Oxygen isotopic composition of carbon dioxide in the middle atmosphere

Mao-Chang Liang†‡§, Geoffrey A. Blake†, Brenton R. Lewis¶, and Yuk L. Yung†

1Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125; 2Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia; and 3Research Center for Environmental Changes, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan

Communicated by Inez Y. Fung, University of California, Berkeley, CA, November 10, 2006 (received for review January 31, 2006)

The isotopic composition of long-lived trace molecules provides a window into atmospheric transport and chemistry. Carbon dioxide is a particularly powerful tracer, because its abundance remains >100 parts per million by volume (ppmv) in the mesosphere. Here, we successfully reproduce the isotopic composition of CO₂ in the middle atmosphere, which has not been previously reported. The mass-independent fractionation of oxygen in CO₂ can be satisfactorily explained by the exchange reaction with O(1D). In the stratosphere, the major source of O(1D) is O₃ photolysis. Higher in the mesosphere, we discover that the photolysis of ¹⁶O¹⁷O and ¹⁶O¹⁸O by solar Lyman-α radiation yields O(1D) 10–100 times more enriched in ¹⁷O and ¹⁸O than that from ozone photodissociation at lower altitudes. This latter source of heavy O(1D) has not been previously considered in atmospheric simulations, yet it may potentially affect the “anomalous” oxygen signature in tropospheric CO₂ that should reflect the gross carbon fluxes between the atmosphere and terrestrial biosphere. Additional laboratory and atmospheric measurements are therefore proposed to test our model and validate the use of CO₂ isotopic fractionation as a tracer of atmospheric chemical and dynamical processes.

biogeochemical cycles | CO₂ | mesosphere | stratosphere

O of the many trace molecules that can be used to examine atmospheric transport processes and chemistry [e.g., CH₄, N₂O, SF₆, and the chlorofluorocarbons (CFCs)], carbon dioxide is unique in the middle atmosphere, because of its high abundance [~370 parts per million by volume (ppmv) in the stratosphere, dropping to ~100 ppmv at the homopause]. The mass-independent isotopic fractionation of oxygen first discovered in ozone (1–5) is thought to be partially transferred to carbon dioxide (3, 6–11) via the reaction O(1D) + CO₂ in the middle atmosphere (12, 13). Indeed, whereas the reactions of trace molecules with O(1D) usually lead to their destruction (14), the O(1D) + CO₂ reaction regenerates carbon dioxide. This “recycled” CO₂ is unique in its potential to trace the chemical [reactions involving O(1D) in either a direct or indirect way] and dynamical processes in the middle atmosphere. When transported to the troposphere, it will produce measurable effects in biogeochemical cycles involving CO₂ (15) and O₂ (16).

In plots of the ¹⁷O vs. ¹⁸O content of atmospheric trace gases (so-called “three-isotope” plots), the mass-dependent fractionation of oxygen has a slope of δ¹⁷O/δ¹⁸O = m ≈ 0.5. Weighted least-squares fits to the first stratospheric/ mesospheric measurements of [δ¹⁷O(CO₂) – δ¹⁸O(CO₂)]/[(δ¹⁷O(CO₂) – δ¹⁸O(CO₂))] at 30°N by Thiemens et al. (10) give m = 1.37 ± 0.12 (2σ) when the errors in both δ¹⁷O and δ¹⁸O are included (7); where δ¹⁷O(CO₂) and δ¹⁸O(CO₂) are the isotopic composition of CO₂ relative to that in a selected standard (in parts per thousand) and δ¹⁷O(CO₂) and δ¹⁸O(CO₂) denote the isotopic composition of CO₂ in the troposphere. Subsequent stratospheric measurements at latitudes of 43.7° and 67.9°N (8) revealed larger values of both δ¹⁷O(CO₂) and δ¹⁸O(CO₂) than those seen at 30°N over a similar altitude range and a slope of m = 1.72 ± 0.22 (2σ). Over smaller altitude intervals, a similar analysis yields m = 2.06 ± 1.16 (2σ) for samples from the Arctic vortex (6) and 1.64 ± 0.38 (2σ) from the lower stratosphere (7). Slopes near 1.6–1.7 have been successfully reproduced in laboratory photochemical experiments under approximately stratospheric conditions (17).

