ON THE ORDER OF DIRICHLET L-FUNCTIONS

G. Kolesnik

1. Introduction. Let $L(s, \chi)$ be a Dirichlet L-function, where χ is a nonprincipal character $(\text{mod } q)$ and $s = \sigma + it$. A standard estimate for $L(s, \chi)$ based on bounds for $\zeta(s, w)$, is

$$|L(s, \chi)| \leq C_1 \tau \eta(1-\sigma)^{1/2} q^{1-\sigma} \log^{2/3} \tau, \quad \frac{1}{2} \leq \sigma \leq 1,$$

where $\tau = |t| + 2$, $c = 1/6$ (see, for example, Prachar [5, (4.12)]), and in fact, c can be replaced by a constant $< 1/6$. An immediate application of Richert’s work [6] gives

$$|L(s, \chi)| \leq C_2 \tau^{100(1-\sigma)/3} q^{1-\sigma} \log^{2/3} \tau, \quad \frac{1}{2} \leq \sigma \leq 1,$$

which is better than (1) if σ is near 1.

Another estimate can easily be obtained from $|L(1 + it, \chi)| \leq C_3 \log \tau q$ and the functional equation of $L(s, \chi)$ as follows. First,

$$|L(it, \chi)| = 2 \cdot |(2\pi)^{it-1} q^{1/2-it} \times \cos \frac{1}{2} \pi \left(1 - it + \frac{1}{2} - \frac{1}{2} \chi(-1)\right) \Gamma(1 - it)L(1 - it, \chi)|$$

$$\leq C_4 \sqrt{\tau q} \log \tau q.$$

Now the convexity principle yields for

$$|L(s, \chi)| \leq (C_3 \sqrt{\tau q} \log \tau q)^{1-\sigma} \cdot (C_5 \log \tau q)^{\sigma} \leq C_6 (\tau q)^{1/2(1-\sigma)}$$

$$\times \log \tau q, \quad 0 \leq \sigma \leq 1.$$

Neglecting dependence on τ, Davenport [2], improved (3):

$$|L(s, \chi)| \leq C_6 (\tau)^{1/2(1-\sigma)}, \quad 0 \leq \sigma \leq 1.$$

Also, Burgess [1] improved (4) by establishing

$$|L(s, \chi)| \leq C_7 (\varepsilon, \tau) q^{1/2(1-\sigma)} \log \tau, \quad \frac{1}{2} \leq \sigma \leq 1.$$

By examining Burgess’ proof, it can be seen that the constant $C(\varepsilon, \tau)$ can be taken to be $C_8 (\varepsilon) \pi^{2(1-\sigma)}$ and his result can be further sharpened to yield

$$|L(s, \chi)| \leq C_8 \tau^{11(1-\sigma)} q^{3/8(1-\sigma)} C^\omega \log \tau, \quad \frac{1}{2} \leq \sigma \leq 1,$$

479
where $\omega = \log q / \log \log q$. The estimates (3), (4), and (5) are better than (1) if q is large compared to τ.

For $\sigma = 1/2$, the previous estimates were improved by Fujii, Gallagher and Montgomery, [3], who showed that if P is a fixed set of primes and q is composed only of primes in P, then

$$ L\left(\frac{1}{2} + it, \chi\right) \leq C(e, P)(\tau q)^{1/8 + \epsilon}. \quad (6) $$

In this paper we prove two more estimates which imply (1), (4), and (5) and which are better than (2), (3), and (6) in some range of σ, τ, and q. We prove:

Theorem 1. Let χ be a nonprincipal character $\pmod q$. Let $1/2 \leq \sigma \leq 1$, $\tau = |t| + 2$ and $\omega = \log q / \log \log q$. Then

$$ |L(s, \chi)| \ll \tau^{-\sigma} q^{\frac{1}{2} \log^2 \tau} C^\omega \log \tau, \quad (7) $$

where C is some absolute constant.

