Sound velocity and density of magnesiowüstites: Implications for ultralow-velocity zone topography

June Wicks, Jennifer M. Jackson, Wolfgang Sturhahn, Dongzhou Zhang

Corresponding author: June Wicks, Department of Geosciences, Princeton University, Princeton, NJ, USA. (jwicks@princeton.edu)

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.

Department of Geosciences, Princeton University, Princeton, NJ, USA.

Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Manoa, 1680 East-West Rd, Honolulu, HI 96822

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2016GL071225

©2017 American Geophysical Union. All Rights Reserved.
We explore the effect of Mg/Fe substitution on the sound velocities of iron-rich (Mg$_{1-x}$Fe$_{x}$)O, where x=0.84, 0.94, and 1.0. Sound velocities were determined using nuclear resonance inelastic x-ray scattering as a function of pressure, approaching those of the lowermost mantle. The systematics of cation substitution in the Fe-rich limit has the potential to play an important role in the interpretation of seismic observations of the core-mantle boundary. By determining a relationship between sound velocity, density, and composition of (Mg,Fe)O, this study explores the potential constraints on ultralow-velocity zones at the core-mantle boundary.
1. Introduction

Ultralow-velocity zones (ULVZs) are typically small (10-100 km high) structures at the base of Earth’s mantle that are characterized by unusually low seismic velocities: \(\sim 5-20\%\) drop in compressional sound velocities \(V_P\) and \(\sim 5-30\%\) drop in shear sound velocities \(V_S\). Such significantly reduced sound velocities have been shown to be attributable to either the existence of partial melt [Williams and Garnero, 1996] or local iron enrichment [Knittle and Jeanloz, 1991; Wicks et al., 2010; Rost et al., 2013].

Recent seismic observations of the core-mantle boundary have expanded both the number and variability of ULVZ observations, including a very large ULVZ [Cottaar and Romanowicz, 2012] to areas on the core-mantle boundary with moderate velocity drops, so called "rolling hills" [Sun et al., 2013]. Combined with previous work, details such as interior fine-scale structure [Rost et al., 2006], aspect ratio [Wen and Helmberger, 1998a], and interface concavity [Helmberger et al., 2000] paint an increasingly diverse and complicated picture of the lowermost mantle. The wide variety in ULVZ character and further complexity at the core-mantle boundary permits an equally diverse set of mineralogical conditions and could reflect large amounts of heterogeneity in chemistry (such as Fe enrichment, Si depletion), mineralogy (presence of post-perovskite, hydrated minerals), and phase (solid, partial melt).

A partial melting hypothesis for ULVZs takes advantage of the ease of reducing bulk and shear moduli by mixing with liquid [Berryman, 2000]. It also implies a special circumstance: an intersection of the mantle geotherm with the mantle solidus at a location just a few km above the core-mantle boundary, which may be true for very iron-rich
Pradhan et al., 2015; Kato et al., 2016] and hydrated alkalic [Nomura et al., 2014] systems. Dynamic models have found that the amount of liquid required to reduce sound velocities to such an extent would interconnect and drain to the lowermost 1 km of mantle [Hernlund and Tackley, 2007], but could remain several km above the core-mantle boundary if vigorously stirred [Hernlund and Jellinek, 2010]. Alternatively, 3-D models suggest that sufficient liquid pinning on grain boundaries is plausible [Wimert and Hier-Majumder, 2012], and subsequent melt compaction could explain the observed inverted velocity structure [Hier-Majumder, 2014].

More accurate mineral physics measurements allow us to extend the interpretations of ULVZs one step further. For example, Thomas and Asimow [2013] measured the equation of state of silicate liquids to describe the evolution of a crystallizing magma ocean and found that partial melt residues of ambient mantle composition would not be gravitationally stable unless combined with another denser solid. If such ULVZs exist, then, inferences could be drawn about isolated chemical reservoirs in the mantle.

Sound velocity measurements of iron-enriched mantle minerals have found that partial melting is not required to produce the low sound velocities of ULVZs [Mao et al., 2006; Wicks et al., 2010]. As a result, this heterogeneity observed at the core-mantle boundary could represent a chemical signature rather than a phase change. Followup dynamic models explored the constraints given by sound velocities and density anomalies of a solid ULVZ [Bower et al., 2011]. It was found that an iron-rich assemblage of (Mg,Fe)O and bridgmanite or of iron-rich (Mg,Fe)O with a surrounding mantle of average composition

©2017 American Geophysical Union. All Rights Reserved.
could easily reproduce the range of both sound velocities and topography of ULVZs detected by seismic studies with reasonable volume fractions of (Mg,Fe)O.

