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Abstract

We consider the properties of optimal �xed-rate and entropy-constrained

scalar quantizers for �nite alphabet sources. In particular, w econsider con-

ditions under which the optimal scalar quantizer with contiguous codecells

achieves performance no worse than the optimal scalar quantizer without the

constraint of codecell contiguit y.In addition to traditional scalar quantizers,

w econsider multi-resolution scalar quantizers and multiple description scalar

quantizers and also look brie
y at codes with decoder side information (Wyner-

Ziv codes). While the conditions under which codecell contiguit y is consistent

with optimality in �xed-rate and entropy-constrained scalar quantization are
quite broad, even with the squared error distortion measure, codecell contigu-

ity in �xed-rate and entropy-constrained multi-resolution, multiple description,

and Wyner-Ziv scalar quantization can preclude optimality for some sources.

1 Introduction

A scalar quantizer encoder de�nes a partition P of the scalar source alphabet X ;
each set c 2 P of the encoder's partition is a code cell describing all source symbols
x 2 X that map to a single binary description. Given an ordered, scalar alphabet,
we sa y that encoder partition P of X has contiguous codecells if for any codecells
c; c0 2 P with c 6= c0, xi < xj for some xi 2 c and xj 2 c0 implies x < x0 for all
(x; x0) 2 c � c0. While it is common to think of the codecells of an optimal scalar
quantizer as contiguous subsets (i.e., intervals) of the real line, in [1 ] Gy�orgy and
Linder show that there exist �nite-alphabet sources for which some rate-distortion
points on the lower boundary (but not the conv ex hull) of the variable-rate scalar
quantization operational distortion-rate bound cannot be ac hieved using an encoder
with contiguous codecells.

�This material is based upon work partially supported by the NSF under Award No. CCR-

9909026 and by the Caltech Lee Center for Advanced Netw orking.
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We here consider the question of codecell contiguity for �xed-rate and entropy-
constrained scalar quantization (SQ), multi-resolution scalar quantization (MRSQ),1

and multiple description scalar quantization (MDSQ) with and without decoder side
information. We focus on �nite-alphabet sources on the real line.

2 Set-Up

Consider an ordered, �nite, scalar alphabet X = fx1; : : : ; xNg � IR. Let p[1] � � �p[N ]
be an arbitrary probability mass function (pmf) on X . We assume a non-negative dis-
tortion measure d(x; x̂) and consider the properties of optimal �xed-rate and entropy-
constrained SQ, MRSQ, and MDSQ for pmf p[1] � � � p[N ] on alphabet x1 � � �xN . F or
notational simplicity, we refer to scalar source alphabet x1 � � �xN b y the symbol in-
dices, writing 1 � � �N to denote the full alphabet.

We de�ne the encoders for SQ, MRSQ, and MDSQ using one or more partitions
on 1 � � �N . Each partition divides the alphabet into non-ov erlapping codecells; each
codecell describes all symbols giv ena particular binary description. We de�ne an
SQ encoder b y a single partition P; each codecell c 2 P describes a collection of
source symbols giv enthe same binary description. We de�ne the encoder of an M -
resolution MRSQ (M -RSQ) using M partitions PM = (P1; : : : ;PM); each codecell
ci 2 Pi describes a collection of source symbols giv enthe same binary description in
resolutions 1 � � � i. We de�ne the encoder of anM -description MDSQ (M -DSQ) using
M partitions PM = P1; : : : ;PM ; each codecell ci 2 Pi describes a collection of source
symbols giv enthe same binary description in pack et i.

In both �xed-rate and en tropy-constrained coding, the expected distortions and
rates of the optimal SQ, MRSQ, and MDSQ with a given partition or set of partitions
are simple functions of the partitions. We next describe these functions. Given an
encoder de�ned b ypartition P, the expected distortion of the corresponding code is
independent of the code type. In contrast, the expected rates vary with the code
type. We beginwith the distortion calculation.

