
Submitted to the Annals of Statistics

SUPPLEMENTARY MATERIAL TO ‘STATISTICAL AND
COMPUTATIONAL TRADE-OFFS IN ESTIMATION OF

SPARSE PRINCIPAL COMPONENTS’

By Tengyao Wang∗ Quentin Berthet∗,† Richard J. Samworth∗

University of Cambridge∗

California Institute of Technology†

1. Ancillary results. We collect here various results used in the proofs
in Appendices A, B and C in the main document Wang, Berthet and Sam-
worth (2016).

Proposition 1. Let P ∈ RCCp(n, `, C) and suppose that ` log p ≤ n.
Then

E sup
u∈B0(`)

|V̂ (u)− V (u)| ≤
(

1 +
1

log p

)
C

√
` log p

n
.

Proof. By setting δ = p1−t in the RCC condition, we find that

P
(

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ C max

{√
t` log p

n
,
t` log p

n

})
≤ min(1, p1−t)

for all t ≥ 0. It follows that

E sup
u∈B0(`)

|V̂ (u)− V (u)| =
∫ ∞
0

P
(

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ s
)
ds

≤ C
√
` log p

n
+ C

√
` log p

n

∫ n
` log p

1

1

2
p1−tt−1/2 dt+ C

` log p

n

∫ ∞
n

` log p

p1−t dt

≤ C
√
` log p

n

{
1 +

∫ ∞
1

p1−t dt

}
=

(
1 +

1

log p

)
C

√
` log p

n
,

as required.

Lemma 2. Let ε ∈ (0, 1/2), let ` ∈ {1, . . . , p} and let A ∈ Rp×p be a
symmetric matrix. Then there exists Nε ⊆ B0(`) with cardinality at most(
p
`

)
π`1/2(1− ε2/16)−(`−1)/2(2/ε)`−1 such that

sup
u∈B0(`)

|u>Au| ≤ (1− 2ε)−1 max
u∈Nε

|u>Au|.

1
imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

http://www.imstat.org/aos/

2 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Proof. Let I` :=
{
I ⊆ {1, . . . , p} : |I| = `

}
, and for I ∈ I`, let BI :=

{u ∈ B0(`) : uIc = 0}. Thus

B0(`) =
⋃
I∈I`

BI .

For each I ∈ I`, by Lemma 10 of Kim and Samworth (2014), there exists
NI,ε ⊆ BI such that |NI,ε| ≤ π`1/2(1 − ε2/16)−(`−1)/2(2/ε)`−1 and such
that for any x ∈ BI , there exists x′ ∈ NI,ε with ‖x − x′‖ ≤ ε. Let uI ∈
argmaxu∈BI |u

>Au| and find vI ∈ NI,ε such that ‖uI − vI‖ ≤ ε. Then

|u>I AuI | ≤ |v>I AvI |+ |(uI − vI)>AvI |+ |u>I A(uI − vI)|
≤ max

u∈NI,ε
|u>Au|+ 2ε|u>I AuI |.

Writing Nε := ∪I∈I`NI,ε, we note that Nε has cardinality no larger than(
p
`

)
π`1/2(1− ε2/16)−(`−1)/2(2/ε)`−1 and that

sup
u∈B0(`)

|u>Au| = max
I∈I`

sup
u∈BI

|u>Au| ≤ (1− 2ε)−1 max
I∈I`

max
u∈NI,ε

|u>Au|

= (1− 2ε)−1 max
u∈Nε

|u>Au|,

as required.

Lemma 3 (Variant of the Gilbert–Varshamov Lemma). Let α, β ∈ (0, 1)
and k, p ∈ N be such that k ≤ αβp. Writing S :=

{
x = (x1, . . . , xp)

> ∈
{0, 1}p :

∑p
j=1 xj = k

}
, there exists a subset S0 of S such that for all

distinct x = (x1, . . . , xp)
>, y = (y1, . . . , yp)

> ∈ S0, we have
∑p

j=1 1{xj 6=yj} ≥
2(1− α)k and such that

log |S0| ≥ ρk log(p/k),

where ρ := α
− log(αβ)(− log β + β − 1).

