In this approximation, it is more
desirable to work in the cut W plane rather than the
cut W? plane. Therefore, we redefine all our amplitudes
accordingly and rewrite (2.21)

0

1
D(W)=1—- f aw’
M+p

™

[p(W’)B(W’) p(=W)B(=W’)
X

}, (2.23)
W—W—ie  W'+Wie

or
dii(W)=8:j— (gveg«/8x)1:(W),

where as indicated, the physical branch cuts in the 17?2
plane along the positive axis divide into two sets of
branch cuts lying along both the positive and negative
real axes in the W plane. The second expression above
simply serves to define the integral I;;(W) from which
the two coupling constants have been extracted.

In the above approximation, Eq. (2.18) for the ratio
of the form factors then becomes

gv_ (gvg«/8m%) 21 (M)
g 1= (gv¥/8m) I (M)

(2.24)

We have thus succeeded in obtaining an eigenvalue con-
dition between the coupling constants gy, g, and the
masses of the nucleon, ¥ boson, and pion. If we now
make use of the experimental fact that gy? is small,
we finally find

g/ 4m=2m/I:(M), (2.25)
which can be regarded as an expression for the pion-
nucleon coupling constant as a function of the weak
intermediate boson mass, m. This is a rather amusing
result. It is very similar to the eigenvalue condition on
the binding energy of the deuteron in terms of the pion-
nucleon coupling constant and masses that was found
by Blankenbecler and Cook in considering the deuteron
problem by dispersion techniques.? Their calculation was
simplified by the presence of an anomalous threshold,
which of course is not present in our problem for the
mass values of interest.

It is clear that this matrix method can, in principle,
be applied to any choice of transformation properties
for the V boson. One need merely determine the partial
wave amplitudes which are relevant for the construction
of the form-factor and scattering matrices H and M.
We consider first the cases of pseudoscalar and scalar
V mesons where the N/D method derived above can be
applied directly. The case of a vector meson is treated
last, because a suitable modification of the matrix
method is required.
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III. PSEUDOSCALAR CASE

A pseudoscalar V meson represents the simplest of
the three cases considered, for here its transformation
properties are identical to those of the pion. The vertex
functions defined in Egs. (2.1) and (2.2) must transform
like pseudoscalars in spinor space. We write for F in the
center-of-mass system of the pion-nucleon state

F=—i{F+Fs[iv- (p+q)+MJ}ysu(p)
= —3[F (10 +F_ (A —v0) Tysu(p),

or, in two-component notation,

(3.1)

P=—i[2M (Eyt-M1)] [ e ] (3.2
=— Es ~% Xa, i
' S (Bt M)
where
SF+=F1+ (M— W)Fg, (33)
§_=Fy+ (M+W)F.. (3.4)

All v matrices are Hermitian, and the spinors are nor-
malized to wu=1, with x the usual two-component
spinor. The invariant form factors F; and F, are func-
tions of W2, and F is the 2P or (1—) partial wave form
factor with $_ the corresponding 2S; or (0+) partial
wave amplitude. All form factors refer to the J=%, I=3%
amplitudes, and hence these labels will always be sup-
pressed. Note that on the mass shell of the nucleon, the
coefficient of F, vanishes and F1=V3g, by definition of
the coupling constant.’® An analogous construction
exists for the V-nucleon vertex function G in terms of
the form factors Gy, Gs, G4, and G_. The substitution of
symbols is so trivial that we do not spell it out here.

The kinematics of the pion-nucleon scattering prob-
lem have been summarized in detail by Frautschi and
Walecka.? We include here only the most relevant
formulas. We relate the scattering amplitude T, de-
fined in Eq. (2.5) to the S matrix by

Soo=1+4 2m)% (M2/4E, Eoq0'qo)*
XT2d(p'+¢'—p—q). (3.5)

Since Tz, transforms like a scalar, in the center-of-mass
system we set

T22=d(ﬁl)[:A2—%’;’Y' (Q‘l’q,)B?]”(P)
= (4aW/M)X"*[ fr+ foo-G'a- G IX,

where f1 and f, are related to 4, and B, by

(3.6)

W+ M
1= [As+(W—M)B,], 3.7)
1672
(W—=M)*—p?
frmm—— Ak (WHIDBS. (38
167172

The symbol § signifies a unit vector in the direction of
the momentum q. In the language peculiar to the Man-
delstam representation, the amplitudes 4, and B, are

19 The factor V3 enters from isotopic spin considerations.
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functions of the invariants s, ¢, and #, two of which are
independent ; for example, one can choose as the inde-
pendent variables W? and cosf. If f; and f, are ex-
panded in / waves according to

[=20Q+D [P -9, (3.9)
the 1— and O+ partial waves are given by
fio=fil+ 1, (3.10)
and
Jor=JO+foh (3.11)

Since the partial waves 45! and B,! are functions only
of W2, the fi_ and fo; amplitudes are not independent
but are related by the following reflection principle
first pointed out by MacDowell®

Jor(W)=— fr(=W).