The expected distortion for the optimal code de�ned b ypartition P is

D(P) =
X
C2P

X
n2C

p[n]d(xn; �(C)):

Here �(C) denotes the optimal codeword for codecell C. F or example, whend(x; x̂) =
(x � x̂)2, the optimal codeword �(C) is the centroid �(C) =

P
n2C p[n]xn=p(C) of

codecell C, where p(C) =
P

n2C p[n] denotes the probability of codecell C.
The expected rate of a �xed-rate SQ (FR-SQ) with encoder partition P is

Rfr(P) = log jPj (1)

bits. We measure expected rate for variable-rate codes by the codecell entropies. The
expected rate of an en tropy-constrained SQ (EC-SQ) with encoder partition P is

Rvr(P) = �
X
C2P

p(C) log p(C): (2)

1Multi-resolution codes are also commonly known as progressive transmission, successive-

re�nement, embedded, or scalable codes.
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The rate calculation for an M -RSQ relies on the successive re�nement in its par-
titions. P artitionP re�nes P 0 (written P 0 � P) if for any C 2 P 0 there exists a
collection of cells c1 � � � ck 2 P so that P(C) = fc1 � � � ckg is a partition of C. Since
M -RSQ descriptions are nested, the M -RSQ partitions are also nested. T ohav e the
same description in resolutions 1 � � � i, two symbols must hav e the same descriptions
in resolutions 1 � � � i� 1. Thus in any M -RSQ, P1 � P2 � � � � � PM .

The ith-resolution rate of an M -RSQ is the expected number of bits in an in-
cremental description of codecell ci 2 Pi given the codecells c1 � � � ci�1 described in
previous resolutions. F or �xed-rate MRSQ (FR-MRSQ), the rate in resolutioni equals

Rfr(PijPi�1) = max
C2Pi�1

log jPi(C)j:

For entropy-constrained MRSQ (EC-MRSQ) the rate in resolution i equals

Rvr(PijPi�1) = �
X

C2Pi�1

p(C)
X

c2Pi(C)

p(cjC) log p(cjC);

where p(cjC) = p(c)=p(C). (In both cases, P0 = f1 � � �Ng.)
For MDSQ, we assume that each pack et description must be uniquely decodable

when only that pack et is received, so we again use (1) and (2). The expected rate
in resolution i of a �xed-rate MDSQ (FR-MDSQ) is Rfr(Pi). The expected rate in
resolution i of an entropy-constrained MDSQ (EC-MDSQ) is Rvr(Pi).

Given this set-up and notation, we next consider the properties of optimal parti-
tions for�xed-rate and en tropy-constrained SQ, MRSQ, and MDSQ.

3 Scalar Quantization

LetDfr = f(Rfr(P); D(P))g andDvr = f(Rvr(P); D(P))g describe the sets of expected
rate-distortion points ac hievable through FR-SQ and EC-SQ on pmf fp[n]gNn=1. An
FR-SQ that ac hieves a point on the lower boundary Dfr

1 (R) = infP:Rfr(P)�RD(P) of
Dfr is optimal in the sense that it has the lowest distortion among all FR-SQs satis-
fying some rate constraint. An EC-SQ that ac hieves a point on the lower boundary
Dvr

1 (R) = infP:Rvr(P)�RD(P) of Dvr is optimal in the sense that it has the lowest dis-
tortion among all EC-SQs satisfying some rate constraint. While Dfr

1 (R) and Dvr
1 (R)

are not conv ex in general and any point on the lower conv ex hull ofDfr
1 (R) andD

vr
1 (R)

can be achieved through time-sharing, the abov e de�nitions for optimal FR-SQs and
EC-SQs does not require performance on the conv ex h ull ofDfr

1 (R) or D
vr
1 (R); time-

sharing strategies, while low in complexity, are not strict scalar codes.
We begin by proving the optimality of codecell contiguity for FR-SQ and EC-SQ.

While codecell contiguity for FR-SQ is widely known for common distortion measures
like the squared-error distortion measure, the proof sets the stage for later arguments
and we include it for completeness.