Here we expand on previous work and present sound velocity systematics of iron-rich (Mg,Fe)O from experiments using Nuclear Resonant Inelastic X-ray Scattering (NRIXS) of (Mg_{0.06}Fe_{0.94})O and FeO. In addition to providing insight into the compositional dependence of sound velocities, this paper also reflects improvements in the methodology since the publication of the previous work [Wicks et al., 2010]. Most notably, availability of in situ x-ray diffraction permits direct measurements of the sample’s unit cell volume, and thus provide in situ density (ρ) of our sample for the NRIXS measurements. Together with a reliable equation of state for this material [Wicks et al., 2015], we report the Debye sound velocities as a function of density and pressure.

2. Experimental Methods

(Mg_{0.058(1)}Fe_{0.942(1)})O (Mw94) and Fe_{0.941(2)}O (FeO, wüstit) samples were synthesized at ambient pressure using 95% enriched 57Fe [previously described in Chen et al., 2012; Wicks et al., 2015]. The chemical composition of wüstit was computed based upon its lattice parameter ($a = 4.306(1)$ Å) and the relationship reported in McCammon and Liu [1984]: $a = 3.856 + 0.478x$ for Fe$_x$O. High pressure was achieved using 400 μm-culet anvils and 300μm-culet/370μm-beveled anvils in panoramic diamond anvil cells (DACs). These panoramic DACs have 3 radial openings that provide access to inelastically-scattered x-rays using avalanche photodiode detectors, and a 90° downstream opening angle for in situ x-ray diffraction. The cells prepared with Mw94 had a c-BN diamond seat on
the downstream side that permitted in situ x-ray diffraction measurements with NRIXS measurements.

A low pressure data point (11.1 GPa) was taken of Mw94 in a DAC with a KCl pressure-transmitting medium and a beryllium gasket. At higher pressures, samples were supported by a boron epoxy insert and pressure-transmitting medium in a beryllium sample gasket with rubies on either side, one on each culet. Ambient pressure measurements were conducted in air.

Nuclear resonance scattering experiments were conducted at Sector 3-ID-B of the Advanced Photon Source at Argonne National Laboratory. The storage ring was operated in low-emittance top-up mode with 24 bunches separated by 153 ns. In these experiments, X-rays are monochromatized to 1 meV bandwidth [Toellner, 2000], scanned around the nuclear resonance energy of 14.4125 keV, and focused to 10 × 11 μm

Zhang et al., 2016a] on an 57Fe-containing sample. The delayed emission of nuclear resonant fluorescence radiation into a large solid angle is observed using avalanche photodiode detectors [Sturhahn and Jackson, 2007]. Energy scans were collected over a minimum energy range of −60 → +70 meV, although most scans were collected up to 80 meV. At the highest compression point of Mw94 (~85 GPa) and FeO (~96 GPa), an extended energy range scan was conducted to capture the weak contributions to the vibrational spectrum at around 80 meV.

During the Mw94 measurements, a MAR345 image plate inserted downstream from the sample was used to record the X-ray diffraction pattern of the sample in situ. The angle-dispersive X-ray pattern was integrated radially using the Fit2D software [Hammersley

©2017 American Geophysical Union. All Rights Reserved.
et al., 1996] to determine unit cell volumes and pressures via the equation of state of Mw94 [Wicks et al., 2015]. A CeO$_2$ standard was used to calibrate both the X-ray beam center and the distance between the X-ray focus spot and the detector. The unit cell volumes of FeO were measured at Sector 12.2.2 of the Advanced Light Source (ambient pressure) and at Sector 13-ID-D of the APS (high density).

3. Sound velocities

NRIXS spectra were collected for Mw94 over the pressure range 0 to 85 GPa (0, 92, 96 GPa for FeO) and processed using the PHOENIX software with appropriate uncertainties [Sturhahn, 2000] using methods described in Sturhahn [2004]. In this open-source software, the partial projected phonon density of states (PDOS) pertaining to the 57Fe site is extracted [Sturhahn and Jackson, 2007] (Figure 1a).

The Debye sound velocity, V_D, is related to the low-energy region of the PDOS in the following manner:

$$ V(E) = \left\{ \frac{m E^2}{2\pi^2 \hbar^3 \rho D(E)} \right\}^{\frac{1}{3}} \text{ and } V_D = V(0) \ , \ (1) $$

where m is the mass of the resonant nucleus, ρ is the mass density of the sample, and $D(E)$ is the PDOS.

Figure 1b shows, in detail, two different phonon dispersion models applied to the low-energy region of the PDOS to derive the Debye velocity using the pvel subroutine in PHOENIX. In this procedure, the PDOS is scaled according to Equation 1. A strict “Debye-like” region varies quadratically with energy corresponding to acoustic phonons with a small wave number (long wavelength), which would be independent of energy in the scaling shown in Figure 1b (black line).

©2017 American Geophysical Union. All Rights Reserved.
More data can be included if the strict energy-dependent scaling is not imposed, fitting instead an empirical function \(f(E) \approx V_D \{1 - (E/E_0)^2\} \) that maintains a Debye-like behavior approaching zero energy (green line, Figure 1b), where \(E_0 \) and \(V_D \) are optimized in a standard least-square-fit procedure in psvl [Jackson et al., 2009]. The empirical relation for the dispersion of acoustic phonons often assumes that the phonon energies reach a maximum value at the Brillouin-zone boundary. However, this assumption is not necessary, rather the quadratic energy term can be understood as a lowest-order correction [Sturhahn and Jackson, 2007].