Proof. See Massart (2007, Lemma 4.10).

Let P and Q be two probability measures on a measurable space (X ,B).
Recall that if P is absolutely continuous with respect toQ, then the Kullback–
Leibler divergence between P andQ isD(P‖Q) :=

∫
X log(dP/dQ) dP , where

dP/dQ denotes the Radon–Nikodym derivative of P with respect to Q. If P
is not absolutely continuous with respect to Q, we set D(P‖Q) :=∞.

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

COMPUTATIONAL BOUNDS IN SPARSE PCA 3

Lemma 4 (Generalised Fano’s Lemma). Let P1, . . . , PM be probability
distributions on a measurable space (X ,B), and assume that D(Pi‖Pj) ≤ β

for all i 6= j. Then any measurable function ψ̂ : X → {1, . . . ,M} satisfies

max
1≤i≤M

Pi(ψ̂ 6= i) ≥ 1− β + log 2

logM
.

Proof. See Yu (1997, Lemma 3).

Lemma 5. Suppose that P ∈ P and that X1, . . . , Xn
iid∼ P . Let Σ :=∫

Rp xx
> dP (x) and Σ̂ := n−1

∑n
i=1XiX

>
i . If V (u) := E{(u>X1)

2} and

V̂ (u) := n−1
∑n

i=1(u
>Xi)

2 for u ∈ B0(2), then

‖Σ̂− Σ‖∞ ≤ 2 sup
u∈B0(2)

∣∣V̂ (u)− V (u)
∣∣.

Proof. Let er denote the rth standard basis vector in Rp and write
Xi = (Xi,1, . . . , Xi,p)

>. Then

‖Σ̂− Σ‖∞ = max
r,s∈{1,...,p}

∣∣∣ 1
n

n∑
i=1

(Xi,rXi,s)− E(X1,rX1,s)
∣∣∣

≤ max
r,s∈{1,...,p}

∣∣∣∣ 1n
n∑
i=1

{(1

2
er +

1

2
es

)>
Xi

}2
− E

[{(1

2
er +

1

2
es

)>
X1

}2]∣∣∣∣
+ max
r,s∈{1,...,p}

∣∣∣∣ 1n
n∑
i=1

{(1

2
er −

1

2
es

)>
Xi

}2
− E

[{(1

2
er −

1

2
es

)>
X1

}2]∣∣∣∣
≤ 2 sup

u∈B0(2)

∣∣V̂ (u)− V (u)
∣∣,

as required.

Recall the definition of the Graph Vector distribution GVg
p(π0) from the

proof of Theorem 6 in the main document Wang, Berthet and Samworth
(2016).

Lemma 6. Let g = (g1, . . . , gp)
> ∈ {0, 1}p, and let Y1, . . . , Yn be inde-

pendent random vectors, each distributed as GVg
p(π0) for some π0 ∈ (0, 1/2].

For any u ∈ B0(`), let V (u) := E{(u>Y1)2} and V̂ (u) := n−1
∑n

i=1(u
>Yi)

2.
Then for every 1 ≤ ` ≤ 2/π0, every n ∈ N and every δ > 0,

P
[

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ 750 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ δ.

In other words, GVg
p(π0) ∈ RCCp(`, 750) for all π0 ∈ (0, 1/2] and ` ≤ 2/π0.

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

4 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Proof. We can write

Yi = ξi
{

(1− εi)Ri + εi(g + R̃i)
}
,

where ξi, εi and Ri are independent, where ξi is a Rademacher random
variable, where εi ∼ Bern(π0), where Ri = (ri1, . . . , rip)

> has independent
Rademacher coordinates, and where R̃i = (r̃i1, . . . , r̃ip)

> with r̃ij := (1 −
gj)rij . Thus, for any u ∈ B0(`), we have

(u>Yi)
2 = (1− εi)(u>Ri)2 + εi(u

>g)2 + εi(u
>R̃i)

2 + 2εi(u
>R̃i)(u

>g).