Theorem 2. Let χ be a character $\pmod q$. Let $1/2 \leq \sigma \leq 1$ and $\tau = |t| + 2$. Then

$$ |L(s, \chi)| \ll \tau^{35/108(1-\sigma)} q^{-\sigma} \log^3 \tau q. \quad (8) $$

In particular, (7) and (8) imply

$$ \left| L\left(\frac{1}{2} + it, \chi\right) \right| \ll \sqrt{\tau} q^{3/16} C^\omega \log \tau $$

and

$$ \left| L\left(\frac{1}{2} + it, \chi\right) \right| \ll \tau^{35/216} q \log^3 \tau q. $$

The estimates of $L(s, \chi)$ for $\sigma \in [0, 1/2]$ can be obtained by using (7) or (8) and the functional equation of $L(s, \chi)$.

The author expresses his gratitude to Professors P. X. Gallagher and Lowell Schoenfeld for valuable suggestions.

2. Notation.

$$ e(f(x)) = \exp(2\pi i f(x)). $$

$$ \omega = \log q / \log \log q. $$

$$ s = \sigma + it, \quad \frac{1}{2} \leq \sigma \leq 1. $$

$$ \tau = |t| + 2. $$
C denotes some appropriate absolute constant, not always the same.

3. Application of the estimate of Burgess. In this section we will show that

$$|L(s, \chi)| \ll \pi^{1-\epsilon} \tau^{3/8(1-\epsilon)} C^w \log^k \tau.$$

We need the following result of E. Bombieri:

Lemma. Let N and m be nonnegative integers. Let α_j, β_j be numbers such that $|\alpha_j - \beta_j| \leq (2\pi m N^2)^{-1}$ for $1 \leq j \leq m$, and let $f(x) = \alpha_1 x + \cdots + \alpha_m x^m, g(x) = \beta_1 x + \cdots + \beta_m x^m$. Let c_1, c_2, \cdots be complex, and let

$$S(\alpha, N) = \max_{1 \leq n_1 \leq N} \left| \sum_{1 \leq n \leq N} c_n e(f(n)) \right|,$$

where $\alpha = (\alpha_1, \cdots, \alpha_m)$. Then $S(\beta, N) \leq 6S(\alpha, N)$.

Proof. For every $N_i \in [1, N]$ we have:

$$\sum_{1 \leq n \leq N_1} c_n e(g(n)) = \sum_{1 \leq n \leq N_1} c_n e(f(n)) \prod_{j=1}^m e((\beta_j - \alpha_j)n^j)$$

$$= \sum_{k_1, \ldots, k_m = 0}^\infty \left(\prod_{j=1}^m \frac{2\pi i (\beta_j - \alpha_j)^{k_j}}{k_j!} \right) \sum_{1 \leq n \leq N_1} c_n n^{k_1 + \cdots + k_m} e(f(n)).$$

Using Abel's summation formula, we obtain:

$$S(\beta, N) \leq \sum_{k_1, \ldots, k_m = 0}^\infty \prod_{j=1}^m \frac{|2\pi (\beta_j - \alpha_j)|^{k_j}}{k_j!} N^{k_1 + \cdots + k_m} 2S(\alpha, N)$$

$$\leq 2S(\alpha, N) \cdot \sum_{k_1, \ldots, k_m = 0}^\infty \prod_{j=1}^m \frac{|2\pi (\beta_j - \alpha_j) N^j|^ {k_j}}{k_j!}$$

$$\leq 2S(\alpha, N) \left(\sum_{k=0}^\infty m^{-k} |k!| \right)^m \leq 6S(\alpha, N).$$

Lemma 2. Let $q \geq 2$ and let M, N be integers. Let χ be a primitive character (mod q). Then

$$|\sum_{1 \leq n \leq N} \chi(n + M)| \leq \sqrt{N} q^{3/16} C^w.$$

This lemma can be proven similarly to Theorem 2, [1].