In what follows, we can thus restrict our attention
to fl_(W)

The N4V scattering and reaction amplitudes are
completely analogous to the N+ scattering amplitudes
discussed above. Corresponding to Eq. (3.6), we have

Tu=1u(p")[A1—5iv- (k+k)ByJu(p)

(3.12)

= @rW/M)X/* [ g1+geo-Bo- BTy,  (3.13)
for the N4V scattering amplitude and
Tro=u(p")[A1— 307" ((_H'k')ABm]% (?)
= (daW/M)X/*[t1+te- koG,  (3.14)

for the N4m— N4V reaction amplitude. The ampli-
tudes g1, gos, t1—, and foy are written in a fashion analo-
gous to (3.10) and (3.11) and obey similar reflection
principles. In particular,

(3.15)
(3.16)

g1_=g11+g2",
o=t

After these preliminaries, we are now ready to make
use of the reduction formulas in order to determine the
unitary conditions in the physical region. Consider the
N+ scattering matrix element 7's» defined in Eq. (2.5).
If the nucleon is contracted according to the reduction
techniques of Lehmann et al?' the corresponding ab-
sorptive part along the physical cuts can be written

Im =1 (2n)' (g g0) ()
XUE (| SN | )
o+ ~p=0)+ X 1NV

C XNV fms (0" R = p—g)}u(p), (3.17)

when only the Nr and NV intermediate states are re-

205, W. MacDowell, Phys. Rev. 116, 774 (1959).
21H, Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
cimento 1, 205 (1955).
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tained. Use of the definitions (2.4) and (2.5) together
with the equations given in this section, then leads
one to write

Imfi=q| fi-[*+k[ts-[?, (3.18)
for the “one-meson’ approximation. The nucleons can
be contracted in the remaining scattering matrix ele-
ments 7'y; and Ty, and one finds, in a similar manner,
the unitarity conditions

Imgr=gq|ti[*+k|g-[? 3.19)
Imt_1= ql1_*f1__+kg1_*t1_
= qfl-*tl—-"*‘ ktl_*gl._.. (3.20)

The symbols ¢ and k& refer to the magnitudes of the
three-momenta whose squares are given by

¢=LWH+My—p JL(W—-M)*—p}/4W*, (3.21)

and

Re=[ (WM P2—m2[(W — M2 —m2]/AW2.  (3.22)

Now consider the pion-nucleon vertex function ¥ de-
fined by (2.2). If the nucleon is contracted, in the “one-
meson” approximation the absorptive part is given by

TmF=1} (2r)4(2q0)
X{E (O] fIN"="XN"x"|f|m)
X"+~ p=0+ T O171N"V")

XNV fla)s (B +k"— p—q)}u(p),

and the unitarity condition for §; becomes

(3.23)

Ei— My}
ImS‘+ = g€F+*f1_+k ( ) 9+*t1_. (324)
E.—M
Likewise, for the V-nucleon vertex function, one is led
to write
E,—M\?
Im9+= q( M) g+*t1_.+kg+*g1_.. (325)

11—

The five unitarity conditions given above now suggest
that we define the two-channel partial wave scattering
matrix M and form factor H by setting

E—M\?
=
E,—

W s
M=— . (3.26)
M (E2— MN\?
f1— _
El—M) h
H=(g,5,). (3.27)

The unitarity conditions (2.6) and (2.7) are then con-
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Fi1G. 3. Feynman diagrams contributing to the Born amplitude By;.
sistent with this choice if we take the p matrix equal to
M sk O
9:—-—‘_—( ).
47W\O0 ¢

We now observe from Eq. (3.3) and the remarks follow-
ing it, that on the nucleon mass shell

(3.28)

H\/Hy=G/F=gv/gx (3.29)
This ratio can now be set equal to that given in Eq.
(2.18), and the prescription of Sec. II can then be
carried out directly to determine the D matrix elements.
In particular, we need to evaluate I3 (M) which in-
volves B2 (W), the 1— partial wave Born amplitude for
the reaction N+V — N-+=. The two Feynman dia-
grams contributing to the scattering matrix element T
in lowest order are pictured in Fig. 3. In order to ensure
the adoption of a consistent sign convention, we may
write the interaction Lagrangian in the form
Lr=—igrPyst- g —igPree- g4, (3.30)