Hence, writing S := {j : gj = 1},

|V̂ (u)− V (u)| ≤
∣∣∣∣ 1n

n∑
i=1

(1− εi)(u>Ri)2 − (1− π0)
∣∣∣∣+

(u>g)2

n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

εi(u
>R̃i)

2 − π0‖uSc‖22
∣∣∣∣+

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

(1− εi)
{

(u>Ri)
2 − 1

}∣∣∣∣+
1 + (u>g)2 + ‖uSc‖22

n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣

+

∣∣∣∣ 1n
n∑
i=1

εi
{

(u>R̃i)
2 − ‖uSc‖22

}∣∣∣∣+

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣.(1)

We now control the four terms on the right-hand side of (1) separately. For
the first term, note that the distribution of Ri is subgaussian with parameter
1. Writing Nε :=

∑n
i=1 εi, it follows by the same argument as in the proof of

Proposition 1(i) in Wang, Berthet and Samworth (2016) that for any s > 0,

P
(

sup
u∈B0(`)

∣∣∣∣ 1n
n∑
i=1

(1− εi)
{

(u>Ri)
2 − 1

}∣∣∣∣ ≥ 2s

)
= E

{
P
(

sup
u∈B0(`)

∣∣∣∣ 1

n−Nε

∑
i:εi=0

{
(u>Ri)

2 − 1
}∣∣∣∣ ≥ 2ns

n−Nε

∣∣∣∣ Nε

)}

≤ e9p`E
[
exp

{
−

n(ns
n−Nε

)2

4(ns
n−Nε

) + 32

}]
≤ e9p` exp

(
− ns2

4s+ 32

)
.

We deduce that for any δ > 0,

P
(

sup
u∈B0(`)

∣∣∣∣ 1n
n∑
i=1

(1−εi)
{

(u>Ri)
2−1

}∣∣∣∣ ≥ 16 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

})
≤ e9δ.(2)

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

COMPUTATIONAL BOUNDS IN SPARSE PCA 5

For the second term on the right-hand side of (1), note first that for any
u ∈ B0(`), we have by Cauchy–Schwarz that

(u>g)2 ≤ ‖uS‖0‖uS‖22 ≤ ‖uS‖0 ≤ `.

We deduce using Bernstein’s inequality for Binomial random variables (e.g.
Shorack and Wellner, 1986, p. 855) that for any s > 0,

P
{

sup
u∈B0(`)

1 + (u>g)2 + ‖uSc‖22
n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣ ≥ s}

≤ P
{

1

n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣ ≥ s

3`

}
≤ 2 exp

(
− ns2

18`2π0 + 2s`

)
≤ 2 max

{
exp

(
− ns2

(19 +
√

37)`2π0

)
, exp

(
− ns

(1 +
√

37)`

)}
.

By assumption, `π0 ≤ 2. Hence, for any δ > 0,

P
{

sup
u∈B0(`)

1 + (u>g)2 + ‖uSc‖22
n

∣∣∣∣ n∑
i=1

(εi − π0)
∣∣∣∣ ≥

(1 +
√

37) max

(√
` log(1/δ)

n
,
` log(1/δ)

n

)}
≤ 2δ.(3)

The third term on the right-hand side of (1) can be handled in a very similar
way to the first. We find that for every δ > 0,

P
(

sup
u∈B0(`)

∣∣∣∣ 1n
n∑
i=1

εi
{

(u>R̃i)
2 − ‖uSc‖22

}∣∣∣∣ ≥
16 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

})
≤ e9δ.(4)

For the final term, by definition of R̃i, we have for any u ∈ B0(`) that∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≤ 2`1/2

n

∣∣∣∣ ∑
j:gj=0

uj
∑
i:εi=1

rij

∣∣∣∣ ≤ 2`

n
max
j:gj=0

∣∣∣∣ ∑
i:εi=1

rij

∣∣∣∣.

