CaltechAUTHORS
  A Caltech Library Service

Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiO_x/TiO_2 anode and stainless steel cathode: Current and energy efficiency

Cho, Kangwoo and Hoffmann, Michael R. (2017) Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiO_x/TiO_2 anode and stainless steel cathode: Current and energy efficiency. Applied Catalysis B, 202 . pp. 671-682. ISSN 0926-3373. http://resolver.caltech.edu/CaltechAUTHORS:20161208-083729182

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20161208-083729182

Abstract

Electrochemical hydrogen evolution reaction (HER) has been recognized as a viable approach to generate a clean energy fuel. However, substantial technical breakthroughs are needed to reduce the costs for electricity and chemical reagents. In this study, we explore a specific wastewater electrolysis cell (WEC) as an alternative of decentralized H_2 production coupled with onsite water treatment. A prototypical WEC consists of a multi-junction semiconductor anode and a stainless steel cathode paired in single compartment cell. A distinct layer of BiO_x/TiO_2 on anode surface had relatively low crystallinity that was shown to be beneficial for higher oxide formation and O_2 evolution. The over-potential and Tafel slope of the BiO_x/TiO2 anode were determined to be 0.32 V and 120 mV decade^(−1). In a single compartment WEC with a NaCl electrolyte ([Cl−] ≤50 mM), the current density (j) ranged up to 500 A m^(−2) at cell voltages less than 6 V, while the current efficiency (CE) for free chlorine (FC) evolution showed maximum value near 0.3. The CE and energy efficiency (EE) for the HER were assessed using NaCl solutions (50 mM with or without 2.5 g L^(−1) urea) and real wastewater with variable compositions ([Cl−]: 6–33 mM, [chemical oxygen demand]: 60–790 mg L^(−1)). The ohmic resistance of wastewater electrolyte rules out the usage of membrane separation, resulting in side reactions such as reduction of O_2 whose CE values monotonically decreased with an increasing j under the diffusion controlled regime. Chloride ions reduce the electron consumption during O_2 reduction, while elevated levels of FC significantly lower the CE for the HER. The combined presence of oxidizable organic compounds and Cl− enhance the CE for the HER as long as the concentration of organics is enough to quench FC to maintain a pseudo steady-state concentration. The highest CE (0.8) and EE (0.23) for HER were observed during electrolysis of real wastewater at j values exceeding 200 A m^(−2). However, a dependency of value of EE on the applied cell voltage needs to be addressed further.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1016/j.apcatb.2016.09.067 DOIArticle
http://www.sciencedirect.com/science/article/pii/S092633731630755XPublisherArticle
ORCID:
AuthorORCID
Hoffmann, Michael R.0000-0002-0432-6564
Additional Information:© 2016 Elsevier B.V. Received 21 May 2016, Revised 12 August 2016, Accepted 27 September 2016, Available online 28 September 2016.
Subject Keywords:Hydrogen; Wastewater; Electrolysis; BiO_x/TiO_2 anode; Stainless steel cathode
Record Number:CaltechAUTHORS:20161208-083729182
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20161208-083729182
Official Citation:Kangwoo Cho, Michael R. Hoffmann, Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: Current and energy efficiency, Applied Catalysis B: Environmental, Volume 202, March 2017, Pages 671-682, ISSN 0926-3373, http://dx.doi.org/10.1016/j.apcatb.2016.09.067. (http://www.sciencedirect.com/science/article/pii/S092633731630755X)
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:72658
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:08 Dec 2016 21:40
Last Modified:08 Dec 2016 21:40

Repository Staff Only: item control page