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Abstract- In this manuscript we consider linear complexity bi-
nary linear block encoders and decoders that operate universally
with exponential error probability decay. Such scenarios may
be relevant in wireless scenarios where probability distributions
may not be fully characterized due to the dynamic nature of
wireless environments. More specifically, we consider the setting
of fixed length-to-fixed length near-lossless data compression of
a memoryless binary source of unknown probability distribution
as well as the dual setting of communicating on a binary
symmetric channel (BSC) with unknown crossover probability.
We introduce a new 'min-max distance' metric, analogous to
minimum distance, that addresses the universal binary setting
and has the same properties as that of minimum distance on
BSCs with known crossover probability. The code construction
and decoding algorithm are universal extensions of the 'Expander
Codes' framework of Barg and Zemor and have identical
complexity and exponential error probability performance.

I. INTRODUCTION

In this discussion we consider code constructions for fixed
block length universal coding for the two dual settings of data
compression and channel coding. The compression scenario
mentioned could be relevant, for instance, in a wireless sensor
network where the following, two points apply:

1) Due to the time-varying nature of the field being sensed,
the probability distribution on the data is not completely
accurately modeled,

2) Complexity, memory, and energy constraints make, a
universal fixed-to-fixed length algebraic compression ap-
proach more viable than a universal fixed-to-variable
length compression approach (such as Lempel-Ziv [1],
[2] or Burrows-Wheeler [3]) that requires dictionaries and
table-lookups.

Similarly, due to the time-varying and multipath effects of the
wireless channel, the universal channel coding scenario could
be relevant where phase information cannot be accurately
tracked.
More specifically, we take interest in universal decoding for

binary memoryless settings, where the decoder does not have
knowledge of the probability distribution to aid in decoding.
We consider the case where a linear mapping H: {0, 1}N
{0, I} is used to map u c {O, I}N to s X {O, 1}M via

s = Hu (1)

where Al < N and U is memoryless with Pr(Ui = 1) = p.
The decoder knows that u must be consistent with s, in other

words it must lie in the coset

Co(H,s) = {u Hu=s}, (2)

and selects u as the 'best' coset member (in a universal sense).
This encompasses two settings:
a) Fixed-to-fixed length near-lossless data compression,

where u is identified as the sourceword and s is the
syndrome, the output of the compression operation.

b) A binary symmetric channel y x (Du. By using a linear
code C for x, and identifying, the parity check matrix H
with C as

C {x: Hx = O} (3)

then we have that a sufficient statistic for decoding is

Hy = Ha = s.

Successfully decoding for the noise vector u is equivalent
to successfully decoding for the transmitted codeword x:

Y.P

It is the job of the decoder to universally (without knowledge
ofp - in particular, the sign ofp- 1) find the best estimate of u.
We assume that the rate R is achievable (i.e. for compression,
R > h (U) and for the BSC, R < 1-h (U)).
We note that if we knew that p < 2 then the optimal

decoding rule would be to find the coset leader,

- E arg min Wh (u'),
uGCo(H,) -

(4)

where Wh (-) is the Hamming weight. In such a setting, a figure
of merit for good codes is the minimum distance of H:

dmin -min. Wh (x),

and the larger the minimum distance, the better the guaranteed
performance.

Likewise, if p > 2' the optimal rule would be

it arg min Wh (U (D1) EzjC arg min Wh(Z)
uECo(H,s) zCo(H,sEDs')

where sl HI and 1 is the all one vector. Since this is also a
coset leader decoding problem, dmin is again a figure of merit
for performance.

In our setting, however, we do not know if p < 2 or p>>.
It has been known in the information theory literature for
quite a while [4], [5] that in the universal setting, linear codes
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still suffice to attain all achievable rates and the same error
exponent as the random coding exponent. A universal decoder
must select the 'best' source vector consistent with the obser-
vation s. Csiszair's 'minimum-entropy' decoder [5] selects as
the source reconstruction the coset's entropy minimizer

u arg minl It (F), (5)
uGco( H,s)

where:
* For any u E {O, 1}n, Pu, is the empirical distribution of

u over {O, 1} where
1

P1(1) -wh (u), P1l(O) 1 - PU(1). (6)
* For any probability distribution P = (F0, P1) over {0, 1},
h (P) is its entropy:

h (P) = EPi 10g2 pi (7)
i=O

Note that since we may express h (P,a) in (5) as

hb (-Wh ()) (8)

where hb (p) -p log92 p- (1 -p) log92 p. Csiszar illustrated in
[5] that linear codes suffice for all achievable rates and more-
over that there exist linear codes that attain the random coding
exponent under the universal minimum-entropy decoder.

In section II we discuss a measure of good codes - the
'min-max distance', that has the same property as minimum
distance: the larger the min-max distance, the better the
guarantee we have on successful universal minimum-entropy
decoding. We also point, out by exploiting well-known results
on typical linear codes from the coding literature [6], that the
min-max distance of the typical linear code is the same as
the minimum-distance of the typical linear code: the Gilbert-
Varshamov distance.