Lemma 3. Let q and N be integers such that $q \geq 2$ and $N \leq \tau q$. Let χ be a primitive character (mod q). Then

$$|S = \max_{N \geq N_1 \leq 2N} \left| \sum_{N + 1 \leq n \leq N} \chi(n)^{n^{-it}} \right| \ll \sqrt{N} \log \tau \cdot q^{3/16} C^w.$$
Proof. We can obviously suppose that $\tau \log \tau q \leq N$ since otherwise the estimate is trivial. Taking $H = \lfloor N(\tau \log \tau q)^{-1} \rfloor$ and $m = \lfloor \log \tau q \rfloor$, and dividing the sum in S into $\leq 2NH^{-1}$ subsums, we obtain:

$$|S| \leq 2NH^{-1} \max_{N \leq m \leq 2N} \max_{1 \leq H \leq H} \sum_{n \leq M} |\chi(n)n^{-i\tau}|.$$

For every M and H_i in the above range, we get

$$\sum_{M+1 \leq n \leq M+H_i} \chi(n)n^{-i\tau} = \left| \sum_{1 \leq n \leq H_i} X(n + M) \left(\frac{n + M}{M} \right)^{-i\tau} \right| \leq \left| \sum_{1 \leq n \leq H_i} \chi(n + M) e\left(-\frac{2\pi}{t} \left(\frac{n}{M} - \frac{n^2}{2M^2} + \cdots + \frac{(-1)^m \cdot n^m}{mM^m} \right) \right) \right| + \frac{|t|H^{m+1}}{M^{m+1}}.$$

Let $\beta_j = 0$ and $\alpha_j = (-1)^j t/2\pi jm^j$. Then for $1 \leq j \leq m |\alpha_j - \beta_j| = |t| \cdot (2\pi jm^j)^{-1} \leq (2\pi m H^j)^{-1}$. Applying Lemmas 1 and 2, we obtain:

$$|S| \leq 2NH^{-1} \max_{N \leq m \leq 2N} \max_{1 \leq H \leq H} \sum_{n \leq M} \chi(n + M) + 2 \frac{\tau H^{m+1}}{N^m} \ll NH^{-1} \sqrt{\log \tau q}^{3/16} C^\omega + N\tau(\tau \log \tau q)^{-10\log q} \ll \sqrt{N \tau \log \tau q} q^{3/16} C^\omega.$$

From this, the result is easily obtained.

Now we can prove Theorem 1. First, we suppose that χ is primitive. Let $N = \lfloor \tau q \rfloor$, $M = \lfloor \tau q^{10} \rfloor$, $L = \log (N/M)/\log 2$, $N_i = M2^l (l = 0, \ldots, L)$. Using Abel’s formula, the Polya-Vinogradov estimate for character sums and Lemma 3, we get:

$$|L(s, \chi)| \ll \sum_{n < M} n^{-s} + \sum_{N \leq n \leq N} \chi(n)n^{-i\tau} + \sum_{N \leq n \leq N} |\chi(n)|$$

$$\ll M^{1-s} \log M + \sum_{l=0}^{L} \max_{N_j \leq N_1 \leq N} \sum_{N_1 \leq n \leq N} \chi(n)n^{-i\tau}$$

$$\ll M_{1-s} \log M + \sum_{l=0}^{L} N_i^{-s} \max_{N_j \leq N_1 \leq N} \sum_{N_1 \leq n \leq N} \chi(n)n^{-i\tau} \ll M^{1-s} \log M + \sum_{l=0}^{L} N_i^{1-s} \sqrt{\tau q^{3/16}} C^\omega \sqrt{\log \tau} + \tau \sqrt{\tau q^{3/16}} C^\omega \log q$$

$$\ll M^{1-s} \log M + L M^{1-s} \sqrt{\tau q^{3/16}} C^\omega \sqrt{\log \tau} + \tau \sqrt{\tau q^{3/16}} C^\omega \log q \ll \tau^{-1} q^{3/16} \log$$

If X is not primitive, then there is a $q_1 | q$ and a primitive
character $\chi_i \pmod{q_i}$, associated with χ, such that we can write (see, for example, [5, (6.12))):

$$|L(s, \chi)| = |L(s, \chi)| \prod_{p|q} \left| 1 - \frac{\chi(p)}{p^s} \right| \leq |L(s, \chi)| \cdot \prod_{p|q} 2 \leq |L(s, \chi)| \cdot 2^r,$$

and the theorem follows.