Lemma 1 Given a pmf p[1] � � �p[N ] and a distortion measure d(x; x̂) = �(jx � x̂j)
for some non-decr easingfunction � : [0;1)! [0;1), any point (R;Dfr

1 (R)) 2 D
fr is

achievable by a �xed-rate SQ with contiguous code cells.
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Proof:We prov e that for any partition P = fc1; : : : ; cKg with optimal codewords
�(c1) � � � � � �(cK), there exists another partition P? with contiguous codecells
fc?kg

K
k=1 that satis�es

PK
k=1

P
n2c?

k
p[n]d(xn; �(ck)) � D(P). Since (R;Dfr

1 (R)) 2 D
fr

implies, b y de�nition of Dfr, the existence of an encoder partition P such that
log jPj � R and D(P) = Dfr

1 (R), this observation gives the desired result.
F or each k; l 2 1 � � �K, let

c0k;l =

(
fn : d(xn; �(ck)) < d(xn; �(cl))g if l < k
fn : d(xn; �(ck)) � d(xn; �(cl))g if l � k:

Then d(x; x̂) = �(jx� x̂j) and � non-decreasing imply that the c0k;l are half-lines. F or
example, if � is strictly increasing, then c0k;l = fn : xn > (�(ck) + �(cl))=2g for each
l < k and c0k;l = fn : xn � (�(ck) + �(cl))=2g for each l � k. The set c?k = \Kl=1c

0
k;l,

describes all n 2 1 � � �N for which �(ck) is the closest codeword, with ties broken
in fav or of the smallest codeword. Since the c0k;l are half-lines, each c?k must be an
interval. Finally, P? = fc?kg

K
k=1 partitions 1 � � �N (ev eryxn has a unique closest

codeword) and minimizes expected distortion, giving the desired result. 2
We make two modi�cations in generalizing Lemma 1 from FR-SQ to EC-SQ.

First, we consider only points on the conv ex hull of Dvr(R). Second, we assume � is
convex. The �rst constraint is practically motivated since the Lagrangian performance
measure used for EC-SQ design can at best �nd the lower conv ex hull of Dvr(R); it is
also theoretically motivated since there exist points on Dvr(R) (but not on its conv ex
h ull) that cannot be ac hieved with contiguous codecells [1]. The motivation for the
second constraint is discussed after Theorem 1.

Theorem 1 Given a pmf p[1] � � �p[N ] and a distortion measure d(x; x̂) = �(jx� x̂j)
where � : [0;1)! [0;1) is convex and non-decr easing, anypoint (R;Dvr

1 (R)) 2 D
vr

on the lower convex hull of Dvr
1 (�) is achievable by an EC-SQ with contiguous code cells.

Proof: For any point (R;Dvr
1 (R)) 2 D

vr, there exists a partition P with Rvr(P) �
R andD(P) � Dvr

1 (R). We assume without loss of generality that jPj � N <1 since
any partition with more than N codecells must include empty codecells and empty
codecells cannot improv e EC-SQ performance. If (R;Dvr

1 (R)) 2 D
vr is on the lower

convex hull ofDvr
1 (�), then there exists a � > 0 such that P minimizesD(P)+�Rvr(P)

ov er all partitions on 1� � �N . Let P = fc1; : : : ; cKg (K � N) with optimal codewords
�(c1) � � � � � �(cK). We next construct a contiguous codecell partition P? = fc?kg

K
k=1

that satis�es
PK

k=1

P
n2c?

k
p[n](d(xn; �(ck)) + �r(ck)) � D(P) + �Rvr(P).

For any x 2 [x1; xN ] and c 2 c1 � � � cK, let j(x; c) = d(x; �(c)) + �r(c). Then for
each k; l 2 1 � � �K, let

c0k;l =

(
fn : j(xn; ck) < j(xn; cl)g if l < k
fn : j(xn; ck) � j(xn; cl)g if l � k:

F rom [1, Lem. 1], if�(x) is conv ex and non-decreasing inx, then �(jx�x̂1j)��(jx�x̂2j)
is monotonic in x. Since �(jx� x̂1j)� �(jx� x̂2j) is monotonic in x, j(x; ck)� j(x; cl)
is monotonic in x for each (k; l). As a result, each non-empty c0k;l is a half line. The
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set c?k = \Kl=1c
0
k;l, describes all n 2 1 � � �N for which �(ck) is the \closest" codeword

b y this modi�ed nearest neighbor distortion measure, with ties broken in favor of the
smallest codeword. Since the c0k;l are half-lines, each c?k must be an interval. Again
P? = fc?kg