In either case, the zero-energy limit of the scaled PDOS is the Debye velocity \((V_D) \). The lower energy limit of the fitting region to obtain this intercept depends on the incident x-ray bandwidth and the successful subtraction of the elastic peak, while the upper limit of the fitting region is determined both by the \(\chi^2 \) of fitting and reasonable energy ranges where the acoustic phonons behave like sound waves [Sturhahn and Jackson, 2007].

In the inset of Figure 2a, \(V_D \) is shown as a function of molar mass in iron-rich \((\text{Mg,Fe})\)O at room pressure. For comparison, the \(V_D \) of \((\text{Mg}_{0.22}\text{Fe}_{0.78})\)O (Mw78) and FeO were numerically determined using an open-source sound velocities from elastic constants (svec) routine within the MINeral physics UTility software package, MINUTI [Sturhahn, 2015]. From \(C_{ij} \) elastic constants reported by Jacobsen et al. [2002] using the directionally-averaged Christoffel equation [Sturhahn and Jackson, 2007], we calculated that \(V_D \) (Mw78) \(= 3.7379 \text{ km/s} \) and \(V_D \) (FeO) \(= 3.2225 \text{ km/s} \). These values, combined with measurements in this study of Mw8457 [Wicks et al., 2010] and Mw9457 and FeO57, show a linear decrease in velocity with increasing molar mass, a trend reminiscent of Birch’s Law.
Figure 2a shows Debye velocities determined using the density calculated from in situ x-ray diffraction for \((\text{Mg}_{0.06}\text{Fe}_{0.94})\text{O}\) (measured at 3-ID-B). Also shown are sound velocities calculated for FeO using densities determined from ex situ X-ray diffraction.

In order to compare with previous NRIXS work where in situ density was not measured and pressure was determined by ruby fluorescence alone [Struzhkin et al., 2001; Wicks et al., 2010], Figure 2B shows measured \(V_D\) as a function of pressure. For the sake of comparison, the same equation of state (EOS) parameters were used for all iron-rich compositions, scaled to their ambient pressure initial density. The 3rd-order Birch-Murnaghan/Mie-Grüneisen EOS was measured for Mw94 (\(K_0T = 197.4 \pm 6.5\) GPa, \(K'_0T = 2.79(9), \Theta_D = 426\) K, \(\gamma_0 = 1.72(8), q = 0.5\) [Wicks et al., 2015]. The effect of using the equation of state (and therefore \(\rho\)) of FeO [Fischer et al., 2011a] on \(V_D\) is negligible compared to the precision of this measurement. For Mw84, on the other hand, using the EOS described above rather than that of \((\text{Mg}_{0.22}\text{Fe}_{0.78})\text{O}\) removed the need for extrapolations of tens of GPa in pressure [Zhuravlev et al., 2010; Wicks et al., 2010].

At low pressures, all studies exhibit the initial sound velocity softening with increasing pressure characteristic of iron-rich (Mg,Fe)O associated with the magnetic ordering transition at \(\sim 15-30\) GPa, dependent on composition [Struzhkin et al., 2001; Jacobsen et al., 2002; Wicks et al., 2010]. Interestingly, at pressures above this transition, the Debye velocities as a function of composition are almost indistinguishable.

For an isotropic solid, \(V_D\) is related to the seismically relevant aggregate compressional \((V_P)\) and shear \((V_S)\) velocities by

\[
\frac{3}{V_D^3} = \frac{1}{V_P^3} + \frac{2}{V_S^3}
\]

(2)
\[
\frac{K_S}{\rho} = V_P^2 - \frac{4}{3} V_S^2 = V_\phi^2
\]

(3)

where \(K_S\) is the adiabatic bulk modulus, \(\rho\) is the density, and \(V_\phi\) is the bulk sound velocity. \(K_S\) is related to the isothermal bulk modulus, \(K_T\), by \(K_S = K_T (1 + \alpha \gamma T)\) with temperature \(T\), thermal volume expansion coefficient \(\alpha\) and Gr"uneisen parameter \(\gamma\).

The seismically relevant \(V_P\) and \(V_S\) were calculated from \(V_D\) and values of \(K_S\), \(\alpha\), \(\gamma\), and \(\rho\) mentioned above [Wicks et al., 2015]. The results are summarized in Table 1. In Figure 3A, we plot \(V_P\) and \(V_S\) as a function of pressure.