Despite the large uncertainties in m, induced by the challenges associated with the sample collection and mass spectrometry of middle atmospheric O₃ (2, 5) and CO₂ (8, 10, 11), it is worth examining the potential sources of variation in the isotopic composition of carbon dioxide, both to better understand the atmosphere and as a guide for future observations. Yung et al. (13), for example, have suggested that the upwelling of tropospheric air from the tropics along with downwelling near 30°N could dilute the magnitude of the fractionation induced by photochemistry. It is beyond the scope of this work to provide a detailed explanation of the effect of transport on the isotopic composition of CO₂. Briefly, the key concept is the “age of air,” with the clock being set to zero at the tropopause. As the air parcel travels to the middle atmosphere, it ages, and there is more time for photochemical equilibration to be reached. Morgan et al. (18) discuss these issues at length and give a heuristic relation between the intrinsic enrichment factor (ε) and the resulting isotopic composition (δ) for the one-dimensional (1D) diffusion-limited transport case:

\[
\delta = \varepsilon \left(1 + \frac{r}{(1 + r)^2}\right)^1/2, \quad [1]
\]

where \(r = \tau_{\text{chem}}/4 \tau_{\text{trans}} \) with \(\tau_{\text{chem}} = \text{chemical lifetime} \) (here the isotopic exchange time) and \(\tau_{\text{trans}} = \text{transport time} \) (here the eddy mixing time).

In this work (a 1D diffusive model), the transport time \(\tau_{\text{trans}} \) is defined by \(H_{\text{atm}}/K_{zz} \), where \(H_{\text{atm}} \) and \(K_{zz} \) are the atmospheric scale height and eddy mixing coefficient, respectively. The \(K_{zz} \) profile used in this work is taken from Allen et al. (19). Depending on the relative rates of (photo)chemistry vs. transport, the δ values achieved in the atmosphere can therefore be reduced by up to factors of two from those measured in the laboratory (20). The vertical transport time across the tropopause is on the order of years, but drops to approximately weeks in the upper stratosphere. The lifetime for CO₂ isotopic exchange is much slower than the transport time at all altitudes, whereas the photochemical production and quenching rates for O(1D) are much faster than transport processes. For example, at an altitude of ~45 km, where O(1D) peaks, \(\tau_{\text{chem}} = ~10^9 \) s for O(1D) + CO₂ but only ~10⁻⁵ s for the collisional quenching of O(1D); that for \(\tau_{\text{trans}} = ~10^8 \) s, and the age of air entering from the tropopause is ~10⁸ s (21). During the time air ascends from the tropopause to this altitude, vertical mixing acts to dilute the isotopic fractionation of CO₂. Thus, the isotopic composition of...
stratospheric CO$_2$ should reflect both the variety of transport histories of air parcels and the sources of O(1D).

The magnitude of δ^{17}O(CO$_2$) or δ^{18}O(CO$_2$) in principle can be used to determine how the air parcels are transported, but only if all sources of O(1D) are accounted for. As we discuss below, whereas ozone photolysis is the dominant source of O(1D) in the stratosphere, other sources, which were not included in previous models, must be considered at higher altitudes. Curves of δ^{17}O(CO$_2$) or δ^{18}O(CO$_2$) alone vs. altitude therefore reflect both the transport and chemical history of the air parcels. Precise measurements of both δ^{17}O(CO$_2$) and δ^{18}O(CO$_2$) that are well sampled spatially and seasonally could break the ambiguity between the sources of O(1D) and history of the air parcels, but they are clearly sometime into the future.

Fortunately, limits to the slope m can be estimated by assuming photochemical equilibrium between CO$_2$ and O(1D), because transport from the troposphere will only dilute the magnitude of both δ^{17}O and δ^{18}O with equal proportionality. Here we present such an analysis along with a simple 1D diffusive transport simulation to assess the relative importance of stratospheric and mesospheric sources of O(1D) to the isotopic composition of CO$_2$ in the middle atmosphere. To avoid uncertainties due to stratosphere–troposphere exchange processes, we place our focus here only on the data that have been taken well above the tropopause (8, 10).

