Supplementary Figure 1

Characterization of Tet2-3 DKO mice

(a) Tet1, Tet2 and Tet3 mRNA expression assessed by quantitative RT-PCR. PolyA+ RNA was isolated from DP, CD4 SP and CD8 SP T cells from wild type (WT) and Tet2^{-/-}Tet3^{fl/fl}CD4cre (Tet2-3 DKO) mice. Relative mRNA expression levels were normalized to Gapdh.

(b) 5hmC levels in genomic DNA of thymocyte subsets from WT (n=2) and Tet2-3 DKO (n=2) mice, estimated by anti-CMS dot blot after bisulfite treatment of genomic DNA to convert 5hmC to CMS. One representative experiment out of 2 is shown.

(c) Haematoxylin and eosin staining of spleen, lung and liver sections from 6 week-old control (upper panel) and Tet2-3 DKO (lower panel) mice.

(d) iNKT cells in lymph nodes (LN) of WT versus Tet2^{-/-}, Tet3 KO and Tet2-3 DKO iNKT cells as defined by αGalCer-CD1d and TCRβ staining.

(e) Percentage (left) and number (right) of iNKT cells in lymph nodes. n=6 (WT), n=3 (Tet2 KO), n=at least 2 (Tet3 KO), n=6 (Tet2/3 DKO).

Data are mean ± SEM. *P<0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001 (unpaired t test)
Supplementary Figure 2

Analysis of CD4 and CD8 T cell development in wild type and Tet2-3 DKO mice.

(a) Thymic cellularity in wild type (n=9) and Tet2-3 DKO (n=10) mice at 3-4 weeks of age.

(b) Top, Analysis of DN, DP, CD4 and CD8 SP thymic subsets defined by surface staining for CD4 and CD8 markers. Bottom, Representation of these subsets after gating out iNKT cells as defined by αGalCer-CD1d and TCRβ staining.

(c) Percentage and (d), Number of DP, CD4 SP and CD8 SP cells in the thymus of WT (n=6) and Tet2-3 DKO (n=5) mice at 3-4 weeks.

(e) Representation of CD4 and CD8 T cells in lymph nodes (LN, top) and spleen (bottom) of WT and Tet2-3 DKO mice at 3-4 weeks.

(f) Total number of cells in lymph nodes (LN) of 3-4 week old WT (n=3) and Tet2-3 DKO (n=3) mice.

(g) Percentage and number of CD4 and CD8 cells in the LN of WT (n=6) and Tet2-3 DKO (n=3) mice analyzed at 3-4 weeks old.

(h) Percentage and number of CD4 and CD8 cells in the spleen of WT (n=6) and Tet2-3 DKO (n=3) mice analyzed at 3-4 weeks old.

Data are mean ± SEM. *P<0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001 (unpaired t test).

At least 3 independent experiments were performed.
Supplementary Figure 3

Profound loss of TET proteins is required for dysregulated expansion and function of iNKT cells.

(a) iNKT cells in the thymus of representative 20 day-old WT versus Tet2\(^{-/-}\), Tet3 KO and Tet2-3 DKO mice, defined by staining with αGalCer-CD1d tetramer and anti-TCRβ.

(b) Increased percentages (left) and numbers (right) of iNKT cells in spleens isolated from 4 week-old WT (n=6), T2\(^{-/-}\) (T2 KO, n=3), T3 KO (n=3) and Tet2-3 DKO (n=10) mice.

(c) Histogram evaluating the expression of ROR\(\gamma\)t (left); PLZF (center); and CD4 (right) in WT, single Tet2\(^{-/-}\) (Tet2 KO), Tet3 KO, Tet2-3 DKO thymic iNKT cells.

(d, e) Histogram evaluating the expression of ROR\(\gamma\)t in the spleen (d) and lymph nodes (e) of WT, single Tet2\(^{-/-}\), Tet3 KO, Tet2-3 DKO iNKT cells.