4. Discussion

As discussed previously [Sturhahn and Jackson, 2007], the choice of equation of state significantly affects the value of compressional wave velocity. Using in situ X-ray diffraction, the Debye sound velocity is determined independent of an equation of state, but calculation of the seismically relevant \(V_P\) and \(V_S\) requires an independent determination of the adiabatic bulk modulus. To explore the effect of equation of state choice on the calculated \(V_P\), which can be shown from Equations 2 and 3 to be most sensitive to \(V_\phi\), we calculate the \(V_P\) of FeO using the equation of state of FeO from Fischer et al. [2011a] and compare it to that calculated from the equation of state of Mw94 [Wicks et al., 2015]. We find that the compressional velocities at the highest pressure would be higher by 0.5 km/s, rendering it indistinguishable from the other compositions.

Determination of adiabatic bulk modulus is given by the thermal equation of state of Mw94 [Wicks et al., 2015]. At the highest pressure point of 85.2 GPa, for example, sound velocity determinations using \(K_S\) rather than \(K_T\) resulted in a \(V_P\) increase of 0.3% and a
V_S decrease of 0.03%. As such, we used \(K_S \) for all calculations of \(V_P \) and \(V_S \) published here.

The cubic to rhombohedral transition of iron-rich (Mg,Fe)O has been shown through this and previous work to be preceded by shear modulus "softening" as a function of pressure, while it has been showed experimentally that the bulk modulus remains unaffected [Zhuravlev et al., 2010; Wicks et al., 2015]. The effect of temperature on the elasticity of magnesiowüstite at high pressure is not yet known, therefore the consequences of the high temperature rhombohedral to cubic phase boundary and coupling with Fe magnetic transitions is not known, and thus the effect on the sound velocities is not clear.

The rhombohedral distortion transition has been shown to be sensitive to deviatoric stress [Shu et al., 1998]. Comparison of both in and ex situ x-ray diffraction patterns of Mw94 at high pressure with the temperature-annealed equation of state of the same material in a Ne pressure-transmitting medium confirms the lesser degree of distortion in a strained environment. The in situ x-ray diffraction measurement of the 200\((\text{cubic}) = 012(\text{rhombohedral})\) peak was used to calculate unit cell volume, with an estimate of error due to strain bracketed by no-distortion (i.e. cubic) and ideal-distortion \((c/a = 2.457 + .003 P)\) [Wicks et al., 2015]. As pressure was determined only by one reflection, limited by the X-ray energy and bandwidth, we conclude that the error bar calculated by considering rhombohedral distortion is a lower bound. In contrast, the ex situ measurements of FeO, which reflect both sample strain and pressure/stress gradient across the NRIXS-probed sample, likely represents an upper bound on pressure uncertainty, allowing us to conclude that a reasonable pressure error on Mw94 is 4-5 GPa. We note that within scatter,

©2017 American Geophysical Union. All Rights Reserved.
the measurement utilizing a KCl pressure medium is consistent with trends of the other measured velocities.

5. Geophysical Implications

When comparing the sound velocities determined in this study at 300 K to the Preliminary Reference Earth Model (PREM) [Dziewonski and Anderson, 1981], a 1-D model for earth properties, it is clear that the values for iron-rich (Mg,Fe)O are much lower than those of ambient mantle and lower than those of ultralow-velocity zones (Figure 3a). It is very reasonable, then, to hypothesize that ultralow-velocities can be explained by either a physical mixture of iron-rich oxide with ambient mantle, or by an equilibrium assemblage of iron-rich mantle materials.

In Bower et al. [2011], the stability of solid ULVZ’s were explored using geodynamic simulations, which gave insight into the relationship between relative density anomaly and ULVZ shape. This work places an external constraint on ULVZ density for seismic observations that model the full waveform using 2-D or 3-D topography [Wen and Helmberger, 1998b; Helmberger et al., 1998; Sun et al., 2013]. When combined with the relationship between density (e.g. via iron enrichment) and sound velocity of materials, ULVZ interpretations can be taken one step further — individual observations can be modeled as simplified assemblages of phases (e.g. (Mg,Fe)O + (Mg,Fe)SiO$_3$) and compared to other ULVZs to estimate lateral chemical heterogeneity.

With our measurements, we can begin to explore the relationship between sound velocity and iron content of an assemblage. To model the sound velocities of iron-rich (Mg,Fe)O at the core-mantle boundary, the Debye sound velocities in Figure 2b were extrapolated to

©2017 American Geophysical Union. All Rights Reserved.
135 GPa ($V_D=4.27(21)$ km/s), V_P and V_S were calculated for Mw84 and Mw94, adjusting density for the natural iron enrichment. There are no reports of the cross $P−T$ derivatives for V_P and V_S of iron-rich (Mg,Fe)O. Therefore, we use the derivatives reported for MgO under these PT conditions. We applied a temperature dependence of $\delta V_P/\delta T = -8.86 \times 10^{-5}$ (km/s) K$^{-1}$ and $\delta V_S/\delta T = -8.57 \times 10^{-5}$ (km/s) K$^{-1}$, calculated by Wentzcovitch et al. [2010] for MgO at 135.8 GPa and 3800 K. Density at high temperature was determined using our thermal equation of state [Wicks et al., 2015].