Mechanism

The photochemical modification of the isotopic composition of atmospheric CO$_2$ follows from its interactions with O(1D). Provided that all of the O atoms in the CO$_3^+$ activated complex are equivalent (12, 13), the appropriate chemical rate coefficients are as follows:

\[
\begin{align*}
\text{16O}(1D) + \text{C}^{16}\text{H}_6\text{O} &\rightarrow \text{C}^{16}\text{O}_4\text{O} + \text{16O} \quad k_1 \\
\text{17O}(1D) + \text{C}^{16}\text{H}_6\text{O} &\rightarrow \text{C}^{16}\text{O}_4\text{O} + \text{16O} \quad k_1 = 2/3(1 + \xi_1)k \\
\text{16O}(1D) + \text{C}^{17}\text{O} &\rightarrow \text{C}^{16}\text{O}_4\text{O} + \text{17O} \quad k_2 = 1/3(1 + \xi_2)k \\
\text{18O}(1D) + \text{C}^{16}\text{H}_6\text{O} &\rightarrow \text{C}^{16}\text{O}_4\text{O} + \text{16O} \quad k_3 = 2/3(1 + \xi_3)k \\
\text{16O}(1D) + \text{C}^{16}\text{O}_6\text{O} &\rightarrow \text{C}^{16}\text{O}_4\text{O} + \text{18O} \quad k_4 = 1/3(1 + \xi_4)k,
\end{align*}
\]

where the product O is either O(1D) or O(1P) (elastic or inelastic collisions). The ξ_1–ξ_4 account for the isotopic deviations from a purely statistical accounting of the reaction probability and include both the changes in the collisional rates predicted by the kinetic theory of gases (–21.8, –3.0, –41.6, –5.8 per mil) as well as the quenching of O(1D) by O$_2$N$_2$ (19.8/18.9 and 37.7/36.0 per mil for δ^{17}O(1D) and δ^{18}O(1D), respectively). These contributions to ξ_1–ξ_4 are of opposite sign and similar in magnitude, and so the overall reduced mass effect in the reaction kinetics of O(1D) and CO$_2$ is small. As we will show below, the isotopic exchange reaction between CO$_2$ and O(1D) can satisfactorily explain the observed isotopic composition of CO$_2$ in the middle atmosphere, suggesting that kinetic fractionation in the O(1D) + CO$_2$ → CO$_3^+$ → O + CO$_2$ system is small. In addition, the reproduction of the CO$_2$ isotopic composition in the middle atmosphere further verifies the assumption of the equally weighted branching in the photodissociation of asymmetric ozone adopted in our previous modeling (22).

The resulting isotopic composition of CO$_2$ in photochemical equilibrium (in the absence of transport) is then determined simply by that of O(1D) or $[\text{C}^{16}\text{O}_4\text{O}] / [\text{C}^{16}\text{O}_6\text{O}] = (k_1/k_2)/(k_3/k_4)$. To convert from the fractionation factors associated with $(k_1/k_2)/(k_3/k_4)$ to δ values, isotopic standards must be chosen. In this work, we follow the convention of Lämmelshäuser et al. (8) and Liang et al. (22), who discuss the isotopic fractionation of trace gases referenced to atmospheric O$_2$, unless otherwise stated. In this framework, the isotopic composition of stratospheric and mesospheric CO$_2$ reduces to (using the approximation that $1/(1 + \delta) = 1 - \delta$)

\[
\begin{align*}
\delta^{17}$O(CO$_2$) &\approx \xi_1 - \xi_2 + \delta^{17}$O(1D) \quad [3] \\
\delta^{18}$O(CO$_2$) &\approx \xi_3 - \xi_4 + \delta^{18}$O(1D). \quad [4]
\end{align*}
\]

Thanks to the small contributions of ξ_1–ξ_4 the slope m is well approximated by δ^{17}O(CO$_2$) $\approx \delta^{17}$O(1D) $\approx \delta^{18}$O(1D) alone vs. altitude therefore reflect both stratospheric CO$_2$, if transport is neglected. In the analysis that follows, δ^{17}O(CO$_2$) and δ^{18}O(CO$_2$) have been subtracted from the measured and predicted δ^{17}O(CO$_2$) and δ^{18}O(CO$_2$) values, again in accordance with Lämmelshäuser et al. (8). The simulations also solve the full algebraic equations to predict the isotopic composition of CO$_2$ and O(1D); no approximations are invoked.