Section III considers code construction and decoding based
on expander graphs. The algorithm is analogous to the 'Ex-
pander Codes' work of Barg and Zemor [7] (originally formu-
lated by Sipser and Spielman [8]) - the difference is that in
each iteration, we replace minimum-distance decoding with
minimum-entropy decoding, so that we are operating in the
universal setting. Here we also illustrate how selecting the
component codes to have good min-max distance allows for
the decoding algorithm to have the same complexity as well
as exponential error probability decay.

II. A MINIMUM-DISTANCE STYLE FIGURE OF MERIT FOR
UNIVERSAL DECODING IN THE BINARY SETTING

We now discuss the 'min-max distance' of a binary linear
code C with parity check matrix H, given by

dmin.max- uECumm min (Wh (u), Wh (1 ( U)) (9)

We illustrate the motivation for using the min-max distance
in code design using the following example. Consider any

linear code with parity check matrix H for which 1 is
a member of C = Co(H,O). Then the minimum-entropy
decoder has probability of error equal to 2 by the following
argument. For any u c Co (H, s), u e 1 E Co (H, s). Further,
h (PLL) = h (P,, 1). Thus u and a D 1 are indistinguishable to
a minimum-entropy decoder. Note that the 'min-max' distance
of any such linear code H is 0, which captures this undesirable
effect.

A. An Analogue to the Half-Minimum Distance Criterion

We know that under minimum-distance decoding, if the er-
ror sequence has hamming weight less than half the minimum
distance, then we can guarantee success. It is natural to ask
if there is an analogous statement regarding min-max distance
and minimum-entropy decoding. The answer is yes:

Proof: see Appendix.

B. Distance Spectrum of the Typical Random Linear Code

We know from traditional coding theory that there exist
linear codes with minimum distance lying on the Gilbert-
Varshamov bound:

dGv(R) the root d < - of hb(6) 1-R.

This allows us to guarantee that using such codes on
a BSC with known crossover probability and minimum-
distance decoding will result in attaining the random coding
error exponent. Considering the decoding success guaran-
tee of the previous subsection and its similarity to min-
imum distance, it is natural to ask the analogous ques-
tion the min-max distance of linear codes. The answer to
this question can be found from traditional coding theory:
Lemma 2.2 (Barg-Fornev [6]): The typical length-N
linear code from the random binary linear code en-
semble has with probability 1 -20(N) a distance
distribution given by AfTLC(d) for d - N6 E
{1, 2, ..,INJ:
ATLC(d) 0, if 1 --d > 2--GV(R) +e2 -2

From the symmetry of KTLC(d) it follows that with exponen-
tially high probability, dminmax > NcGV(R)-
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Lemma 2.1: Consider any Ml by N binary matrix H
and its associated dminmax - Ndmin.max, given by (9).
If Wh (Ui) K ndminmax or Wh (M e 1) < 2dmin.max,
then u is the unique solution to

mmin h (P).aCCo(H,S)-
Stated alternatively, if h (PI) <h(h1rfjn.max) then u
is the unique solution to

min h (PU)aCCo(H,s)



s-J

Fig. 1. graphical representation of the expander code

III. CODES BASED ON EXPANDER GRAPHS
The motivation for this section follows very closely the

work on expander codes by Barg and Zemor [7]. Here we will
consider a syndrome-former [9, Sec VIII.B] representation of
such codes.
We consider a A-regular bipartite graph G = (V = A U

B, E). The set of edges E will be associated with bits that
must satisfy constraints. Each node j c V is adjacent to A
edges and corresponds to a (A, A -mj) code Cj that we
can associate with a mj x A parity check matrix Hj. Also
adjacent to node j is a set of mj half-edges or 'dongles' [9,
Sec VIII.B] connected to rn3 bits, given by sj. The code Cj,
for j c V, enforces the constraint that

HjUIN(j) =Si,
where 'UIN(j) is u projected onto the edge indices that are
adjacent to vertex j. Figure 1 provides an illustration.

A. Encoding
Encoding for the compression situation is done quite simply.

u is mapped to s setting the edges on the graph G to u, and
applying ,j HjUIN(j) for all j c V. We note that there
are n nodes and each node has degree A, and since there are
N = nA edges, this is done with linear complexity. For the
channel coding scenario, the encoding done is the same as
discussed in [8], [7].

B. Decoding
Decoding will be done by applying the syndrome-former

equivalent iterative algorithm of Barg and Zemor [7]. However,
because we are in the universal setting, we cannot simply
perform coset-leader decoding at each code Cj, j C V.
Instead, we must perform a universal decoding algorithm,
which corresponds to minimum-entropy decoding. What we
show in the appendix is that if source sequence projected onto
the indices of any subcode behaves 'typically', then we can
guarantee that the subcode will decode using the universal
minimum-entropy decoder to the true realization. From here
we apply the graph expansion arguments of Barg and Zemor
to arrive at the same result as in their setting.