K
k=1 partitions 1 � � �N , and th uswe hav e the desired result. 2

If � is non-decreasing and not convex, then codecell contiguity may preclude en-
coder optimality for some source distributions. In particular, guaranteeing a unique
solution to �(jx � aj) + �r1 = �(jx � bj) + �r2 requires monotonicity of �(jx � aj) �
�(jx� bj) in x. We next show that monotonicity of �(jx� aj)� �(jx� bj) in x for all

a; b requires conv exit yof �.
For any �xed a < b, let

f(x) = �(jx� aj)� �(jx� bj)

=

8><
>:

�(a� x)� �(b� x) if x < a
�(x� a)� �(b� x) if a � x � b
�(x� a)� �(x� b) if x > b:

We next consider the conditions under which f(x) is monotone. If � is non-decreasing,
then f(x) is non-decreasing on [a; b]. This lea v estwo possibilities: either f(x) is
constant on [a; b] or f(a) < f(b). The �rst case cannot be true for all [a; b] (that is
all codewords) unless �(x) is linear in x, which gives a conv ex function. In the second
case, monotonicity of f(x) requires that �(a � x) � �(b � x) is non-decreasing for
all x < a and that �(x � a) � �(x � b) is non-decreasing for all x > b. The second
condition gives �(x� a)� �(x� b) � �(x +�� a)� �(x +�� b) or

�(x +�� b)� �(x� b) � �(x +�� a)� �(x� a)

for all x > a and any � > 0. Achieving this result for all a; b requires the convexity
of �. Since, we can construct a pmf with optimal codewords at locations (a; b) for
any a; b, guaranteeing the monotonicity of �(jx� �(c1)j)� �(jx� �(c2)j) for all pmfs
requires the convexity of �(x) in x.

4 Multi-Resolution Scalar Quantization

Next, consider the properties of the partitions of optimal FR-MRSQ and EC-MRSQ.
F orany RM = R1; : : : ; RM with Ri � 0 for all i 2 1 � � �M , the rate-distortion points
achievable by �xed-rate-RM and entropy-constrained M -RSQs are

Dfr(RM) = f(Ri; D(Pi)) j
M
i=1 : P

M 2 PP fr(RM)g

Dvr = f(Rvr(PijPi�1); D(Pi)) j
M
i=1 : P

M 2 PPvrgg

respectively, where

PPfr(RM) = fPM : PM � � � � � P1 ^Rfr(PijPi�1) � Ri 8ig

PPvr = fPM : PM � � � � � P1g:

An M -RSQ that ac hieves a point on a lower boundary of Dfr(RM) (for any non-
negative RM) or Dvr is in some sense optimal. (In �xed-rate-RM coding, each lower

Proceedings of the DATA COMPRESSION CONFERENCE (DCC�02) 
1068-0314/02 $17.00 © 2002 IEEE 



boundary describes the minimal value of some Dj subject to constraints on fDigi6=j.
In entropy-constrained coding, each lower boundary describes the minimal value of
some Di or Ri subject to constraints on the remaining rates and distortions.)

While the lower boundaries of Dfr(RM) and Dvr are not conv ex in general, optimal
M -RSQ design algorithms focus on ac hieving points on the lower conv ex h ull of
Dfr(RM) and Dvr. For any PM

? 2 PP fr(RM) that achieves a point on the lower conv ex
hull of Dfr(RM), there exists a positive vector �M = f�ig

M
i=1 for which P

M
? minimizes

the Lagrangian

J fr(PM ; RM ; �M) =
MX
i=1

�iD(Pi)

over all PM 2 PPfr(RM). Similarly, for any PM
? 2 PPvr that achieves a point on the

lower convex hull of Dvr there exist positive v ectors �M = f�ig
M
i=1 and �M = f�ig

M
i=1

such that PM
? 2 PPvr minimizes the Lagrangian

Jvr(PM ; �M ; �M) =
MX
i=1

[�iD(Pi) + �iR
vr(PijPi�1)]

over all PM 2 PPvr.
We next prov e the existence of pmfs for which the constraint of codecell contiguity

in P1 precludes optimality even for points on the lower conv ex h ull ofDfr(RM) with
d(x; x̂) = �(jx� x̂j) and � convex. One such example follows.