This agrees with the explicit construction of the vertex
function F, Eq. (3.1), on the nucleon mass shell in
lowest order perturbation theory. Taking into account
a relationship analogous to Eq. (3.5) between the T" and
S matrix elements, one then finds that the Born ampli-
tude for T'»; in the isotopic spin I =% state is given by

wy- (pF+k)+M

—_ - !
Tor=—gvg.u(p )[3 T

e (e VI
_ M }u( ). (3.31)
(=g y+1°
From this we identify
1= E1 M E2 M 3 _ (81 5 o
t=[(E:++M)(Es+M)] 87I'W(+B) (3.32)
WM
to=[(Er—M)(E,— M) ¢ (a+B8), (3.33)
& W
with
a=gyg.(3/M*—W?), (3.34)
B=gvg.L(p'—k)*+M*]. (3.35)

Next, the ¢, amplitude is projected out and Bey=M 1 is
calculated from the definition in (3.26).

We now observe from Egs. (3.28) and (3.21) that
p22(W) is an even function of W. The integral I (M)
appearing in the expression (2.23) for dz (M) then
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becomes

Igl(M)‘—“

UL o dW Bou(W)  Bay(—W)
f ———q(W)(
gvgrVarps W wW—-M W+M

© qw
Y f “ (M w), (3.36)

M+p W

which also serves to define J(W). For a V meson of the
pseudoscalar variety, we find

e 1
+
(W?_MZ)? E12___M2
( (W By EI(WZ—Mz))
W(E2—M?)(W*—M?) W(Ed—M?)
1 2Eke—mi+2qk

X— I
dgk  2Eoko—mi—2qk

Jps(W)=6

(3.37)

We shall complete the calculation of Is:1(M) and g.2/4m
for the pseudoscalar case in Sec. VI, but first we turn to
an analysis of the scalar and vector ¥V meson cases.

IV. SCALAR CASE

It is of some interest to see what effect a particular
choice of parity for the V' meson has upon the final
results obtained in Sec. VI for the pion-nucleon coupling
constant. This is most easily demonstrated in the spin-
zero case where the procedure for a scalar ¥ meson can
be contrasted with that for a pseudoscalar ¥ meson as
treated in the previous section. The main difference to
be expected between these two cases is that the 1— and
0+ partial wave channels are mixed for the reaction
amplitude N+x— N4V.

Since the transformation properties of the pion-
nucleon vertex function and the elastic pion-nucleon
scattering amplitude T, remain unchanged, Egs. (3.1)
through (3.12) are still valid. In addition, the structure
of the elastic V-nucleon scattering amplitude as given
by Eq. (3.13) remains unaltered. We must thus recon-
sider only the V-nucleon vertex function and the re-
action amplitude T's.

The vertex function G defined in (2.1) now transforms
like a scalar in spinor space. In the center-of-mass sys-
tem, we write for G

G={G1+G:liv- (p+k)+MIyu(p)

=3[+ (I +v)+G-(1—v4) Ju(p), (4.1)
or in two-component notation
E+M
G= [2M(E1+M)]—%[9+( )]xl, (4.2)
-G o'k
where as before
G+=G1+ (M —W)Gs, (4.3)
G-=Gi+ (M+W)G.. (4.4)
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Here, however, G, is the 2S; or 04 partial wave form
factor and G_ the ?P; or 1— partial wave amplitude
which is just the reverse of the situation found in
Sec. III.

The structure of the scattering matrix T2 in the
present case is given by

T1o=—1u(p")[A1a—3iv- (k'jf'Q)Blz]‘YsM @
= (4WW/M>iX1,*[t10 . k,+i20‘ . Q]Xz. (45)

Here again the amplitudes #; and #; can be related to the
invariant amplitudes 41, and By, by

LV =M= P+ M=

h

1672
X (_A12+WB12), (46)
LOV-+ M= LV — M=
o 1672
X (A19+WBy). 4.7

Time-reversal invariance then enables one to write the
construction for the scattering amplitude Ty, in terms
of #; and ¢, as follows:

Tor= (4aW/M)iX*[to- b4+two-¢ X1 (4.8)

An I wave expansion of # and # can be carried out
similar to that performed in Eq. (3.9) for the f;. For the
only total angular momentum state of interest, J=1,
the two partial wave amplitudes are given by

A+=t11+t20 (49)

for the reaction N+ — NV from an initial 2Py (1—)
N state to a final 253 (0+) NV state, and conversely;
and

A_=104,! (4.10)

for scattering of pions from nucleons in an initial
%53 (04) state into ¥V mesons and nucleonsin a 2Py (1—)
final state, and conversely. In order to avoid the labeling
confusion which can arise due to the fact that the initial
and final partial wave states are mixed, we have desig-
nated the above partial wave amplitudes by A, and A_
rather than by ¢ and £ as was previously done in the
pseudoscalar case. A reflection principle analogous to
(3.12) connects these two partial wave amplitudes.