Sources of O(1D)

In the stratosphere, quantitative calculations of the three-isotope slope m are obtained through recent kinetic calculations that model the isotopic fractionation of ozone vs. altitude (22). Contributions to the enrichments of isotopically heavy ozone follow from two processes: chemical formation (1, 4, 23) and UV photolysis (22, 24–26). Using the model that reproduces the observed enrichments in a three-isotope plot of O$_3$ (22), the computed photochemical equilibrium values of m (in the absence of transport) at altitudes between 30 and 60 km range from 1.3 to 3.0. After taking atmospheric transport into account, the slope m, calculated over the same altitude range as that of the CO$_2$ measurements in the stratosphere, is 1.60 (see below), which is in good agreement with the measured value of \sim1.7 (8).

At altitudes of >70 km, however, the photodissociation of O$_2$ becomes the dominant source of O(1D). Exchange of O(1D) with CO$_2$ at these altitudes could therefore modify the slope m if the O(1D) from O$_2$ photolysis is isotopically distinct from that generated in the stratosphere. Using a semianalytical calculation of the photolysis-induced fractionation (24, 25) in the Schumann–Runge bands of O$_2$, the calculated δ of heavy O(1D) is <100 per mil (Fig. 1), dependent on altitude. However, a recent laboratory measurement of O$_2$ dissociation near Lyman-α (121.567 nm) has shown that the cross-section and O(1D) yield are strong functions of wavelength and suggests extremely large isotopic dependence (27). Although the cross-section near Lyman-α is 2–3 orders of magnitude less than those in the Schumann–Runge bands, the solar flux is correspondingly enhanced, compared with the flux in the Schumann–Runge bands.

For $T = 100$–300 K, we have computed the isotopic dependence of the O$_2$ dissociation cross-section and O(1D) yield near Lyman-α (Fig. 2), by using coupled-channel Schrödinger equation calculations that accurately reproduce the experimental data for 16O16O (27) and the well known rovibrational constants of oxygen isotopologues. These cross-sections, together with the solar spectrum, yield enormous fractionation factors and calculated values of δ^{17}O(1D) and δ^{18}O(1D) resulting from O$_2$ photolysis that peak at \sim80 km with sizes of 3137.1 and 10578.6 per mil, respectively. The resulting δ \sim 0.3 means that even small amounts of mixing of mesospheric air with the $m = 1.6$ gas that characterizes the stratosphere can provide an explanation for the $m = 1.2$ fractionation observed in CO$_2$ by Thiemens et al. (10). We stress that Lyman-α photolysis of O$_2$ as a source of heavy O(1D) has not been considered in previous models. The ob-
served depletion of $\delta^{18}O(O_2)$ at 53.3 and 59.5 km (10) is also likely the consequence of this O$_2$ Lyman-α photolysis.

In addition to the mechanism of transferring heavy oxygen atoms from O$_3$ and O$_2$ to CO$_2$, we also include the effect of CO$_2$ photolysis using a semianalytic model of photodissociation (24, 25). Although the photolysis-induced fractionation of oxygen in CO$_2$ can be as large as 100 per mil at selected wavelengths (28), the overall effect of UV photolysis is always insignificant compared with that induced by (photo)chemical exchange. Shown in Fig. 3 are vertical profiles for two processes, CO$_2$ photolysis and CO$_2$ + O(1D) exchange reactions. Below ~70 km, although the fractionation factors for CO$_2$ photodissociation are ~100 per mil, the photolysis rates are negligible compared with the exchange reaction rates. At >70 km, the photolysis-induced fractionation is small, because most of absorption happens near the maximum of absorption cross-section, where only small fractionation factors are seen (24, 25), and the contribution from the Lyman-α photolysis (see the dashed vs. dash-dotted lines in Fig. 3) of O$_2$ becomes important.

1D Model

To provide an assessment of the probable impact of the multiple sources of O(1D) and the role of transport in the isotopic composition of CO$_2$, the results of a 1D atmospheric model are summarized in Figs. 4 and 5. In the three-isotope plot presented in Fig. 4, the dominant slope of \approx1.6–1.7 is produced by the O(1D) from ozone photolysis, which is also responsible for the strong correlation of δ^{17}O(CO$_2$) with the stratospheric N$_2$O mixing ratio shown in Fig. 5 [where δ^{17}O(CO$_2$) = δ^{13}O(CO$_2$) –

Fig. 1. Fractionation factors of molecular oxygen in the vacuum UV calculated by using the model described in Liang et al. (25). The fractionation factor is defined by $1,000 \times (\sigma_0/\sigma) – 1$, where σ_0 and σ are the photoabsorption cross-sections of normal and isotopically substituted molecules, respectively. The absorption cross-section of normal O$_2$ is taken from the literature (30–33).