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

6 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Hence by Hoeffding’s inequality, for any s > 0,

P
{

sup
u∈B0(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ s} ≤ E
{
P
(

max
1≤j≤p

∣∣∣ ∑
i:εi=1

rij

∣∣∣ ≥ ns

2`

∣∣∣∣ Nε

)}

≤ 2pE
{

exp

(
− n2s2

8`2Nε

)}
≤ 2p inf

t>0

{
exp

(
−n

2s2

8`2t

)
+ P(Nε > t)

}
≤ 2p inf

t>0

{
exp

(
−n

2s2

8`2t

)
+ exp

(
−t log

t

nπ0
+ t− nπ0

)}
,

where the final line follows by Bennett’s inequality (e.g. Shorack and Wellner,
1986, p. 440). Choosing t = max

(
e2nπ0,

ns
23/2`

)
, we find

P
{

sup
u∈B0(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ s}
≤ 2pmax

{
exp

(
− ns2

8e2`2π0

)
+ exp

(
− ns

23/2`

)
, 2 exp

(
− ns

23/2`

)}
≤ 4pmax

{
exp

(
− ns2

16e2`

)
, exp

(
− ns

23/2`

)}
.

We deduce that for any δ > 0,
(5)

P
[

sup
u∈B0(`)

∣∣∣∣2u>gn
n∑
i=1

εi(u
>R̃i)

∣∣∣∣ ≥ 4emax

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ 4δ.

We conclude from (1), (2), (3), (4) and (5) that for any δ > 0,

P
[

sup
u∈B0(`)

|V̂ (u)− V (u)| ≥ 750 max

{√
` log(p/δ)

n
,
` log(p/δ)

n

}]
≤ δ,

as required.

Lemma 7. Let v = (v1, . . . , vp)
> ∈ B0(k) and let v̂ = (v̂1, . . . , v̂p)

> ∈ Rp
be such that ‖v̂‖2 = 1. Let S := {j ∈ {1, . . . , p} : vj 6= 0}. Then for any

Ŝ ∈ argmax1≤j1<...<jk≤p
∑k

r=1 |v̂jr |, we have

L(v̂, v)2 ≥ 1

2

∑
j∈S\Ŝ

v2j .

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

COMPUTATIONAL BOUNDS IN SPARSE PCA 7

Proof. By the Cauchy–Schwarz inequality, and then by definition of Ŝ,

1− L(v̂, v)2 =

(∑
j∈S\Ŝ

v̂jvj +
∑
j∈S∩Ŝ

v̂jvj

)2

≤
(

2
∑
j∈S\Ŝ

v̂2j +
∑
j∈S∩Ŝ

v̂2j

)(
1

2

∑
j∈S\Ŝ

v2j +
∑
j∈S∩Ŝ

v2j

)

≤
(∑
j∈Ŝ\S

v̂2j +
∑
j∈S\Ŝ

v̂2j +
∑
j∈S∩Ŝ

v̂2j

)(
1− 1

2

∑
j∈S\Ŝ

v2j

)
≤ 1− 1

2

∑
j∈S\Ŝ

v2j ,

as required.

Lemma 8. Let A ∈ Rd×d be a symmetric matrix. Let A(r) be the principal
submatrix of A obtained by deleting the rth row and rth column of A. If A
has a unique (up to sign) leading eigenvector v, then

λ2(A) ≤ λ1(A(r)) ≤ λ1(A)− v21,r(λ1(A)− λ2(A))

Proof. The first inequality in the lemma is implied by Cauchy’s Inter-
lacing Theorem (see, e.g. Horn and Johnson (2012, Theorem 4.3.17)). It
remains to show the second inequality. Let λ1 > λ2 ≥ · · · ≥ λd be eigenval-
ues of A (counting multiplicities), and v1, . . . , vd be unit-length eigenvectors
of A such that Avi = λivi and v>i vj = 0 for all i 6= j. We have

λ1(A
(r)) = max

‖u‖2=1
ur=0

u>Au = max
‖u‖2=1
ur=0

u>
(d∑
i=1

λiviv
>
i

)
u

≤ max
‖u‖2=1
ur=0

{
(λ1 − λ2)u>v1v>1 u+ λ2u

>
(d∑
i=1

viv
>
i

)
u
}

≤ max
‖u‖2=1
ur=0

(λ1 − λ2)|u>v1|2 + λ2

≤ (λ1 − λ2)(1− v21,r) + λ2

= λ1 − v21,r(λ1 − λ2),

where we used Cauchy–Schwarz inequality in the penultimate line.