In terms of the matrix element definitions and our
new partial wave amplitudes, the three partial wave
unitarity conditions become

Imfi-=q| fi-[>+k[AL ]2, (4.11)

ImAy=gA * fi+kgo Ay
=gf1-*Ay+kA g0y, (4.12)

Imgor=q| Ay >k gor |2 (4.13)

These relations take the place of the unitarity conditions
(3.18)-(3.20). Likewise, the unitarity conditions for the
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form factors now become

I Fok Sl W (4.14)
mF = qgF, ¥ [, ( ) Ay, L
! + PPy G470y
E,—M\?
Inf19+=<]( M) T A +kG oy (4.15)
1

These are to be compared with Eqs. (3.24) and (3.25)
for the pseudoscalar case.

The N/D matrix method is now introduced just as
before. Taking note of Egs. (2.6) and (2.7), we find the
above unitarity relations are satisfied identically if we set

(E]_'I"M i
A
W sor B/ "
M=——— . (4.16)
M (Ez*M H
A —
ma) A I
H=(g:5), (4.17)
and
M (k O) 4.18)
*Taw\o o/ '

With this choice of matrices, the pion-nucleon coupling
constant can be calculated directly following the pro-
cedure developed in Sec. IT and applied to the pseudo-
scalar case in Sec. III.

For this purpose we need the Born approximation for
the reaction amplitude 75;. We maintain a consistent
sign convention for the coupling constants by writing
for the interaction Lagrangian

Lr=gvde- dvp—igdrse: o4, (4.19)
where the 7 meson is assumed to be of the isotopic
vector variety. The two Feynman diagrams contribut-
ing in lowest order are illustrated in Fig. 3. Taking into
account the relationship between the S and 7' matrix
elements as given in Eq. (3.5), we find for the isotopic
spin =% Born amplitude
iy (p+k)+M

M—Ww?
iv-(p—¢)—M
+ S —
(p—g'y+Mm?
If this amplitude is then expressed in two-component
spinor notation, comparison with Eq. (4.8) enables us
to identify
t=[(E1—M)(Ee+M) (W —M/8xW) (a—B),
to=[(Ex+M) (Ee—M) F(W+M/8xW ) (a—B),

Toa=—igvg.u (p’)[S

]%u (p). (4.20)

(4.21)
(4.22)

c=[2M(E1+M)]—s(
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where @ and 8 have been defined in Eqgs. (3.34) and
(3.35). If the A amplitude is then projected out accord-
ing to (4.9), the M, matrix element of (4.16) in Born
approximation, i.e., By as it is referred to in Sec. IT, can
be calculated.

Finally the integral Iz of (2.23) must be evaluated in
order to find the pion-nucleon coupling constant accord-
ing to Eq. (2.25). In terms of the function J (W) defined
in Eq. (3.36), we find for the scalar case

2

T (W) =T ps(W)+ —
e i g

2Eskg—m2+2kg
XIn———— (4.23)
2Eoko—m2—2kg

which is analogous to (3.37) for the pseudoscalar V
meson case.

V. VECTOR CASE

We now turn our attention to the more interesting
case of a vector meson. The ¥V meson must transform
like a vector (or axial vector) particle, if it is to be
identified with the “physical” intermediate boson of
beta decay as formulated by Lee and Yang.!® In
principle, our plan of attack for this case is identical to
that of the pseudoscalar and scalar cases, but the N/D
matrix method must be modified in order to accom-
modate the complications introduced by the spin of the
V particle. As noted in Sec. IV for the scalar case,
Egs. (3.1) through (3.12) for the pion-nucleon vertex
functions and pion-nucleon elastic scattering amplitudes
remain valid, while the corresponding expressions in-
volving the ¥ meson must be altered.

We represent by £, the polarization four-vector of the
V particle. In the rest frame of this particle, we demand
that the time component &, vanish so that

£-k=0. (5.1)

Since the left-hand side of this expression is an invariant,
the above equation holds in any frame of reference and
corresponds to the Lorentz condition of electrodynamics.
Unlike the case of electrodynamics, however, we are not
free to choose a particular gauge in which, say, £=~0. At
most, & can be related to & through Eq. (5.1).

