Errata

The following incorrect statement was made on page 2132, first column, lines 15–18: "But the ratio of the total density of all baryon and antibaryon states to the density of meson states did appear to be approaching an asymptotic value, at very nearly 1." In fact, the density of baryon states was increasing at a consistently higher rate than the meson density. The baryons multiply more rapidly at low masses, because the proportion of states generated by the bootstrap which have to be included as "exotic" is lower for baryons than for mesons. At higher masses, however, BB contributions to the meson spectrum will restore the balance so that in the asymptotic region the meson and baryon densities will rise at the same rate. This situation will not be reached until $m > 50m_{\pi}$.

This means that the value of b is higher than that quoted in Table I, Case 5; specifically, b is equal to 1.07 rather than 1.01. Hence the maximum temperature is $T_{e} = 132$ MeV, rather than 140 MeV, for a box of radius 1.3 F. The value of c also changes. A fit to the baryon spectrum gives $c = 1.1 \pm 0.4$ for the density of all baryon (plus antibaryon) states; and Nahm (to be published) has estimated that in the asymptotic region the ratio of the baryon (plus antibaryon) density of states to the meson density will be roughly 5.3 to 1. Finally, the asymptotic ratios of densities for meson states with different quantum numbers will vary somewhat from the values given in Table IIA, but Table IIB should still be correct.

We would like to thank Dr. W. Nahm for indicating this error to us.

$$L(p, H_{s}(q, s, t)).$$

In Fig. 12(d), and in the figure caption, the value of ν should be 17 GeV rather than 18.5 GeV. In Eq. (2.8), the factors in front of the curly brackets on the right-hand side should be replaced by

$$\frac{\pi a^2 M^2}{4\pi^2 (r^2 - q^2)^2}.$$

This means that in Eq. (4.16), the factor

$$\frac{3M + 2\nu}{M + 2\nu},$$

should be deleted. The net effect of these changes is to improve slightly the fits to the differential cross sections in Fig. 12.

Application of a Crossing–Symmetric Model Satisfying the Mandelstam Representation to $\pi\pi$ and $K\pi$ Scattering, P. Curry, I. O. Moen, J. W. Moffat, and V. G. Snell [Phys. Rev. D 3, 1233 (1971)]. On page 1235, at the top of the second column, the phrase "where $F_{K^{\ast}}(s, t) = F_{K^{\ast}}(t, s)$" should be omitted. There is a misprint in the first part of Eq. (4.5), which should read

$$\{K^{\ast} \pi^{-} \rightarrow K^{\ast} \pi^{-}\} = \frac{3}{2} A^{1/2} + \frac{1}{2} A^{3/2}.$$