CaltechAUTHORS
  A Caltech Library Service

Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams

van de Walle, A. and Asta, M. (2002) Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams. Modelling and Simulation in Materials Science and Engineering, 10 (5). pp. 521-538. ISSN 0965-0393. http://resolver.caltech.edu/CaltechAUTHORS:WALmsmse02

[img]
Preview
PDF
See Usage Policy.

700Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:WALmsmse02

Abstract

Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system.


Item Type:Article
Additional Information:Copyright © Institute of Physics and IOP Publishing Limited 2002. Received 10 June 2002. Published 25 July 2002. Print publication: Issue 5 (September 2002) This work was supported by the NSF under program DMR-0080766.
Record Number:CaltechAUTHORS:WALmsmse02
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:WALmsmse02
Alternative URL:http://dx.doi.org/10.1088/0965-0393/10/5/304
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:7344
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:01 Feb 2007
Last Modified:26 Dec 2012 09:31

Repository Staff Only: item control page