Data are mean ± SEM. *P<0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001 (unpaired t test)
Supplementary Figure 4

Cytokine production in Tet2-3 DKO iNKT cells.
(a) Representative flow cytometric analysis of IL17 secretion by αGalCer-CD1d tetramer⁺ TCRβ⁺ cells.
(b) Percentage of IL17-secreting iNKT cells among total iNKT cells.
(c) Percentage of IL17-secreting iNKT cells among total thymocytes.
(d) Representative flow cytometric analysis of IFNγ secretion by αGalCer-CD1d tetramer⁺ TCRβ⁺ TCR cells.
(e) Percentage of IFNγ-secreting iNKT cells among total iNKT cells.
(f) Percentage of IFNγ-secreting iNKT cells among total thymocytes.
(g) Representative flow cytometric analysis of IL4 secretion by αGalCer-CD1d tetramer⁺ TCRβ⁺ cells.
(h) Percentage of IL4-secreting iNKT cells among iNKT cells.
(i) Percentage of IL4-secreting iNKT cells among total thymocytes.

In all cases (a-i) 3 mice per genotype were evaluated in 2 independent experiments.

(j) CD8 SP thymocytes were assessed by flow cytometry for the expression of markers that characterize memory-like CD8 cells: surface markers CD122, CD44, CXCR3 and the transcription factor Eomes.
(k) Percentage of CD8 SP thymocytes that express CD122, CD44, CXCR3 and Eomes. WT (n=3) and Tet2-3 DKO (n=3) mice. For (j) and (k) 3 independent experiments were performed.

Data are mean ± SEM. *P<0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001 (unpaired t test)
a) \(\alpha\)-GalCer-CD1d tetramer\(^{+}\) NK1.1\(^{+}\) cells in WT and Tet2-3 DKO mice.

b) Frequency of NKT17 (PLZF\(^{+}\) ROR\(\gamma\)\(^{+}\)) cells in NK1.1\(^{-}\) iNKT cells.

c) PLZF-AF487 and Tbet-AF488 expression in WT and Tet2-3 DKO mice.

d) Frequency of PLZF\(^{+}\) Tbet\(^{+}\) NKT1 precursors in NK1.1\(^{-}\) iNKT cells.

f) \(\alpha\)-GalCer-CD1d tetramer\(^{+}\) TCR\(\beta\)\(^{+}\) NK1.1\(^{+}\) cells in WT and Tet2-3 DKO mice.

g) IFN\(\gamma\) expression in WT and Tet2-3 DKO iNKT cells.
Supplementary Figure 5
Increase of NKT17 subset and reduction of NKT1 precursors in the NK1.1- Tet2-3 DKO iNKT cells.

(a) Representative flow cytometric analysis of transcription factors PLZF and RORγt in αGalCer-CD1d tetramer+ CD24- TCRβ+ NK1.1- iNKT cells reveals dramatic increase of NKT17 subset.

(b) Percentage of iNKT cells expressing PLZF and Rorγt (NKT17 subset) among the NK1.1- iNKT cells. n=5 WT mice and 7 Tet2-3 DKO mice. Data are compiled from 4 independent experiments.

(c) Representative flow cytometric analysis of PLZF and T-bet expression in NK1.1- iNKT cells. The frequency of PLZF+Tbet+ NKT1 precursor cells is reduced. One representative experiment of 4 is shown.

(d) Percentage of iNKT cells expressing PLZF and T-bet (NKT1 precursor cells) among NK1.1- iNKT cells. p<0.0001. n=5 WT mice and 7 Tet2-3 DKO mice. Data are compiled from 4 independent experiments.

(e) Representative flow cytometric analysis of transcription factors PLZF and T-bet in αGalCer-CD1d tetramer+ CD24- TCRβ+ NK1.1+ iNKT cells shows expression of RORγt and emergence of an aberrant PLZFhigh Tbet+ population.