Recall the definition of the total variation distance dTV given in the proof
of Theorem 6 in the main document Wang, Berthet and Samworth (2016).

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

8 T. WANG, Q. BERTHET AND R. J. SAMWORTH

Lemma 9. Let X and Y be random elements taking values in a measur-
able space (F,F), and let (G,G) be another measurable space.

(a) If φ : F → G is measurable, then

dTV

(
L(φ(X)),L(φ(Y))

)
≤ dTV

(
L(X),L(Y)

)
.

(b) Let Z be a random element taking values in (G,G), and suppose that Z
is independent of (X,Y). Then

dTV

(
L(X,Z),L(Y, Z)

)
= dTV

(
L(X),L(Y)

)
.

Proof. (a) For any A ∈ G, we have

|P{φ(X) ∈ A} − P{φ(Y) ∈ A}| = |P{X ∈ φ−1(A)} − P{Y ∈ φ−1(A)}|
≤ dTV

(
L(X),L(Y)

)
.

Since A ∈ G was arbitrary, the result follows.
(b) Define φ : F × G → F by φ(w, z) := w. Then φ is measurable, and

using the result of part (a),

dTV

(
L(X),L(Y)

)
= dTV

(
L(φ(X,Z)),L(φ(Y,Z))

)
≤ dTV

(
L(X,Z),L(Y, Z)

)
.

For the other inequality, let A denote the set of subsets A of F ⊗ G with
the property that given ε > 0, there exist sets B1,F , . . . , Bn,F ∈ F and
disjoint sets B1,G, . . . , Bn,G ∈ G such that, writing B := ∪ni=1(Bi,F × Bi,G),
we have P

(
(X,Z) ∈ A4B

)
< ε and P

(
(Y,Z) ∈ A4B

)
< ε. Here, the

binary operator 4 denotes the symmetric difference of two sets, so that
A4B := (A ∩ Bc) ∪ (Ac ∩ B). Note that F × G ⊆ A. Now suppose A ∈ A
so that, given ε > 0, we can find sets B1,F , . . . , Bn,F ∈ F and disjoint sets
B1,G, . . . , Bn,G ∈ G with the properties above. Observe that we can write

Bc =
⋃

I⊆{1,...,n}

(⋂
i∈I

Bc
i,F ×

⋂
i∈I

Bi,G ∩
⋂
i∈Ic

Bc
i,G

)
.

For each I ⊆ {1, . . . , n}, the sets ∩i∈IBc
i,F belong to F , and

{
∩i∈IBi,G ∩

∩i∈IcBc
i,G : I ⊆ {1, . . . , n}

}
is a family of disjoint sets in G. Moreover,

P
(
(X,Z) ∈ Ac4Bc

)
= P

(
(X,Z) ∈ A4B

)
< ε,

and similarly P
(
(Y,Z) ∈ Ac4Bc

)
< ε. We deduce that Ac ∈ A. Finally, if

(An) is a disjoint sequence in A, then let A := ∪∞n=1An, and given ε > 0, find

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

COMPUTATIONAL BOUNDS IN SPARSE PCA 9

m ∈ N such that P
(
(X,Z) ∈ A\∪mi=1Ai

)
< ε/2 and P

(
(Y,Z) ∈ A\∪mi=1Ai

)
<

ε/2. Now, for each i = 1, . . . ,m, find sets Bi1,F , . . . , Bini,F ∈ F and disjoint
sets Bi1,G, . . . , Bini,G ∈ G such that, writing Bi := ∪nij=1(Bij,F × Bij,G), we

have P
(
(X,Z) ∈ Ai4Bi

)
< ε/(2m) and P

(
(Y,Z) ∈ Ai4Bi

)
< ε/(2m). It is

convenient to relabel the sets {(Bij,F , Bij,G) : i = 1, . . . ,m, j = 1, . . . , ni} as
{(C1,F , C1,G), . . . , (CN,F , CN,G)}, where N :=

∑m
i=1 ni. This means that we

can write

m⋃
i=1

Bi =
N⋃
k=1

(Ck,F×Ck,G) =
⋃

K⊆{1,...,N},K 6=∅

(⋃
k∈K

Ck,F×
⋂
k∈K

Ck,G∩
⋂
k∈Kc

Cck,G

)
.