Example 1: Let d(x; x̂) = (x� x̂)2, and consider pmf f1=8; 1=8; 3=8; 3=8g
on alphabet f20; 40; 60; 140g. Then for M = 2 there exists a point on the
lower conv ex hull ofDfr((1; 1)) that cannot be achieved with codecell conti-
guity. In particular, in order to minimizeD1 with incremental ratesR1 = 1
and R2 = 1 and distortion D2 = 0, we must use non-contiguous codecells
at resolution 1. Equivalently , for all �1; �2 such that �1=�2 < :02695, op-
timality requires non-contiguous codecells at resolution 1. The optimal
partitions (in terms of the symbol alphabet rather than the symbol in-
dices) are P1 = ff20; 60g; f40; 140gg and P2 = ff20g; f60g; f40g; f140gg.
Figure 1(a) shows the corresponding optimal 2RSQ codebook.

Intuitively ,requiring incremental rates of 1 and 1 leads to a binary tree,
and using a value of �2 high enough to force D2 to zero forces each source
symbol to occupy a distinct leaf at depth 2 in that tree. The only task,
then, is to �nd the partitionP1 that minimizesD(P1) ov er allP1 = fc1; c2g
with jc1j = jc2j = 2. Here clustering a low-probability symbol with each
high probability symbol leads to a lower expected distortion than could
be ac hieved if the closer, more probable symbols were grouped together.
This clustering choice would never be necessary in a single-resolution code
since the constraint jc1j = jc2j = 2 does not arise there.

The same problem can arise for en tropy-constrained MRSQs ac hieving perfor-
mance on the lower convex hull of Dvr, as shown in Example 2.
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Figure 1: (a) The optimal �xed-rate 2RSQ codebook for the scenario described in Ex-
ample 1 requires non-contiguous codecells at resolution 1. The codebook's resolution-
1 partition is P1 = ff20; 60g; f40; 140gg. (b) The optimal entropy-constrained 2RSQ
codebook for the scenario described in Example 2 requires non-contiguous codecells
in P1. Here P1 = ff20; 60g; f40; 80gg.

Example 2: ConsiderM = 2, d(x; x̂) = (x�x̂)2, pmf f1=8; 3=8; 1=8; 3=8g,
and alphabet f20; 40; 60; 80g. If �2 + 31:36�1 < �1 < �2 + 5951:16�1 and
�2 is su�ciently large to force D2 to 0, then achieving the optimal perfor-
mance requires non-contiguous codecells at resolution 1. The optimal par-
titions (in terms of the symbol alphabet not the symbol indices) are P1 =
ff20; 60g; f40; 80gg and P2 = ff20g; f60g; f40g; f80gg. The resolution-1
codewords are �(f20; 60g) = 40, �(f40; 80g) = 60, Rvr(P1) = :1414, and
Rvr(P2jP1) = 1. Figure 1(b) shows the optimal 2RSQcodebook.

This example treats another case where �2 is chosen su�ciently large to
force D2 to 0. Here, the tree structure need not be binary; nonetheless,
clustering together two high-probability and two low-probability events
yields a better rate-distortion tradeo� for the given parameter values than
any alternative clustering at resolution 1. Again, the constraint that each
source symbol must occupy a separate leaf at the second resolution of
the tree plays a critical role; without a competing constraint in another
resolution, the need for non-contiguous codecells would not arise here.

Theorem 2 Requiring codecell contiguity in partitionP1 of a �xed-rate or entropy-

constrained M-RSQ with M > 1 pr ecludes optimality for some �nite-alphabet sources,

even when d(x; x̂) = �(jx� x̂j) with � : [0;1)! [0;1) non-decreasing and convex.

The examples given abov e prov e the theorem. Since the squared error distortion
measure is popular for practical coding applications, Examples 1 and 2 treat the case
where d(x; x̂) = (x� x̂)2. Similar examples exist for other distortion measures [2].

There exist distortion measures for which the assumption of codecell contiguity
in the �nest partition (PM in an M -RSQ) rather than the coarsest partition (P1 in
Theorem 2) does not preclude optimality. Theorem 3 prov es this result for FR-MRSQ
with d(x; x̂) = (x� x̂)2. The same argument extends immediately to EC-MRSQ and
�xed-rate and en tropy-constrained MDSQ and restricted MDSQ [2].