As described by Bower et al. [2011], one way to estimate the properties of an iron-rich assemblage at the base of the mantle is to mix iron-rich oxide with bridgmanite, with iron enrichment of the latter determined by partitioning studies. Experimental studies of Fe-partitioning between (Mg,Fe)O and bridgmanite find that the distribution coefficient $K_{D}^{Pv/Mw} = (X_{Fe}^{Pv}/X_{Mg}^{Pv})/(X_{Fe}^{Mw}/X_{Mg}^{Mw})$ decreases as a function of both pressure and iron content — Auzende et al. [2008] and Sakai et al. [2009] measured from 70 to 100 GPa a drop in K_D from ~ 0.2 to ~ 0.07 in iron-poor systems. A phase stability study of the MgO-FeO-SiO$_2$ ternary measured $K_{D}^{Pv/Mw} \sim 0.03$ where $X_{Fe}^{Mw} = 0.92$ at 47 GPa [Tange et al., 2009], in addition to observing the same decreasing trend with pressure and composition. While similar studies are needed at core-mantle boundary conditions to clarify trends, we use $K_{D}^{Pv/Mw} = 0.03$ here. As a result, X_{Fe} of bridgmanite in equilibrium with Mw84 and Mw94 are 0.14 and 0.32, respectively.

We model the properties of bridgmanite using the finite strain model reported by Li and Zhang [2005], replacing initial bulk modulus and its pressure derivative with a more recent study on a suite of iron-bearing bridgmanite samples: $K_0T = 264$ GPa, $K_0'T = 4$ [Dorfman
Bulk modulus dependence on Fe content is not resolvable at relatively high iron concentrations [Dorfman and Duffy, 2014] and therefore not included, as is shear modulus due to lack of experimental data.

In Figure 4, the Voigt-Reuss mixing envelopes are shown as a function of proportion of oxide with respect to silicate. The arithmetic average, called the Voigt-Reuss-Hill average (or simply the Hill average), is often used to approximate the actual state [Watt et al., 1976]. The endpoints for this calculation for Mw84 are $V_P = (14.071, 8.1439 \text{ km/s})$ and $V_S = (7.4715, 3.4661 \text{ km/s})$, and for Mw94 are $V_P = (13.744, 8.0049 \text{ km/s})$ and $V_S = (7.2977, 3.4691 \text{ km/s})$. Density of a Mw84+Bdg mixture is given by $
ho(\text{g/cm}^3) = 2.3784x + 5.5929$, where $x =$ relative fraction of Mw84. Density of a Mw94+Bdg mixture is given by $
ho(\text{g/cm}^3) = 2.4122x + 5.9536$, where $x =$ relative fraction of Mw94. The resolution is limited by the uncertainty in the aggregate’s state, bounded by uniform strain (Voigt) and stress (Reuss) conditions, but some general conclusions can be drawn. Addition of modest amounts of iron-rich oxide to iron-enriched bridgmanite can reproduce the range of P and S wave velocities measured by seismology.

Considering uncertainties, ULVZs with moderate velocity drops are consistent with 10-15% Mw84 mixed with Bdg14 (bridgmanite with 14% Fe per stoichiometric unit) and are consistent with smaller structures with high aspect ratio [Bower et al., 2011]. ULVZs with larger velocity drops are consistent with the presence of 25-30% Mw84 mixed with Bdg14 and are characterized by wider, flatter structures. In these examples, for the same height (17 km), such models would correspond to buoyancy numbers of 2 and 6, respectively [Bower et al., 2011]. Note that a smaller permittable fraction (between 10 and
15%) of Mw94 coexisting with Bdg could simultaneous match a range of ULVZ velocity
decrements that are associated with with similar buoyancy numbers. Adding more Mw94
would yield structures with buoyancy numbers >6 and thus would essentially be flat. One
can see how constraining the wave velocities and density permits more constraints on the
interpretations and may help rule certain scenarios out.

Using the results presented in this study, a 1-D seismic study now has a way to predict
ULVZ shape/lateral extent. Thus, with the assumption that iron-rich (Mg,Fe)O pro-
vides a meaningful explanation of many ULVZs, seismic studies that model observations
ranging from 1-D to 3-D structures can now constrain the relationship between detailed
topography, density and plausible compositions in these regions.

6. Conclusions

Using data measured in this study, a mineralogical model of ultralow-velocity zones was
developed to explore the tradeoff between composition, sound velocity, and ULVZ shape.
Not only can dynamically stable ULVZs of reasonable dimensions (width vs height) be
created with this model, the density excess required for such long-lived structures are
smaller than typically expected (less than 10%). Narrowing the plausible compositions
down further would require improved knowledge on the elastic properties of composites
(e.g., Voigt and Reuss bounds) and tighter constraints on the temperature dependent
wave velocities. Nevertheless, it can be concluded that simple mixing of magnesiowüstite
and iron-enriched bridgmanite can explain the ULVZ velocity decrements and morphology
with only modest changes in density.