(f) αGalCer-CD1d tetramer+ TCRβ+ NK1.1+ WT and Tet2-3 DKO iNKT cells were stimulated ex vivo with PMA and ionomycin. Representative flow cytometric analysis of αGalCer-CD1d tetramer+ cells that secrete IFNγ is shown.

(g) Percentage of WT and Tet2-3 DKO αGalCer-CD1d tetramer+ CD24- TCRβ+NK1.1+ iNKT cells that secrete IFNγ. One of 2 independent experiments is shown. Cells isolated from 3 different mice/ genotype were evaluated.

Data are mean ± SEM. **P< 0.01, ****P< 0.0001 (unpaired t test)
Supplementary Figure 6

Correlation of DNA modifications (5mC and 5hmC) with gene expression

(a) Composite analysis of methylation (5mC+5hmC) in genes with decreased (left, downregulated) or increased (middle, upregulated) expression in young Tet2-3 DKO iNKT cells compared to WT. Right, Methylation in random genomic fragments.

(b) Methylation changes in the promoter (left) and the gene body (right) of individual differentially-expressed genes, plotted against the ratio of their expression in WT versus young Tet2-3 DKO iNKT cells. Each dot represents a gene. Up (red dots) 698 genes with higher expression in WT compared to Tet2-3 DKO iNKT cells; Down (blue dots), 649 genes with lower expression in WT compared to Tet2-3 DKO iNKT cells.

Nature Immunology: doi:10.1038/ni.3630
Supplementary Figure 7

Differentially modified regions (DMRs) and differentially accessible regions (DARs) in genes related to the iNKT cell specification program.

Genome browser views of DNA modification (5mC+5hmC) identified by WGBS and chromatin accessibility identified by ATAC-seq in (a) Tbx21; (b) Zbtb7b and (c) Rorc genes in common lymphoid progenitors (CLP, purple), WT iNKT cells (blue) and young Tet2/3 DKO iNKT cells (green). The arrow indicates the direction of transcription. Statistically significant DMRs (black) or DARs (purple for gain of accessibility in Tet2/3 DKO or black for more accessibility in WT iNKT cells) are indicated by horizontal bars. Selected regions in which modification or/and accessibility is altered from CLP to iNKT cells, and then progressively is affected in young iNKT cells are highlighted (salmon shading). For each gene, the gene expression level (RPKM) in each cell type is indicated.
Supplementary Figure 8

Portraits of DNA modification and gene expression of selected downregulated cytokines and transcription factors in Tet2-3 DKO iNKT cells.

(a)-(c), Genome browser views of DNA modification (5mC+5hmC, identified by WGBS) and chromatin accessibility (identified by ATAC-seq) in a, Il4; b, Ifng and c, Bcl11b genes in common lymphoid progenitors (CLP, purple), WT iNKT cells (blue) and young Tet2-3 DKO iNKT cells (green). The arrow indicates the direction of transcription. Statistically significant DMRs (black) or DARs (purple for gain of accessibility in DKO or black for more accessibility in WT) are indicated by horizontal bars. Selected regions in which DNA modification or/and accessibility is altered from CLP to iNKT cells, and then progressively affected in young iNKT cells, are highlighted (salmon shading). For each gene the expression (RPKM) in each cell type is indicated.
Supplementary Methods

DATA ANALYSIS

RNA-seq data analysis. The reads were mapped to the *Mus musculus* genome (mm9) as well as UCSC transcriptome (downloaded on 05/17/2011) using Tophat\(^1\). Multimapped reads were discarded. The read counts for each gene were quantified using HTSeq-count tool\(^2\) with parameters: `-m union -s reverse`. Differential expression analysis was performed using edgeR\(^3\) R package. Genes with RPKM less than 1 in at least two replicates in each compared condition were filtered out before differential-expression calling. Dispersion was estimated as tag-wise dispersion. Genes with FDR<0.05 and at least 1.5-fold difference in expression were identified as differentially expressed. SMARTseq samples were analyzed in the same way except NK1.1\(^-\) and NKT1 samples were mapped with Tophat2. Read counts for all SMART-seq samples were quantified using HTSeq-count tool with parameters: `-m union`.