Let u c {0, I}N be the true sequence that has been mapped
to s c {0, 1}IA according to (1). The first iteration, which

we call a left-decoding step, applies in parallel, for every left
vertex j C A, minimum-entropy decoding according to sj to
construct a UtN(j). In other words, a left-decoding step is a
function L : {0, 1}mJ-i {,0 1}` where

L(sj) E arg min h(Pu).

So {L(sj)}jcA produces a vector ii C {O, I}IN. After applying
{z3 H>UIN(j)}jEB, we then apply the function R in the
same manner that L operates. We alternately apply repeat left-
decoding and right-decoding steps. The procedure stops if it
encounters a fixed point or after having operated for 0(log N)
steps.
We will now identify the vectors of {O, 1}N with their

indices that have entries different from the original sourceword
u. For any left vertex j c A we will say that j is a left-
survivor if Ui :A ui for some i c N(j). We likewise define
a right-survivor. We note that for the universal case, we
need to operate not on the minimum distance of the code
corresponding to Hj, but rather the min-max distance given
in the appendix A. From the appendix C we have that if
'Wh (UIN(j)) < ?dniin.max or Wh (iU1N(j) 'i) < ldmin.max
then no error will result in the universal decoder corresponding
to node j with matrix H.. Note that if a vector u C {O, 1 }N has
no survivors then we will arrive at a fixed point. By applying
properties of the expansion graph as discussed in [7], we know
that if the number of left-survivors s is small enough, then the
number of right-survivors s' is strictly smaller and satisfies
s' < /Os where 3 < 1. Thus it will follow that the algorithm
will converge to a fixed point in a number of iterations
logarithmic in N. That the overall decoding complexity is
O(N) follows from using a circuit of size O(NlogN) and
depth O(logN), as discussed in [8], [7].

C. Error Probability
We note that the error probability analysis in [7, Sec. III]

essentially relies on the following:
a) Using a graph with good expansion properties
b) Using a constituent linear code Cj of length A, associated

with each vertex of the graph, that has following two
properties:
1. Cj attains the BSC random coding error exponent:
Pe' <2-(E'(R)-) for some small e > 0.
2. Cj has minimum distance near the Gilbert-Varshamov
bound: dmmn(Cj) = AcGV(R) -E for some small c > 0.

In our setting we may use the same expander graph as in [7]
to address a). We may address b. 1) by employing the type of
code, shown to exist by Csiszar [5, sec. III], that attains the
random coding exponent under minimum-entropy decoding.
Finally, we address b.2) by noting that from Lemma 2.2 there
exist, with exponentially high probability if chosen randomly,
codes with dminmax lying on the Gilbert-Varshamov bound.
Consequently, we may replace all the arguments regarding
dmin in the error probability analysis of [7, Sec. III] with
arguments regarding dminma? and the details carry through
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in a straightforward manner. Thus we attain the same error
exponent as discussed in the analysis in [7, Sec. III], which is
positive for all achievable rates.
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APPENDIX
Proof of Lemma 2.1:

Suppose we have that a parity check matrix H has dnin.max,
d N6. From the definition of dmjnma, in (9) it follows that
for any nonzero ii G Co (H, 0), the following holds:

Wh(u) d X Wh(u1) <n.-d (10)
and wh(i).<n-d X wh(D1).>d. (11)

Then if

Wh (u) < -d X Wh (U 1) > n - -d (12)2 2
is satisfied, we have

1)

Wh(ueU) < Wh (U) + Wh (U)

< 2d + n - d owing to (12),(l1)2 L

_ n-d1
2

2)

Wh (UU) = n'-Wh (U Ui 1)
> n-[wh (u) +wh (iu 1)j

> n- [1d+n-d3 owing to (12),(10)
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Fig. 2. The Binary Entropy Function

1)

Wh (UEl +t) . Wh (U + 1) + Wh (i)
1

< -d+n-dowingto(l3),(l1)22

- m--d
2

2)

Wh (U+1 (D) n-Wh (U(eieUEU)
. 'n- [Whcl 1-)+ Whc('ie± -)1
> n -[ d+ n-d1 owing, to (13),(l10)

1
_-d.
2

Thus in either case, because of the following properties:
i. 6 < 1 (this follows from the definition (9) of dninmax),

ii. The binary entropy function hb (O) is monotonically in-
creasing on [0, 1) (see Figure 2),

iii. The binary entropy function hb (-) is symmetric around
2 (see Figure 2),

we have that h (Piteu) > h (Pa). Thus if we define s = Hu
then we have that u is the unique solution to

mill h (P:~)
itECo(H,s)

The altemative statement in the lemma holds because the
two statements are equivalent:

* Wh (u) < +dn,inma-x or Wh (U (-1) < ldniin.maxq
* h(Pu)<h(+6).

This also follows from properties i.-iii. above. *

1
- 2d.2

Likewise, if

Wh (u D 1) < Id X Wh (U) > n- 2d2 2
then

/

/j\\\

(13)

1596