With these considerations in mind, we construct the
V meson vertex function (2.1) by writing

G=—i{G1+Ga[iv- (p+k)+M I}y - tu(p)
+{Gs+Galiv- (p+R)+M T} pu(p); (5.2a)

here again the G; are functions of W2 In two-component
notation, this becomes in light of (5.1)

(01+GE k+Gio- Xk )X
([e_+ (Ex-+M)G_JE -kt (Bt M)Gio-EXK)o-k/

(5.2b)
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where
Ga=G1+ (MFW)G,, (5.3)
9'i= G3+ (M:FW)G4, (54)
4 e =[G—WG N EAM)/(W—E1), (5.5)
an
X_=[G+WG_NE2-M?*)/(W—E). (5.6)

Now there are four invariant form factors present;
however, on the nucleon mass shell, two of them con-
tribute to the structure of G, as seen from

W(p+k)G=u(p+k)[—iGry- E+G:E plu(p). (5.7)

This situation may be contrasted with that existing in
the pseudoscalar and scalar cases, where only one form
factor remains when the vertex function is evaluated on
the mass shell of the nucleon. This new complication
will demand some further discussion of our technique
for calculating the pion-nucleon coupling constant, and
this point will be returned to later.

We now turn our attention to the structure of the
reaction amplitude Ty, given in Eq. (2.4). This matrix
element is very similar to that for photoproduction of
mesons as treated by Bincer, for example.? Six invariant
amplitudes characterize the problem. Since it is easier
to work only with the two-component expressions, for
ease of writing we refer the reader to Egs. (30) and (31)
of reference 22 for the covariant four-component struc-
ture of T'15. In two-component notation we have

Tro= (4xW/M)iXy*[to- E+t(io- EXE)o -4
+t30- g g+-tio - GE - G4ty RE*- R
) + o GEF - kX,
= (4xW /M )ixs"*T (k,§)Xo. (5.8)

We simply note at this point that the last two terms
vanish in the meson photoproduction process if one
chooses to work in the Coulomb gauge. As remarked
earlier, such considerations do not apply in the presence
of the weak vector boson.

It is customary to make a multipole expansion of the
¢;. But since only the J=% amplitudes are of interest,
we find it more convenient to expand the #; directly in
partial waves up through /=2 according to

ti=t9+3tAP1 (k- @)+ 5t2Ps(k-9), (i=1, ---,6).

We can then determine the partial wave transition
amplitudes as follows. We first apply the proper projec-
tion operators to the right of the matrix T(k,§) which
select the total angular momentum J=% and appro-
priate / wave in the initial pion-nucleon state. From the
left we then project out the final V-nucleon orbital
angular momentum of interest. In particular, we find

aQ’ as A .
t(Py—P;):f b TR e gog

4w 4w

5.9

= (a+b)¥* ko -g+a(ie - E*XE)e-g, (5.10)

22 A, M. Bincer, Phys. Rev. 118, 855 (1960).
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awrdy
Sy Sy = | — —T(£",§)
. T AT
] = (c+1d)o- £, (5.11)
an
arde . .
{Dy e §p)= f —— 5Py (k- KT (k" 7))
47 Arw
) =d(—}o g to-kEt-b), (5.12)
where
a:tll_t20_%t30+%132, (513)
b=1t4- 240432+t - t5H -1, (5.14)
c=t1°——t21+%t4°——%l42, (5.15)
d=t21+t31+t42+t50+t61. (516)

In a similar fashion, we would find for f(P; < Py),
J(Py— P)=f1o-qo-d. (5.17)

We emphasize here that the letter appearing in the
spectroscopic notation refers only to the orbital angular
momentum. Since the pion transforms like a pseudo-
scalar and the polarization vector of the ¥V meson
changes sign under space inversion, the parity of the
initial and final / waves must be equal as indicated in
(5.10-12).

Finally we remark that the scattering matrix element
T9 is given by

4Elqoko)%

Tu=d(z>’)<vr’ileV>( =

W R
T X' ¥ 110 E—to-G(io- EXE)

+ls0-BE-G140-GE- G150 BE-E
+leo-GE-EIX,  (5.18)

as demanded by time-reversal invariance. Moreover,
the partial wave transition amplitudes now assume the
form

{(P; — Py)=(a+b)¥ ke -G—as-G(io-EXE), (5.19)
1Sy Sp = (ct+3d)e- & (5.20)
(S Dy)=d(—3e t+o- ki k), (5.21)

where a, b, ¢, and d are again given by Egs. (5.13)-(5.16).