Fig. 2. Absorption cross-sections for O$_2$ that lead to the production of O(3P) and O(1D) near Lyman-α. The solar profile is shown by the dotted line. All quantities are normalized. Normalization factors for the Lyman-α cross-sections at 100, 200, and 300 K are 5.1×10^{11} photons cm$^{-2}$ s$^{-1}$ Å$^{-1}$, and 1.73×10^{-18}, 1.75×10^{-18}, and 1.76×10^{-18} cm2, respectively.

Fig. 3. Vertical reaction rate profiles for the O(1D) + CO$_2$ chemical exchange (solid line) and CO$_2$ photolysis (dotted line). Dashed and dash-dotted lines represent O(1D) production rates for cases with and without including O$_2$ Lyman-α photolysis, respectively.

Fig. 4. Three-isotope plot of oxygen in CO$_2$, from which the mean tropospheric values have been subtracted. The atmospheric measurements are from balloon measurements of Lämmerzahl et al. (8) (circles) and the full rocket data set first reported by Thiemens et al. (10) (asterisks). The solid line depicts the model, and the change in slope at A corresponds to an altitude of ~55 km. At higher altitudes (and for fractionations greater than these fiducial values), the slope m at A–B is ~0.3, as expected from oxygen photolysis. Another change of slope in the calculation occurs at B for altitudes of ~90 km and higher. Over this range, molecular diffusion dominates, and the slope becomes mass dependent, that is ~0.5 (dash-dotted line). (Inset) Vertical profiles of δ^{13}O(CO$_2$) with (solid) and without (dotted) including the fractionation of O(1D) induced by O$_2$ Lyman-α photolysis. For comparison, the vertical profile of δ^{18}O in O$_2$ is shown by the dash-dotted line, which can be satisfactorily explained by eddy and molecular diffusion processes for this photochemically steady-state atmosphere.
0.515 × δ¹⁸O(CO₂) is the “anomalous” or mass-independent isotopic signature in CO₂. As Fig. 4 Inset shows, however, the heavy O atoms from O₂ Lyman-α photolysis can greatly modify the expected isotopic composition of CO₂ at altitudes >40 km.

We stress that such simple 1D simulations cannot fully capture the coupled impact of chemistry and transport on the isotopic composition of long-lived atmospheric trace gases, but they are useful in assessing the relative importance of various (photo)chemical processes. To provide bounds on the importance of transport, we carried out additional simulations (see Fig. 5) in which the eddy coefficients <40 km are reduced and enhanced by 30% compared with the prescription of Allen et al. (19). The disagreement of the 1D model vertical profiles shown in Fig. 4 with the measurements of Thiemens et al. (10) is due to circulation cells between the tropics and ∼30°N, where the air is significantly younger than that at higher latitudes with similar altitudes (refs. 13 and 21 and M.-C.L., G.A.B., and Y.L.Y., unpublished data). Indeed, we expect that multilatitude and, especially, additional mesospheric measurements of m, when combined with proper models, should be able to refine our understanding of atmospheric transport and chemical processes, especially in the remote regions of the mesosphere.

Three-Box Model

Finally, we use a three-box model to evaluate the potential impact of transport on the slope and magnitude of the CO₂ isotopic fractionation. Box 1 (fresh air from the troposphere) has δ¹⁷O(CO₂)h = 9 and δ¹⁸O(CO₂)h = 17 per mil. Box 2 (the stratosphere) has δ¹⁷O(CO₂)h = δ¹⁷O(¹D) = 93 and δ¹⁸O(CO₂)h = δ¹⁸O(¹D) = 69 per mil, with the values defined by photochemical steady-state with O(¹D) from O₃. Box 3 (the mesosphere) has δ¹⁷O(CO₂)m = δ¹⁷O(¹D) = 3137 and δ¹⁸O(CO₂)m = δ¹⁸O(¹D) = 10579 per mil, with the values predicted from the Lyman-α photolysis of O₂. The isotopic composition of CO₂ is determined by the mixing of air from these boxes, or

\[
\delta^{17}{\text{O}}(\text{CO}_2) = x_h\delta^{17}{\text{O}}(\text{CO}_2)_h + x_m\delta^{17}{\text{O}}(\text{CO}_2)_m
\]

where \(x_h\), \(x_m\), and \(x_m\) are the fractions of air from boxes 1, 2, and 3, and \(x_h + x_m + x_m = 1\). For atmospheric CO₂, \(x_m << x_h\). As expected, the magnitude of δ¹⁷O(CO₂) increases with the age of the air parcel, i.e., more CO₂ exchanging with O(¹D) from boxes 2 and 3.