Now, for each non-empty subset K of {1, . . . , N}, the set ∪k∈KCk,F belongs
to F , and

{
∩k∈KCk,G ∩ ∩k∈KcCck,G : K ⊆ {1, . . . , N},K 6= ∅

}
is a family of

disjoint sets in G. Moreover,

P
(
(X,Z) ∈ A4∪mi=1 Bi

)
≤

m∑
i=1

P
(
(X,Z) ∈ Ai4Bi

)
+
ε

2
< ε,

and similarly, P
(
(Y,Z) ∈ A4∪mi=1 Bi

)
< ε. We deduce that A ∈ A, so A is

a σ-algebra containing F × G, so A contains F ⊗ G.
Now suppose that A ∈ F ⊗G. By the argument above, given ε > 0, there

exist sets B1,F , . . . , Bn,F ∈ F and disjoint sets B1,G, . . . , Bn,G ∈ G such that
P
(
(X,Z) ∈ A4∪mi=1 (Bi,F × Bi,G)

)
< ε/2 and P

(
(Y, Z) ∈ A4∪mi=1 (Bi,F ×

Bi,G)
)
< ε/2. It follows that∣∣P((X,Z) ∈ A

)
−P
(
(Y, Z) ∈ A

)∣∣
≤

m∑
i=1

∣∣P(X ∈ Bi,F , Z ∈ Bi,G)− P
(
Y ∈ Bi,F , Z ∈ Bi,G

)∣∣+ ε

=
m∑
i=1

P(Z ∈ Bi,G)
∣∣P(X ∈ Bi,F)−P(Y ∈ Bi,F)

∣∣+ε ≤ dTV

(
L(X),L(Y)

)
+ ε.

Since A ∈ A and ε > 0 were arbitrary, we conclude that

dTV

(
L(X,Z),L(Y, Z)

)
≤ dTV

(
L(X),L(Y)

)
,

as required.

2. A brief introduction to computational complexity theory.
The following is intended to give a short introduction to notions in com-
putational complexity theory referred to in Wang, Berthet and Samworth

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

10 T. WANG, Q. BERTHET AND R. J. SAMWORTH

(2016). A good reference for further information is Arora and Barak (2009),
from which much of the following is inspired.

A computational problem is the task of generating a desired output based
on a given input. Formally, defining {0, 1}∗ := ∪∞k=1{0, 1}k to be the set of
all finite strings of zeros and ones, we can view a computational problem as
a function F : {0, 1}∗ → P

(
{0, 1}∗

)
, where P(A) denotes the power set of a

set A. The interpretation is that F (s) describes the set of acceptable output
strings (solutions) for a particular input string s.

Loosely speaking, an algorithm is a collection of instructions for per-
forming a task. Despite the widespread use of algorithms in mathematics
throughout history, it was not until 1936 that Alonzo Church and Alan
Turing formalised the notion by defining notational systems called the λ-
calculus and Turing machines respectively (Church, 1936; Turing, 1936).
Here we define an algorithm to be a Turing machine:

Definition 1. A Turing machine M is a pair (Q, δ), where

• Q is a finite set of states, among which are two distinguished states
qstart and qhalt.
• δ is a ‘transition’ function from Q×{0, 1, } to Q×{0, 1, }× {L,R}.

A Turing Machine can be thought of as having a reading head that can
access a tape consisting of a countably infinite number of squares, labelled
0, 1, 2, When the Turing machine is given an input s ∈ {0, 1}∗, the tape
is initialised with the components of s in its first |s| tape squares (where | · |
denotes the length of a string in {0, 1}∗) and with ‘blank symbols’ in its
remaining squares. The Turing machine starts in the state qstart ∈ Q with
its head on the 0th square and operates according to its transition function
δ. When the machine is in state q ∈ Q with its head over the ith tape square
that contains the symbol a ∈ {0, 1, }, and if δ(q, a) = (q′, a′,L), the machine
overwrites a with a′, updates its state to q′, and moves to square i−1 (or to
square i+ 1 if the third component of the transition function is R instead of
L). The Turing machine stops if it reaches state qhalt ∈ Q and outputs the
vector of symbols on the tape before the first blank symbol. If the Turing
machine M terminates (in finitely many steps) with input s, we write M(s)
for its output.