Heatmaps (Fig. 3b). RPKM values were transformed into row-wise z-scores and then ordered using hierarchical clustering with Euclidean distance and Ward's minimum variance method.

Heatmap of TFs (Fig. 4e). The log\(_2\) fold changes were ordered and truncated between -2 and 2.

Enriched pathways. Enriched KEGG pathways were derived with GeneTrail tool\(^4\) using default parameters and all UCSC mouse genes as a background.

CMS-IP seq. The reads of CMS-IP and input samples were mapped to the mm9 genome and lambda phage DNA using Bismark mapping tool\(^5\) with default parameters. The mapping was done using the Bowtie 2\(^6\) backend in the paired-end mode. Enriched regions (ERGs) relative to input DNA were detected using the “findPeaks” routine in HOMER \(^7\) with parameters: `-style histone -size 500`.

In **Fig. 5a**, genes were categorized based on their expression and extended 10% of length upstream from transcription start sites (TSS) and downstream from transcriptional termination sites (TTS). Regions were separated into 101 equal-sized bins and average
counts per million reads values for each bin were calculated. Finally, \log_2 ratio between CMS-IP and input was calculated for each bin. Plotting was done using ngs.plot.\(^8\)

Identifying tissue-specific enhancers. Tissue-specific enhancer lists can be found: http://chromosome.sdsc.edu/mouse/download.html

Mapping of WGBS data. We employed BSMAP (v2.74)\(^9\) to align paired-end reads from bisulfite-treated samples to the mm9 mouse reference genome allowing 4 mismatches. Reads mapping to multiple locations in the reference genome with the same mapping score were removed as well as the 5’ ends bearing a quality lower than 20 (-R -p 12 -n 0 -v 4 -w 2 -r 1 -q 20).

Bisulfite conversion efficiency was estimated based on cytosine methylation in non-CpG context. For all the samples the bisulfite conversion efficiency was higher than 0.996. Duplicated reads caused by PCR amplification were removed by BSeQC (v1.2.0)\(^10\) applying a Pvalue cutoff Poisson distribution test in removing duplicate reads($1e^{-5}$). Consequently, a maximum of three stacked reads at the same genomic location were allowed and kept for further analysis. In addition, BSeQC was employed for removing DNA methylation artifacts introduced by end repair during adaptor ligation. Overlapping segments of two mates of a pair were reduced to only one copy to avoid considering the same region twice during the subsequent DNA methylation quantification.

Methylation calling. To estimate CpG DNA methylation at both DNA strands, we executed the methratio.py script, from BSMAP (v2.74)\(^9\) (-t 0 -g 1 -x CG -i correct).

DMR discovery -BSseq-. To identify differentially methylated cytosines (DMCs), pairwise comparisons between different groups [CLPs (n=2 technical replicates), wild-type (n=2 biological replicates) and Tet2-Tet3 DKO (n=2 biological replicates) iNKT cells] were performed with BSseq (v1.2.0)\(^11\). We required each tested CpG to be covered by at least 2 reads in each of the samples. We kept 2% of the most significantly different CpGs for the subsequent determination of DMRs, defined as more than 5 adjacent CpGs with more than 10% increase/decrease and no more than 500 bp away from one another. From those pre-determined DMRs we filtered those who had a median change of higher than 10% using a FDR of 5%. DMRs with at least 25% difference in
5mC+5hmC were used to generate the heatmap in Figure 6a. CLP data for two technical replicates are from\(^1\)\(^2\) (accession code SRX852183).