4. The proof of Theorem 2. To prove Theorem 2, we need two lemmas.

Lemma 4. Let $t \geq 0$, $0 < a < 1$, and let X and X_1 be integers such that $0 < X \leq X_1 \leq 2X \leq \tau^{143/108}$. Then

$$S_i = \sum_{X \leq x < X_1} e(t \log (x + a)) \ll \sqrt{X} \frac{35}{216} \log^2 \tau.$$

Proof. If $X \leq \sqrt{\tau}$, then the result can be proven similarly to Corollary 2, [4]. The same method yields

$$\sum_{X \leq x < X_1} e(t \log x - ax) \ll \sqrt{X} \frac{35}{216} \log^2 \tau,$$

for $X \leq \sqrt{\tau}$. If $\sqrt{\tau} \leq X \leq \tau^{143/108}$, then, by Lemma 3 of [4]

$$|S_i| \leq \sum_{t \leq t(X + a) \leq X \leq X_1} \frac{\sqrt{t}}{n} \frac{e(t \log n - an)}{n} + O(X^{-1/2}).$$

Here $t/(X + a) \leq \sqrt{\tau}$. With the use of Abel’s inequality, (9) yields the result for $\sqrt{\tau} \leq X \leq \tau^{143/108}$.

Lemma 5. Let $1/2 \leq \sigma \leq 1$, $t \geq 1$ and $0 \leq a < 1$. Then

$$\zeta(s, a) = \sum_{n=0}^{\infty} (n + a)^{-s} \ll a^{-s} + \tau^{35(1-\sigma)/108} \log^2 \tau.$$

Proof. Let $N = \tau^{143/108}$. Using the Euler-Maclaurin formula [see, for example, [5], (1.7), p. 372]), we obtain similarly to [5], (5.8), p. 114:

$$\zeta(s, a) - \sum_{n=0}^{N-1} (n + a)^{-s} = \frac{(N + a)^{-s}}{1-s} - \frac{1}{2} \int_N^{\infty} \frac{x - [x]}{(x + a)^{s+1}} dx$$

$$= \frac{(N + a)^{-s}}{1-s} - \frac{1}{2} \int_N^{\infty} \frac{(x - [x])^2}{(x + a)^{s+1}} dx + \frac{1}{2} \int_N^{\infty} \frac{s(s + 1)}{(x + a)^{s+3}} dx$$

$$\ll 1 + \tau^2 \int_N^{\infty} u^{-s-1} du \leq 1 + \tau^2 \cdot N^{-s-1} \ll \tau^{35(1-\sigma)/108}.$$

If we denote $M = [\tau^{35/108}]$, $L = [\log (N/M)/\log 2] = N_i = M \cdot 2^t$ for $l = 0, \ldots, L$ and $N_{L+1} = N$, then we have
Using Abel's formula and Lemma 4, we obtain:

\[
S \ll a^{-\sigma} + M^{1-\sigma} \log M + \sum_{0 \leq l \leq L} N_l^{-\sigma} \max_{0 \leq l \leq L} \sum_{\lambda=0}^{N_l} \sum_{n \leq N_l} (n + a)^{-\sigma}.
\]

This proves the lemma.

To prove Theorem 2, we can obviously suppose \(t \geq 1 \), otherwise the result follows from (1). Using Lemma 5, we obtain:

\[
|L(s, \chi)| = |q^{-\sigma} \sum_{m=1}^{q} \chi(m) \zeta(s, m/q)|
\]

\[
< q^{-\sigma} \sum_{m=1}^{q} ((q/m)^{\sigma} + \tau^{50(1-\sigma)/108} \log^2 \tau) \ll \tau^{50(1-\sigma)/108} q^{1-\sigma} \log^3 \tau.
\]

Note Added in Proof. We would like to draw attention to a recent paper by D. R. Heath-Brown, "Hybrid bounds for Dirichlet L-function," Inventiones Mathematicae, 44 (1978), 149–170, which contains a better result than our Theorem 7.

REFERENCES

4. G. Kolesnik, On the order of \(\zeta(1/2+it) \) and \(\mathcal{A}(R) \), Pacific J. of Math., submitted.

Received January 25, 1977.

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CA 91125

AND

STATE UNIVERSITY OF NEW YORK AT BUFFALO
BUFFALO, NY 14214