©2017 American Geophysical Union. All Rights Reserved.
The nature of the ULVZs potentially holds the key to core-mantle boundary coupling, thus providing insight into the early history of mantle differentiation. If solid and dominated by magnesiowüste, the increased conductivity \cite{Fischer et al., 2011b; Ohta et al., 2014} would help constrain heat flow across this boundary \cite{Stix and Roberts, 1984}.

Looking ahead, better knowledge of temperature at the core-mantle boundary is important, as estimates of the CMB temperature fall right around the melting point of very FeO-rich assemblages \cite{Zhang et al., 2016b}. Iron enrichment has the potential to explain large velocity drops at the base of the mantle, and the consequences of the physical state of this boundary layer on mantle evolution, core–mantle interaction and magnetic coupling have yet to be fully explored.
Acknowledgments. We thank D.J. Bower and D.V. Helmerger for fruitful discussions. We thank E.E. Alp, T.S. Toellner, and J. Zhao for their assistance at Sector 3, V. Prakapenka at GSECARS, and J. Knight at the ALS. We are thankful to NSF-EAR-CAREER-0956166, NSF-CSEDI-EAR-1161046 for support of this research, and to two anonymous reviewers for their thoughtful suggestions. Operations at Sector 3 (APS) and beamline 12.2.2 (ALS) are partially supported by COMPRES. FeO X-ray diffraction measurements were conducted at GSECARS (Sector 13, APS), supported by NSF-EAR-1128799 and U.S. DOE, Geosciences (DE-FG02-94ER14466). Use of the APS is supported by the U.S. DOE, Office of Science (DE-AC02-06CH11357) and ALS by the U.S. DOE, Office of Science (DE-AC02-05CH11231). Original data corresponding to those shown in figures, tables are available upon request from the authors.

References

©2017 American Geophysical Union. All Rights Reserved.
Chen, B., J. M. Jackson, W. Sturhahn, D. Zhang, J. Zhao, J. K. Wicks, and C. A. Murphy (2012), Spin crossover equation of state and sound velocities of (Mg_{0.65}Fe_{0.35})O ferropericlase to 140 GPa, *J. Geophys. Res.*, 117(B8), doi:10.1029/2012JB009162.

©2017 American Geophysical Union. All Rights Reserved.

©2017 American Geophysical Union. All Rights Reserved.

Thomas, C. W., and P. D. Asimow (2013), Direct shock compression experiments on premolten forsterite and progress toward a consistent high-pressure equation of state for CaO-MgO-Al$_2$O$_3$-SiO$_2$-FeO liquids, *J. Geophys. Res.*, 118(11), 5738–5752.

Wicks, J. K., J. M. Jackson, W. Sturhahn, K. K. Zhuravlev, S. N. Tkachev, and V. B. Prakapenka (2015), Thermal equation of state and stability of (Mg$_{0.06}$Fe$_{0.94}$)O, Phys. Earth Planet. Inter., 249, 28–42, doi:10.1016/j.pepi.2015.09.003.

©2017 American Geophysical Union. All Rights Reserved.