To complete the kinematical preliminaries for the
vector case, we should now construct the elastic
nucleon-V meson T; matrix element defined in (2.3).
This construction is completely analogous to the elastic
neutron-deuteron scattering problem. Here one finds
that twelve invariant amplitudes are necessary to de-
scribe the problem. Fortunately, we can forego the
specific details and simply refer the interested reader to
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the paper of Blankenbecler ef al.2® The reason for this
is that the weak coupling constant is so small that in
our approximation procedure the specific structure of
the partial wave amplitudes for the T'; elastic channel
never enters (cf. the previous sections). Moreover, we
shall be able to construct the partial wave scattering
matrix M and form factor matrix H without detailed
knowledge of the elastic nucleon-V meson matrix
elements.

We now form the unitarity conditions for the partial
wave scattering amplitudes and form factors in the
‘““one-meson” approximation illustrated in Figs. 1 and 2.
It is sufficient for us to consider only the p-wave ampli-
tudes. Following the reduction formalism of LSZ* to
calculate the absorptive parts of the various scattering
amplitudes, we find from equations similar to (3.17)

Imf(P%HP%)=lI§|f(P%<~P%)|2
+k Z |#(Py«— Py |2, (5.22a)
and o
Imi(Py «— P;)
=<IQZ”f*(P%‘-P-;)f(P%<— Py)+---, (5.23a)

for the unitarity conditions along the positive branch
cuts. The dots indicate the term neglected according to
the prescription given in the preceding paragraph. If the
integrations over solid angle and summation over
polarization direction are carried out, use of Egs. (5.10)
and (5.17) enables one to identify

Imfi=q| fu_|*+E[3]a|*+a*b+b*a+ |5|2]. (5.22b)
Im(a+b)=q(a*+b*) fr+---, (5.23b)
Ime=qa*fi+---. (5.23¢)

In an entirely analogous fashion, we find for the partial-
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wave form factors

E~-M
Im&, =qF *fi_+k (

§
i)

X[— (304*+G4*) (a+b)+2G4*a],

(5.24)

Im(3C4+G4)= ‘“‘1( M)iﬂ’q.*(a—l—b)-l— <o-, (5.25a)

and

1—

E,—M

3
Img+=q( ) F*at - (5.25b)

(1—

It is immediately obvious from the above unitarity
conditions that we can not construct a two-by-two
partial-wave scattering matrix M and corresponding
form factor matrix H from which the above conditions
can be read off according to Eqgs. (2.6) and (2.7). For
example, the presence of the factor 3 in (5.22b) rules
out this possibility. Clearly the difficulty arises because
of the presence of two different p waves, 2P and *Py, in
the ¥ meson-nucleon states as opposed to only the
single p wave, 2P;, in the pion-nucleon states. This
suggests that we replace the single matrix element My,
for elastic channel 1 scattering by a two-by-two matrix
whose elements are related to the partial wave ampli-
tudes in the V-nucleon elastic scattering amplitude

g(Py— Py)=gu* k't fc—l—gmi*'l%’(-:iﬂ' 920
+gulio- £ XE)E £
+ g (io- E¥XE) (—io- EXE).  (5.26)

A detailed study of T'1; would bring out this dependence.
It suffices for us to recognize that the N/D matrix
method of Sec. IT can be employed if the partial-wave
scattering matrix M now represents a three-by-three
matrix whose first two rows and columns refer to the
nucleon-V meson channel and whose third row and
third column refer to the nucleon-pion channel. Likewise
the form-factor matrix H is now understood to represent
a row matrix with three elements. A brief study of the
above unitarity conditions then reveals that the choice

Ei—M\?} )
—( ) (a+0)
E.—M
de W Ei—M\}
MV (~ )a , (5.27)
M E.—M
Ez—M i EZ-‘M 3
——(— ) (a+0) ( ) a Jfio
Ei—M E.—M
3= ((3¢++G4) G+ T4, (5.28)
and
M [k O 0
o=—0 2k 0], (5.29)
drW\o 0 ¢

% R. Blankenbecler, M. L. Goldberger, and F, R, Halpern, Nuclear Phys. 12, 629 (1939).
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leads to a consistent set of unitarity relations when
Eqgs. (2.6) and (2.7) are applied.

We now introduce the N/D matrix method in which
the definitions M=ND"! and H=21D"! refer to three-
by-three matrices for NV and D and a row matrix similar
to H with constant coefficients for d. The matrices N
and D satisfy the same system of coupled integral
equations given in (2.21) and (2.22). By an argument
similar to that presented in Sec. II, we are led to set
A1=\:=0; consequently, we find from (2.9)

(detD) (JC++ 9+) = >\3 (d21d32 - d22d31), (5303.)
(detD)Gy =N3(ds1d12—ds2dr1), (5.30b)

and
(detD)Fy =N3(d11das—dradar).  (5.30c)

If we now form the ratio of two of the above equations
and make use of the fact that the diagonal elements
d11 and dos are essentially unity while the off-diagonal
elements are small, we obtain

