CaltechAUTHORS
  A Caltech Library Service

Time-Dependent Eddy-Mean Energy Diagrams and Their Application to the Ocean

Chen, Ru and Thompson, Andrew F. and Flierl, Glenn R. (2016) Time-Dependent Eddy-Mean Energy Diagrams and Their Application to the Ocean. Journal of Physical Oceanography, 46 (9). pp. 2827-2850. ISSN 0022-3670. http://resolver.caltech.edu/CaltechAUTHORS:20161020-103100984

[img] PDF - Published Version
See Usage Policy.

1861Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20161020-103100984

Abstract

Insight into the global ocean energy cycle and its relationship to climate variability can be gained by examining the temporal variability of eddy–mean flow interactions. A time-dependent version of the Lorenz energy diagram is formulated and applied to energetic ocean regions from a global, eddying state estimate. The total energy in each snapshot is partitioned into three components: energy in the mean flow, energy in eddies, and energy temporal anomaly residual, whose time mean is zero. These three terms represent, respectively, correlations between mean quantities, correlations between eddy quantities, and eddy-mean correlations. Eddy–mean flow interactions involve energy exchange among these three components. The temporal coherence about energy exchange during eddy–mean flow interactions is assessed. In the Kuroshio and Gulf Stream Extension regions, a suppression relation is manifested by a reduction in the baroclinic energy pathway to the eddy kinetic energy (EKE) reservoir following a strengthening of the barotropic energy pathway to EKE; the baroclinic pathway strengthens when the barotropic pathway weakens. In the subtropical gyre and Southern Ocean, a delay in energy transfer between different reservoirs occurs during baroclinic instability. The delay mechanism is identified using a quasigeostrophic, two-layer model; part of the potential energy in large-scale eddies, gained from the mean flow, cascades to smaller scales through eddy stirring before converting to EKE. The delay time is related to this forward cascade and scales linearly with the eddy turnover time. The relation between temporal variations in wind power input and eddy–mean flow interactions is also assessed.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1175/JPO-D-16-0012.1DOIArticle
http://journals.ametsoc.org/doi/10.1175/JPO-D-16-0012.1PublisherArticle
Additional Information:© 2016 American Meteorological Society. Manuscript received 5 January 2016, in final form 7 July 2016. R. Chen thanks the support by NASA (NNX09AI87G and NNX08AR33G) and acknowledges C. Wunsch for providing insightful suggestions during the preparation of the work. A. F. Thompson is supported by NASA (NNX15AG42G), and G. R. Flierl is supported by NSF (OCE-1459702). Three anonymous reviewers provided comments, which substantially improved the work. R. X. Huang suggested the possible delay between potential and kinetic energy reservoirs. M. A. Spall provided helpful suggestions about section 4. Many thanks to J.-M. Campin, C. Hill, D. Menemenlis, and H. Zhang for discussion about the ECCO2 state estimate.
Funders:
Funding AgencyGrant Number
NASANNX09AI87G
NASANNX08AR33G
NASANNX15AG42G
NSFOCE-1459702
Subject Keywords:Geographic location/entity; Southern Ocean; Subtropics; Circulation/ Dynamics; Ocean dynamics; Atm/Ocean Structure/ Phenomena; Boundary currents; Physical Meteorology and Climatology; Energy budget/balance; Models and modeling; Ocean models
Record Number:CaltechAUTHORS:20161020-103100984
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20161020-103100984
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:71315
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:20 Oct 2016 20:30
Last Modified:20 Oct 2016 20:30

Repository Staff Only: item control page