Table 1. Magnesiowüstite data. Volume was measured in situ at Sector 3. Corresponding Pressure, as well as the isothermal (K_T) and adiabatic (K_S) bulk moduli were determined using the thermal equation of state of Mw94 ($K_{0T}' = 197.4 \pm 6.5$ GPa, $K_{0T}'' = 2.79(9)$, $\Theta_D = 426$ K, $\gamma_0 = 1.72(8)$, $q = 0.5$) [Wicks et al., 2015]. V_P and V_S were calculated using K_S. Number in parenthesis is the error on the last digit. *Composition Fe$_{0.941}$O. Pressure errors at high pressure reflect more information from ex situ measurements: a pressure gradient across the sample probe area and the effect of sample strain on rhombohedral distortion. b Volume was measured at Sector 12.2.2, ALS. c Volume was measured at Sector 13, GSECARS. d Composition (Mg$_{0.058(1)}$Fe$_{0.942(1)}$)O. e Pressure-transmitting medium of KCl rather than B-epoxy. f Composition (Mg$_{0.18}$Fe$_{0.78}$Ti$_{0.04}$)O.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Volume Density</th>
<th>Pressure</th>
<th>V_D</th>
<th>V_P</th>
<th>V_S</th>
<th>G</th>
<th>K_T</th>
<th>K_S</th>
<th>Energy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeOa</td>
<td>9.979(4)b</td>
<td>6.05(3)</td>
<td>0</td>
<td>2.88(1)</td>
<td>6.47(9)</td>
<td>2.538(1)</td>
<td>38.9(3)</td>
<td>197(7)</td>
<td>201(7)</td>
</tr>
<tr>
<td>7.3(1)e</td>
<td>8.3(1)</td>
<td>92(7)</td>
<td>3.70(653)</td>
<td>7.8(1)</td>
<td>3.27(3)</td>
<td>88.8(1.7)</td>
<td>390(11)</td>
<td>393(11)</td>
<td>4.5-18.8</td>
</tr>
<tr>
<td>7.2(1)e</td>
<td>8.4(1)</td>
<td>96(4)</td>
<td>3.88(3)</td>
<td>7.95(8)</td>
<td>3.43(3)</td>
<td>99.1(1.5)</td>
<td>397(8)</td>
<td>400(8)</td>
<td>4.2-19.8</td>
</tr>
<tr>
<td>Mw94f</td>
<td>9.904(1)</td>
<td>5.94(2)</td>
<td>0</td>
<td>3.08(1)</td>
<td>6.61(9)</td>
<td>2.72(1)</td>
<td>43.8(4)</td>
<td>197(7)</td>
<td>201(7)</td>
</tr>
<tr>
<td>9.546(4)e</td>
<td>6.23(2)</td>
<td>11.10(2)</td>
<td>0</td>
<td>2.97(2)</td>
<td>6.80(7)</td>
<td>2.62(2)</td>
<td>42.7(7)</td>
<td>227(6)</td>
<td>230(6)</td>
</tr>
<tr>
<td>8.30(2)</td>
<td>7.08(3)</td>
<td>45.7(6)</td>
<td>3.27(2)</td>
<td>7.41(3)</td>
<td>2.88(2)</td>
<td>58.8(8)</td>
<td>307(3)</td>
<td>310(3)</td>
<td>5.7-19.6</td>
</tr>
<tr>
<td>7.99(2)</td>
<td>7.36(4)</td>
<td>57.8(8)</td>
<td>3.40(2)</td>
<td>7.58(3)</td>
<td>3.00(2)</td>
<td>66.4(9)</td>
<td>332(2)</td>
<td>335(2)</td>
<td>5.2-19.1</td>
</tr>
<tr>
<td>7.76(2)</td>
<td>7.58(4)</td>
<td>67.7(8)</td>
<td>3.61(2)</td>
<td>7.75(3)</td>
<td>3.19(2)</td>
<td>76.9(9)</td>
<td>350(2)</td>
<td>353(2)</td>
<td>3.7-20.8</td>
</tr>
<tr>
<td>7.41(2)</td>
<td>7.94(6)</td>
<td>85(1)</td>
<td>3.73(2)</td>
<td>7.92(4)</td>
<td>3.30(2)</td>
<td>86.5(9)</td>
<td>380(4)</td>
<td>382(4)</td>
<td>5.2-17.9</td>
</tr>
<tr>
<td>7.40(1)</td>
<td>7.95(3)</td>
<td>85.2(6)</td>
<td>3.78(2)</td>
<td>7.94(4)</td>
<td>3.34(2)</td>
<td>89(1)</td>
<td>380(4)</td>
<td>383(4)</td>
<td>4.9-21.0</td>
</tr>
<tr>
<td>Mw84f</td>
<td>9.79(4)</td>
<td>5.7(1)</td>
<td>0</td>
<td>3.24(1)</td>
<td>6.83(8)</td>
<td>2.86(1)</td>
<td>46.8(3)</td>
<td>197(7)</td>
<td>201(7)</td>
</tr>
<tr>
<td>9.59(9)</td>
<td>5.8(6)</td>
<td>4.0(3)</td>
<td>3.09(2)</td>
<td>6.83(9)</td>
<td>2.72(2)</td>
<td>42.8(7)</td>
<td>208(6)</td>
<td>212(6)</td>
<td>3.7-17.2</td>
</tr>
<tr>
<td>9.26(9)</td>
<td>6.0(6)</td>
<td>11.4(3)</td>
<td>3.00(3)</td>
<td>6.93(8)</td>
<td>2.65(2)</td>
<td>41.9(7)</td>
<td>228(6)</td>
<td>231(6)</td>
<td>3.5-16.0</td>
</tr>
<tr>
<td>9.12(2)</td>
<td>6.1(1)</td>
<td>15(3)</td>
<td>3.02(3)</td>
<td>7.01(10)</td>
<td>3.00(2)</td>
<td>66.4(9)</td>
<td>332(2)</td>
<td>335(2)</td>
<td>5.2-19.1</td>
</tr>
<tr>
<td>8.90(8)</td>
<td>6.2(6)</td>
<td>21.0(4)</td>
<td>3.06(3)</td>
<td>7.13(7)</td>
<td>2.70(2)</td>
<td>52.5(5)</td>
<td>252(5)</td>
<td>255(5)</td>
<td>3.8-14.8</td>
</tr>
<tr>
<td>8.7(1)</td>
<td>6.4(9)</td>
<td>28(2)</td>
<td>2.97(3)</td>
<td>7.19(8)</td>
<td>2.62(3)</td>
<td>43.7(8)</td>
<td>268(4)</td>
<td>271(4)</td>
<td>4.7-18.2</td>
</tr>
<tr>
<td>8.3(1)</td>
<td>6.7(8)</td>
<td>41(1)</td>
<td>3.24(3)</td>
<td>7.48(6)</td>
<td>2.86(3)</td>
<td>55(1)</td>
<td>298(3)</td>
<td>301(3)</td>
<td>3.7-17.2</td>
</tr>
<tr>
<td>8.2(2)</td>
<td>6.8(2)</td>
<td>46(4)</td>
<td>3.30(4)</td>
<td>7.55(10)</td>
<td>2.91(4)</td>
<td>57(1)</td>
<td>307(3)</td>
<td>310(3)</td>
<td>3.7-19.7</td>
</tr>
<tr>
<td>7.9(1)</td>
<td>7.0(1)</td>
<td>55(3)</td>
<td>3.21(4)</td>
<td>7.60(8)</td>
<td>2.83(3)</td>
<td>56(1)</td>
<td>326(2)</td>
<td>329(2)</td>
<td>3.7-19.7</td>
</tr>
<tr>
<td>7.7(2)</td>
<td>7.2(2)</td>
<td>65(5)</td>
<td>3.47(4)</td>
<td>7.80(9)</td>
<td>3.06(4)</td>
<td>67(2)</td>
<td>345(2)</td>
<td>348(2)</td>
<td>4.7-20.7</td>
</tr>
<tr>
<td>7.4(1)</td>
<td>7.5(2)</td>
<td>80(5)</td>
<td>3.67(6)</td>
<td>7.99(9)</td>
<td>3.24(5)</td>
<td>79(3)</td>
<td>371(3)</td>
<td>374(3)</td>
<td>4.2-15.2</td>
</tr>
<tr>
<td>7.3(1)</td>
<td>7.7(1)</td>
<td>88(4)</td>
<td>3.72(4)</td>
<td>8.06(9)</td>
<td>3.29(3)</td>
<td>83(2)</td>
<td>384(5)</td>
<td>387(5)</td>
<td>3.7-18.7</td>
</tr>
<tr>
<td>7.1(1)</td>
<td>7.8(2)</td>
<td>97(5)</td>
<td>3.79(4)</td>
<td>8.12(10)</td>
<td>3.35(4)</td>
<td>88(2)</td>
<td>397(6)</td>
<td>400(6)</td>
<td>3.7-16.2</td>
</tr>
<tr>
<td>7.0(1)</td>
<td>7.9(2)</td>
<td>102(5)</td>
<td>3.86(5)</td>
<td>8.18(10)</td>
<td>3.41(4)</td>
<td>93(2)</td>
<td>406(7)</td>
<td>409(7)</td>
<td>3.7-18.7</td>
</tr>
<tr>
<td>6.9(1)</td>
<td>8.1(1)</td>
<td>110(4)</td>
<td>3.99(4)</td>
<td>8.26(10)</td>
<td>3.53(4)</td>
<td>101(2)</td>
<td>416(9)</td>
<td>419(9)</td>
<td>3.7-16.2</td>
</tr>
<tr>
<td>6.8(1)</td>
<td>8.3(2)</td>
<td>121(7)</td>
<td>4.11(6)</td>
<td>8.34(13)</td>
<td>3.64(5)</td>
<td>110(3)</td>
<td>429(11)</td>
<td>432(11)</td>
<td>3.7-16.2</td>
</tr>
</tbody>
</table>