Theorem 3 Given pmf p[1] � � �p[N ] and distortion measure d(x; x̂) = (x � x̂)2, any
point(RM ; DM) 2 Dfr(RM) that sits on the lower convex hull of Dfr(RM) is achievable
by a �xed-r ateMRSQ with contiguous code cellsin PM .
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Proof: For any point (RM ; DM) 2 Dfr(RM) on the lower convex h ullof Dfr(RM),
there exist partitions PM 2 PPfr(RM) with D(Pi) = Di for each i 2 1 � � �M . Since
(RM ; DM) is on the lower convex h ull ofDfr(RM), there exists a non-negative vector
�M for which PM minimizes J fr(PM ; Rm; �M) over all PM 2 PPfr(RM). Label the

codecells of each partition in PM as Pi = fci;1; : : : ; ci;K(i)g (K(i) � 2
Pi

j=1
Rj ) with op-

timal codewords �(ci;1); : : : ; �(ci;K(i)) for each i 2 1 � � �M . Without loss of generality,
we can index the codecells of PM so that �(cM;1) � �(cM;2) � � � � � �(cM;K(M)). Since
Pi+1 re�nes Pi for each i 2 1 � � �M � 1, let a(i; k) denote the index of the resolution-i
codecell from which codecell cM;k descends. (Here i 2 1 � � �M and a(M; k) = k for
all k 2 1 � � �K(M).) We next construct partitions P?M 2 PPfr(RM) so that P?

M has
contiguous codecells and the expected Lagrangian performance based on P?M is no
worse than that based on PM .

For any x 2 [x1; xN ] and any cM;k with k 2 1 � � �K(M), let

j(x; cM;k) =
MX
i=1

�id(x; �(ci;a(i;k))):

Then j(x; cM;k) describes the Lagrangian performance of the unique M -resolution
description with codecell cM;k in resolution M . F oreach k; l 2 1 � � �K, let

c0k;l =

(
fn : j(xn; cM;k) < j(xn; cM;l)g if l < k
fn : j(xn; cM;k) � j(xn; cM;l)g if l � k:

Since d(x; x̂) = (x � x̂)2, the di�erence j(x; cM;k) � j(x; cM;l) is linear in x for all
k 6= l. (The quadratic terms for k and l, which are weighted b y the same con-
stants �1; : : : ; �M , cancel.) As a result, each non-empty c0k;l is a half line, and the set
c?M;k = \Kl=1c

0
k;l, describes all n 2 1 � � �N for which f�(c?i;a(i;k))g

M
i=1 is the M -resolution

reproduction with the bestLagrangian performance. (Ties are broken in favor of the
smallest resolution-M codeword.) Since the c0k;l are half-lines, each c?M;k must be an

interval. The partition P?M = fc?M;kg
M
k=1, together with the ancestor relationships

described b y a(�; �), describe a partition P?M 2 PPfr(RM) with P?
i = fc?i;kg

K(i)
k=1 and

c?i;k = [k021���K(M):a(i;k0)=kc
?
M;k0. (Here jP

?
i j = jPij for all i b y construction.) Since P?M

minimizes the Lagrangian performance with respect to the given codebook,

K(M)X
k=1

X
n2c?

M;k

p[n]
MX
i=1

�id(xn; �(ci;a(i;k))) � J fr(PM ; Rm; �M);

giving the desired result. 2

5 Multiple Description Scalar Quantization

The M partitions de�ning an M -DSQ induce 2M �M � 1 non-trivial intersection
partitions. F orany M� f1 � � �Mg, the intersection partition for fPigi2M is de�ned
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as PM = f\i2Mci : ci 2 Pig. We here assume that the pack et-loss scenarios cor-
responding to all of these in tersectionpartitions occur with nonzero probability and
thus that all corresponding distortions are constrained.

The optimal expected rates and distortions of an MDSQ are the rates associated
with the M de�ning partitions and the distortions associated with the 2M partitions
achievable through the 2M possible pack et-loss scenarios. (These 2M partitions in-
clude the M de�ning partitions, the 2M �M � 1 non-trivial intersection partitions,
and the single trivial partition P� = X used when allM pack ets are lost. As a result,
the rate-distortion points achievable by �xed-rate-RM MDSQ are

Dfr(RM) =
n�
Rfr(Pi)j

M
i=1; D(PM)jM�f1���Mg

�
: Rfr(Pi) � Ri8i 2 1 � � �M

o
;

and the rate-distortion points achievable by variable-rate MDSQare

Dvr =
n�
Rvr(Pi)j

M
i=1; D(PM)jM�f1���Mg

�o
:

An M -DSQ that ac hieves a point on a lower boundary of Dfr(RM) (for any non-
negative RM) or Dvr is in some sense optimal.