9+/3:+z —d32/d22z —dss. (5~31)

On the nucleon mass shell, G, (M)=G1(M?) and the
nucleon-¥ meson vertex function assumes the structure
indicated in Eq. (5.7). In the absence of G3, we would
identify G1(M?) (up to a factor V3)"® with the renorma-
lized V-nucleon coupling constant corresponding to the
unrenormalized coupling constant appearing in the
structure of the interaction Lagrangian

Lr=—gwivum ¢y —gver- éb.  (5.32)

In analogy with quantum electrodynamics, we have
assumed the validity of a principle of “minimal inter-
mediate boson interaction” in writing down the vector
coupling appearing in the above Lagrangian. The pres-
ence of G3 in Eq. (5.7) demands some reinterpretation.
One could introduce into the interaction Lagrangian a
derivative coupling term with suitable coupling constant
which serves to generate the G term in (5.7). We find

24
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T16. 4. Integrand of I, (M) from threshold up to W=06
for the pseudoscalar V-meson case.
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this rather distasteful. An alternative is to regard the
Gs term as being induced by the weak boson coupling
of (5.32). This interpretation is rather attractive but
without a detailed dynamics, we are unable to express
the dependence of G; and G5 on W? and, in particular,
to relate these form factors to the renormalized coupling
constant gy exactly. To resolve this dilemma, we shall
assume that G;=0 and set Gi=V3gy on the nucleon
mass shell. Equation (5.31) then reduces to

gV/gw=hd32(M)= (ngﬂ/87l'2)[32(M) (533)

or
g,,2/47r= ZW/Igg(M),
where

8 ®
Iso(M)= f dPVp3(W)(
8vEr ¥ Miu

=M f dWQJ(W)

M+p

Bgz(W) B (— W))
W+M

(5.34)

Recall that Bsy(W) refers in our approximation to the
Born amplitude for the partial wave matrix element
M 3. A comparison of the above equations with their
counterparts, Egs. (2.25) and (3.36), in the pseudoscalar
V meson case reveals that both sets formally have the
same structure. Thus, according to our approximation
procedure, the detailed differences among the three
types of V mesons considered are all buried in the
factor J(W).

Turning now to the calculation of this factor, we find
for the Feynman amplitude Ty in the isotopic spin

1 state VU
iy (p'+q
T21—gvgwu(1>)[3—M—i/V—'Y 3
—iy- (p'—+M
B A , (5.35
v e, 659

with use of the lowest-order diagrams in Fig. 3 and the
interaction Lagrangian (5.32). If this matrix element is
then spelled out in two-component notation and com-
pared with the structure given in Eq. (5.18), one can
immediately identify the amplitudes

th=[(Ex+M)(EeA-M) (W —M/87W) (a—B), (5.36)

ty=—[(Ex—M)(Ea— M) (WM /8xW) (a—B), (5.37)
ty=—[(E1:— M) (E2— M) [ 2(E.+M)/8xW]B, (5.38)
t=[(E:+M) (Bt M) P[2(E,—M)/8cW B, (5.39)

ts=[(E:+M)(Est+M) P (E,:—M/W—Ey)(1/8xW)

X[(W—M)a— 2E.—W—M)B], (5.40)
and
to=[ (Ex—M)(E;—M) (/W —E)(1/8xW)
X{— W+M)2a+[2E,(Er4-M)+m>)BY, (5.41)

where o and 8 have been defined in Eqgs. (3.34) and
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FiG. 5. Integrand of I (M) from threshold up to W=6
for the scalar V-meson case.

(3.35). We must now form

4 W ‘
Bgz(W)=?(E2—M/E1‘“M)7d, (5.42)

by projecting out the appropriate / waves according to
Eq. (5.13). Finally we make use of Eq. (5.34) and find

for the vector V meson case
12u2 2Eoko—m?

Jv(W)=—TJps(W)+ W)

+
(W2— M2)?
(2E2ko—m2)2)
4k%g?

2¢*
N 7
wr—M?
1 | 2Esko—m*-+2kq

X—In————  (5.43)
4kq 2Esko—m?—2kq
Let us now turn to a numerical evaluation of the
coupling constant for the three types of ¥V mesons
considered.

VI. NUMERICAL RESULTS AND CONCLUSIONS

We now complete our calculation of the pion-nucleon
coupling constant. In all three cases, we have found
that the general structure is of the form

g1r2/47r= ZW/I(M)y (61)

where

° M
()= f AN, (62)
M+p

with the appropriate factor J(W) given by Egs. (3.37),
(4.23), or (5.43).