The mixing of boxes 1 and 2 produces a slope of 1.6, as shown in the solid line in Fig. 6. When mixing in air from box 3, the slope is modified, and the dotted line represents the cases for which \((x_h, x_m) = (0.80, 0), (0.75, 0.0005), (0.70, 0.001)\). The two extreme data points from Fig. 4 that are overplotted by asterisks can be explained by only ≈0.02% mixing with box 3. Similar analyses can be applied to the rest of the data. In general, we predict that in the middle atmosphere air recently entrained from the troposphere would have CO₂ isotopic compositions characterized by stratospheric ozone, whereas the O(¹D) from O₂ photolysis would play a part in air parcels exposed to the mesosphere.

In summary, we have demonstrated that Δ¹⁷O(CO₂), the anomalous isotopic composition of CO₂, can serve as a powerful tracer of atmospheric dynamics and chemistry well into the mesosphere. Furthermore, this “recycled” CO₂ carries a long-lived isotopic composition that is distinct from that in the troposphere and as such has the potential to constrain biogeochemical cycles involving carbon dioxide and oxygen, in particular those involving the terrestrial biosphere (15). Recent three-isotope measurements of O₂ in closed systems (29), for example, have shown that a nearly universal respiration curve can be used to extract highly precise Δ¹⁷O values in both O₂ and CO₂ that are sensitive to the magnitude of the anomalous signature generated in the middle atmosphere and the relative rates of mass transport through the biosphere vs. atmospheric photochemistry. To the best of our knowledge, all existing estimates (16) for the changes of terrestrial biospheric production over millennial time scales, the window over which the tropospheric oxygen isotopic anomaly accumulates, are based on an assumption that the strength of stratosphere–troposphere exchange in paleoatmospheres is the

\[
\delta^{18}{\text{O}}(\text{CO}_2) = x_h\delta^{18}{\text{O}}(\text{CO}_2)_h + x_m\delta^{18}{\text{O}}(\text{CO}_2)_m
\]

where \(x_h\), \(x_m\), and \(x_m\) are the fractions of air from boxes 1, 2, and 3, and \(x_h + x_m + x_m = 1\). For atmospheric CO₂, \(x_m << x_h\). As expected, the magnitude of δ¹⁷O(CO₂) increases with the age of the air parcel, i.e., more CO₂ exchanging with O(¹D) from boxes 2 and 3.
same as that at present. We suggest that the simultaneous measurements of CO$_2$ and O$_2$ isotopologues can largely reduce this ambiguity and provide a more reasonable assessment for millennial bioproductivity, especially if they can be extended to ice core records. Better constraints on the potential role of the large isotopic fractionation in O$_2$ resulting from Lyman-α ice core records. Better constraints on the potential role of the millennial bioproductivity, especially if they can be extended to this ambiguity and provide a more reasonable assessment for CO$_2$ and water ice is needed to assess whether the isotopic composition of CO$_2$ recorded in ice bubbles can be used to examine millennial time scale fluctuations in troposphere–stratosphere exchange rates. Theoretically, 2D and 3D atmospheric simulations should significantly expand our understanding of the dynamical and chemical history of trace molecules in the atmosphere.

We give special thanks to G. R. Gladstone for the solar Lyman-α flux and S. T. Gibson for providing his coupled-channel code. We also thank B. C. Hsieh, X. Jiang, and R. L. Shia for helping us with the model; M. Gerstell, H. Hartman, A. Ingersoll, J. Kaiser, C. Miller, H. Pickett, T. Röckmann, and all of the members in our group for their helpful comments; and Inez Fung for handling the reviewing process and two anonymous referees for their insightful comments to improve the manuscript. This work was supported by National Science Foundation Grant ATM-0529268.