Again, the lower boundaries of Dfr(RM) and Dvr are not conv ex in general, but
optimal M -DSQ design algorithms, like optimal M -RSQ design algorithms, focus on
achieving points on the lower conv ex hull of Dfr(RM) and Dvr. F or any PM

? that meets
the RM rate constraint and achieves a point on the lower conv ex hull ofDfr(RM), there
exists a positive v ector � = f�MgM�f1���Mg for which P

M
? minimizes the Lagrangian

J fr(PM ; RM ; �) =
X

M�f1���Mg

�MD(PM)

over all PM with Rfr(Pi) � Ri for all i 2 f1; : : : ;Mg. Similarly, for any PM
? that

achieves a point on the lower conv ex h ull of Dvr there exist positive v ectors � =
f�MgM�f1���Mg and �M = f�ig

M
i=1 such that PM

? minimizes the Lagrangian

Jvr(PM ; RM ; �) =
X

M�f1���Mg

�MD(PM) +
MX
i=1

�iR
vr(Pi)

over all PM .
Notice that MRSQ can be considered as a special case of MDSQ with pack et-loss

scenarios restricted to M 2 ff1g; f1; 2g; : : : ; f1 � � �Mgg. As a result, it is not sur-
prising that MDSQ and other restricted versions of MDSQ exhibit codecell contiguity
properties similar to those observed in MRSQ. In particular, the abov e observations
that the assumption of codecell contiguity precludes optimality in FR-MRSQ and
EC-MRSQ for some source distributions and some Lagrangian parameters general-
izes to MDSQ and restricted MDSQ as well. We can, however, guarantee codecell
contiguity in Pf1���Mg for d(x; x̂) = (x� x̂)2. Details appear in [2].

6 Side-Information Codes

We conclude with a brief look at side-information codes. In this case, there exist very
simple examples in which we cannot achieve optimality using codes with contiguous
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codecells. This problem can occur ev en in FR-SQ with d(x; x̂) = �(jx � x̂j) for a
well-behaved function �. The following example illustrates the problem.

Example 3: ConsiderM = 2, d(x; x̂) = (x�x̂)2, pmf f1=4; 1=4; 1=4; 1=4g,
and alphabet f20; 40; 60; 80g. Suppose that the side information takes on
values from f1; 2g with Pr(1jX = 20) = Pr(1jX = 40) = Pr(2jX =
60) = Pr(2jX = 80) = :999. The side information is available only tothe
decoder. Then the optimal �xed-rate-1 SQ with decoder side information
requires non-contiguous codecells. In particular, P = ff20; 60g; f40; 80gg.
Here the side information can be viewed as the output of a random code
with contiguous codecells. The encoder can best add to that information
using non-contiguous codecells.

7 Summary and Conclusions

This work treats the properties of optimal codes for �xed-rate and entropy-constrained
SQ, MRSQ, and MDSQ with and without decoder side information. In particular,
we derive a family of conditions under which we can guarantee the existence of an
optimal code with contiguous codecells. We also demonstrate that for some code
types there exist pmfs for which some points on the lower conv ex hull of the achievable
rate-distortion region cannot be achieved with an encoder with contiguous codecells.
F orcodes without decoder side information, it is interesting to notice that in the
examples considered to date, most (or all) of the points on the lower convex h ull can
be achieved with contiguous codecells. Nonetheless, the existence of pmfs for which
codecell contiguity precludes optimality at even one rate implies that code designs that
restrict their attention to codes with contiguous codecells cannot guarantee optimality
for all pmfs. Thus optimal �xed-rate and entropy-constrained SQ design algorithms
that use distortion measures satisfying the condtions of Lemma 1 and Theorem 1,
respectively, and restrict their attention to codes with contiguous codecells (e.g., [3, 2])
guarantee globally optimal design. In contrast �xed- and entropy-constrained MRSQ,
MDSQ, and Wyner-Ziv code design algorithms that restrict their attention to codes
with contiguous codecells [2] cannot guarantee globally optimal design for all pmfs.
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