Two remarks should be made about these expressions
for J(W). The logarithmic terms stand as written in the
region where the momentum, %, of the ¥ meson is real;
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however, in the region where £ can become imaginary
as given by Eq. (3.22), each logarithm must be replaced
by an arctangent with the understanding that the
principal branch is to be chosen. Secondly, the apparent
poles in the logarithm terms of (3.37) and (5.43) at
k=0 are nonexistent as is easily seen by a simple
algebraic regrouping of terms.

As noted earlier, we choose to regard Eq. (6.1) as an
equation determining the pion-nucleon coupling con-
stant in terms of the mass parameters involved. Since
the mass of the weakly interacting ¥V meson (let alone
its very existence) is experimentally unknown, we can
at most determine the functional dependence of the
pion-nucleon coupling constant upon the ¥ meson mass.
This is too difficult to carry out in great detail, however;
instead, we have decided to select the pion mass and
nucleon mass as rather widely separated masses and
typical of the range in which the V' meson mass might
be expected to lie.

The integrands of I(M) for the three cases under
consideration are plotted in Figs. 4-6 from threshold
up to W=6M with the above-mentioned choices of
mass for the ¥V meson. Since the integral I (M) is dimen-
sionless, units have been chosen such that the nucleon
mass is set equal to unity. Above W=6, the integrands
are well represented by their asymptotic expressions for
the pseudoscalar, scalar, and vector cases:

q
—J ps(W)
w
g E *“'I;/;(an"— 1), (63)
—Js(W)
w
2, (W)—>—2—(1 W—3) (6.4
w v W 2 n 4/ 4)
4z 150 175 20 30 4‘.ng 5.0 60

-2.0f

-24

F16. 6. Integrand of Is2(M) from threshold up to W=6
for the vector V-meson case.
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TaBLE I. Calculation of the integral 7(M) and g.%/4x for the three types of V mesons with various cutoff energies introduced.

I(M) with cutoff at

g.2/4n with cutoff at

Type V meson Mass m 2M IM o 2M M 0

Pseudoscalar " —0.06 —0.16 —0.98 —105 -39 —6.4
M 0.51 0.46 —0.34 12 14 —19

Scalar u —0.03 —0.13 —0.94 —200 —50 —6.7
M 0.56 0.51 —0.29 11 12 —22

Vector u 0.10 0.22 1.23 63 29 5.1
M —0.43 —0.32 0.63 —15 —20 10

The results of the numerical integrations are tabu-
lated for I (M) in the accompanying table together with
the results for the pion-nucleon coupling constant as
determined from Eq. (6.1). Our Born approximation
expressions for J (W) are expected to be least accurate
at high energies where the (unknown) effects of the more
massive intermediate states are presumably quite sig-
nificant. Therefore, for the sake of comparison, we have
also included in the table values of 7(M) and g,* when
a cutoff is introduced.

A brief study of the three graphs and table reveals
that for a V-meson mass equal to the pion mass, the
integral maintains the same sign whatever cutoff is used
(except at very low cutoff values in the scalar V case);
while for a ¥ meson as massive as the nucleon, the

FiG. 7. g.*/4r as a function of the cutoff energy, W, for a
vector ¥V meson and two choices of the V-meson mass.

integral can have either sign depending upon the cutoff
energy. This “anomalous” behavior exhibited in the
latter case can be traced directly to the fact that, just
above threshold for the pion-nucleon channel, a region
exists from which contributions to the integral occur
that involves unphysical values of the V-meson mo-
mentum. By crossing the V-meson-nucleon threshold,
one finds that important terms in the integrand change
sign; consequently, the integral 7(M) can assume either
sign depending upon the size of the cutoff energy. This
“anomalous’ behavior will always occur for a V-meson
mass greater than the pion mass.

Since g,? is inversely proportional to 7 (M), when the
integral passes through zero, the pion-nucleon coupling
constant exhibits an infinite discontinuity there. This
anomaly is illustrated in Fig. 7 where the pion-nucleon
coupling constant is plotted as function of the cutoff
energy for the vector V-meson case. The corresponding
graphs for the scalar and pseudoscalar cases resemble
the mirror image of Fig. 7 obtained by a reflection about
the horizontal W, axis. The negative values of g,? have
no physical significance (they presumably herald the
appearance of ghosts).

The results for the scalar. and pseudoscalar V-meson
cases are very similar; on the other hand, the results
for a vector V meson differ from those of the spin 0 cases
mainly by the appearance of an over-all minus sign.
Therefore we find that the correct experimental value .
of the pion-nucleon coupling constant can be obtained
with a vector V meson and a very high cutoff energy,
or with a spin 0 meson of mass comparable to the
nucleon mass and a low cutoff energy.