We say an algorithm (Turing machine) M solves a computational problem
F if M terminates for every input s ∈ {0, 1}∗, and M(s) ∈ F (s). A compu-
tational problem is solvable if there exists a Turing machine that solves it. It
turns out that other notions of an algorithm (including Church’s λ-calculus
and modern computer programming languages) are equivalent in the sense

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

COMPUTATIONAL BOUNDS IN SPARSE PCA 11

that the set of solvable problems is the same.
A polynomial time algorithm is a Turing machine M for which there exist

a, b > 0 such that for all input strings s ∈ {0, 1}∗, M terminates after at most
a|s|b transitions. We say a problem F is polynomial time solvable, written
F ∈ P, if there exists a polynomial time algorithm that solves it1.

A nondeterministic Turing machine has the same definition as that for a
Turing machine except that the transition function δ becomes a set-valued
function δ : Q×{0, 1, } → P

(
Q×{0, 1, }×{L,R}

)
. The idea is that, while

in state q with its head over symbol a, a nondeterministic Turing machine
replicates |δ(q, a)| copies of itself (and its tape) in the current configuration,
each exploring a different possible future configuration in the set δ(q, a).
Each replicate branches to further replicates in the next step. The process
continues until one of its replicates reaches the state qhalt. At that point, the
Turing machine replicate that has halted outputs its tape content and all
replicates stop computation. A nondeterministic polynomial time algorithm
is a nondeterministic Turing machine Mnd for which there exist a, b > 0
such that for all input strings s ∈ {0, 1}∗, Mnd terminates after at most
a|s|b steps. (We count all replicates of Mnd making one parallel transition
as one step.) We say a computational problem F is nondeterministically
polynomial time solvable, written F ∈ NP, if there exists a nondeterministic
polynomial time algorithm that solves it2.

Clearly P ⊆ NP, but it is not currently known if these classes are equal.
It is widely believed that P 6= NP, and many computational lower bounds
for particular computational problems have been proved conditional under
this assumption. Working under this hypothesis, a common strategy is to
relate the algorithmic complexity of one computational problem to another.
We say a computational problem F is polynomial time reducible to another
problem G, written as F ≤P G, if there exist polynomial time algorithms
Min and Mout such that Mout ◦G ◦Min(s) ⊆ F (s). In other words, F ≤P G
if we can convert an input of F to an input of G through Min, and translate
every solution of G back to a solution for F through Mout.

Definition 2. A computational problem G is NP-hard if F ≤P G for
all F ∈ NP. It is NP-complete if it is in NP and is NP-hard.

Karp (1972) showed that a large number of natural computational prob-

1In fact, some authors write FP (short for ‘Functional Polynomial Time’) for the class we
have denoted as P here. The notation P is then reserved for the subset of computational
problems consisting of so-called decision problems F , where F (s) ∈

{
{0}, {1}

}
for all

s ∈ {0, 1}∗.
2Again, some authors write FNP for the class we have denoted as NP here.

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

12 T. WANG, Q. BERTHET AND R. J. SAMWORTH

lems are NP-complete, including the Clique problem mentioned in Section 4.
The Turing machines and nondeterministic Turing machines introduced
above are both non-random. In some situations (e.g. statistical problems),
it is useful to consider random procedures:

Definition 3. A probabilistic Turing machine Mpr is a triple (Q, δ,X),
where

• Q is a finite set of states, among which are two distinguished states
qstart and qhalt.
• δ is a transition function from Q× {0, 1, } × {0, 1} to Q× {0, 1, } ×
{L,R}.
• X = (X1, X2, . . .) is an infinite sequence of independent Bern(1/2)

random variables.