Annotation of DMRs. We used annotatepeak.pl script from HOMER\(^7\) suite to annotate the Hyper- and Hypo- methylated DMRs to a region in the genome. DMRs falling inside 2000 bp upstream and 500 bp downstream of TSS were defined as DMR falling in promoter region. All the other functional annotations were retrieved as they are from annotatepeak.pl table results, i.e. exons, introns, 3′, 5′ and intergenic regions. The same procedure was conducted using all the CpGs in the mm9 genome, used as control for further comparisons.

Identification of DMRs overlapping with 5hmC (CMS-IP). Tet2-Tet3 DKO DMRs with at least 20% difference when compared to wild-type iNKT cells were identified (10,945 and 767, respectively). These were overlapped with CMS-IP peaks (5hmC peaks from wild-type iNKT cells) using bedtools intersect and a threshold of 50% minimum region intersection. We obtained 4568 more-methylated regions and 10 less-methylated regions in DKO-intersecting 5hmC peaks. The results are shown in Table 1.

Correlation of DNA modifications (5mC and 5hmC) with differential gene expression. The distance from the transcription start site (TSS) to the transcription termination site (TTS) for each differentially expressed gene was divided into 100 bins. The average change in DNA modification within each gene body (bins 26-100) and each promoter (+/- 2 kb relative to TSS) was calculated. The values against the log\(_2\)-fold change in expression of the corresponding gene were plotted. The data of this analysis are shown in Supplementary Fig. 6b.

Discovery and Annotation of differentially accessible regions (DARs).

Mapping: For each sample, paired end ATAC-seq data was mapped against the mm9 using bowtie\(^\text{13}\) (-p 8 -m 1 --best --strata -X 2000 -S --fr --chunkmbs 1024). Unmapped reads were processed with trim galore\(^\text{14}\) and remapped using bowtie with the same parameter settings as described above. Sequencing reads mapping to the reference genome in this second round were merged with the initial mapping results. The merged results were filtered for duplicated reads using PICARD tools 1.94.
Identification of Accessible Regions. To identify accessible regions per sample, ATAC-seq mapping results were processed with MACS2 \(^\text{16}\) (callpeak -f BAMPE -g mm --nomodel --shiftsize 75 -q 0.01 --keep-dup 10 --call-summits). Reproducible accessible regions per condition were defined by calculating the Irreproducibility Discovery Rate\(^\text{17}\). Reproducible accessible regions per condition were merged, resulting in 27,913 and 26,563 accessible regions in \textit{Tet2-Tet3 DKO} young or wild-type \textit{iNKT} cells, respectively.

Differentially Accessible Regions. To identify genomic regions preferably accessible in wild-type or \textit{Tet2-Tet3 DKO} young \textit{iNKT} cells, mapped paired-end ATAC-seq data was quantified at previously defined accessible regions in \textit{Tet2-Tet3 DKO} young and wild-type \textit{iNKT} cells using MEDIPS 1.21.3. (quantile=T, fold change $\geq |\log_2(2)|$, FDR ≤ 0.05, minrowSum=10). The resulting 3,162 and 2,711 genomic regions preferably accessible in \textit{Tet2-Tet3 DKO} young or wild-type \textit{iNKT} cells, respectively, are visualized in the MA plot in Fig. 7a.

Identification of DARs marked by 5hmC in wild-type \textit{iNKT} cells. DARs were overlapped with CMS-IP peaks (5hmC enriched regions in wild-type \textit{iNKT} cells) using bedtools intersect requiring a threshold of 50% minimum region intersection resulting in 87 5hmC marked DARs preferably accessible in \textit{Tet2-Tet3 DKO} young \textit{iNKT} cells and in 1,018 DARs preferably accessible in wild-type \textit{iNKT} cells.

Transcription factor motif enrichment in DARs. Unique peaks for each condition were used to do a motif search with HOMER’s findMotifsGenome.pl\(^\text{7}\). The commonly accessible regions between wild-type and \textit{Tet2-Tet3 DKO} \textit{iNKT} cells were provided as background to the findMotifsGenome.pl model. Besides masking repetitive elements, we used the default parameters of the program.

References related to Supplementary Methods