In its tth step, if a probabilistic Turing machine Mpr is in state q with its
reading head over symbol a, and δ(q, a,Xt) = (q′, a′, L), then Mpr overwrites
a with a′, updates its state to q′ and moves its reading head to the left (or to
the right if δ(q, a,Xt) = (q′, a′, R)). A randomised polynomial time algorithm
is a probabilistic Turing machine Mpr for which there exist a, b > 0 such
that for any s ∈ {0, 1}∗, Mpr terminates in at most a|s|b steps. We say a
computational problem F is solvable in randomised polynomial time, written
as F ∈ BPP, if, given ε > 0, there exists a randomised polynomial time
algorithm Mpr,ε such that P

(
Mpr,ε(s) ∈ F (s)

)
≥ 1− ε.

In the above discussion, the classes P, NP, BPP are all defined through
worst-case performance of an algorithm, since we require the time bound
to hold for every input string s. However, in many statistical applications,
the input string s is drawn from some distribution D on {0, 1}∗, and it
is the average performance of the algorithm, rather than the worst case
scenario, that is of more interest. We say such a random problem is solvable
in randomised polynomial time if, given ε > 0, there exists a randomised
polynomial time algorithm Mpr,ε such that, when s ∼ D, independent of X,
we have P

(
Mpr(s) ∈ F (s)

)
≥ 1− ε. Note that the probability here is taken

over both the randomness in s and the randomness in X. Similar to the non-
random cases, we can talk about randomised polynomial time reduction. If
MF is a randomised polynomial time algorithm for a computational problem
F , then Mout◦MF ◦Min is a potential randomised polynomial time algorithm
for another problem G for suitably constructed randomised polynomial time
algorithms Min and Mout. One such construction is the key to the proof of
Theorem 6 in the main document Wang, Berthet and Samworth (2016).

References.

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

COMPUTATIONAL BOUNDS IN SPARSE PCA 13

Arora, S. and Barak, B. (2009) Computational Complexity: A Modern Approach. Cam-
bridge University Press, Cambridge.

Church, A. (1936) An unsolvable problem of elementary number theory. Amer. J. Math.,
58, 345–363.

Horn, R. A. and Johnson, C. R. (2012) Matrix Analysis. Cambridge University Press.
Karp, R. M. (1972) Reducibility among combinatorial problems. In R. E. Miller et al.

(Eds.), Complexity of Computer Computations, 85–103. Springer, New York.
Kim, A. K.-H. and Samworth R. J. (2014) Global rates of convergence in log-concave

density estimation. Available at http://arxiv.org/abs/1404.2298.
Massart, P. (2007) Concentration Inequalities and Model Selection: Ecole d’Eté de Proba-

bilités de Saint-Flour XXXIII - 2003. Springer, Berlin/Heidelberg.
Shorack, G. R. and Wellner, J. A. (1986) Empirical Processes with Applications to Statis-

tics. Wiley, New York.
Turing, A. (1936) On computable numbers, with an application to the Entscheidungsprob-

lem. Proc. London Math. Soc., 2, 230–265.
Wang, T., Berthet, Q. and Samworth, R. J. (2016) Statistical and computational trade-offs

in estimation of sparse principal components. Ann. Statist., 44, this issue.
Yu, B. (1997) Assouad, Fano and Le Cam. In Pollard, D., Torgersen, E. and Yang G.

L. (Eds.) Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics,
423–435. Springer, New York.

Statistical Laboratory
Wilberforce Road
Cambridge, CB3 0WB
United Kingdom
E-mail: r.samworth@statslab.cam.ac.uk
E-mail: t.wang@statslab.cam.ac.uk
E-mail: q.berthet@statslab.cam.ac.uk
URL: http://www.statslab.cam.ac.uk/˜rjs57
URL: http://www.statslab.cam.ac.uk/˜tw389
URL: http://www.statslab.cam.ac.uk/˜qb204

imsart-aos ver. 2012/08/31 file: tradeoffRevSupp.tex date: June 23, 2016

mailto:r.samworth@statslab.cam.ac.uk
mailto:t.wang@statslab.cam.ac.uk
mailto:q.berthet@statslab.cam.ac.uk
http://www.statslab.cam.ac.uk/~{}rjs57
http://www.statslab.cam.ac.uk/~{}tw389
http://www.statslab.cam.ac.uk/~{}qb204

	Ancillary results
	A brief introduction to computational complexity theory
	References
	Author's addresses