©2017 American Geophysical Union. All Rights Reserved.
Figure 1.

A: Partial projected phonon density of states of \((\text{Mg}_{0.06}\text{Fe}_{0.94})\text{O}\) at 300 K extracted from raw data using PHOENIX [Sturhahn, 2000]. Spectra are offset in the \(y\)-direction for clarity.

B: Debye velocity determination using the \textit{psvl} subroutine in PHOENIX at 58 GPa. Green and black lines are \(V_D\) (km/s) at \(E = 0\) (Equation 1). A quadratic fit to \(V(E)\) best describes data up to 12 meV (black line). More of the PDOS can be included if an empirical function is instead used (green line), where corresponding \(\chi^2\) values (open circles) calculated in \textit{psvl} for differing energy ranges are plotted at the \(E_{max}\) of each calculation (Table 1).
Figure 2. A: Debye Velocity (V_D) of (Mg$_{0.06}$Fe$_{0.94}$)O compared to FeO as a function of measured density. (Mg$_{0.06}$Fe$_{0.94}$)O volumes were measured in-situ at Sector 3-ID-B of the Advanced Photon Source (APS). Inset: V_D as a function of molar mass in iron-rich (Mg,Fe)O (Mw78 and FeO, using c_{ij}’s reported in Jacobsen et al. [2002] and appropriate NRIXS averaging; Mw8457, [Wicks et al., 2010], Mw9457 and FeO57, this study). B: V_D evolution as a function of pressure. Pressure (for Mw91/FeO, this study) and density (for Mw84 [Wicks et al., 2010] and FeO (S2001) [Struzhkin et al., 2001]) were calculated using the equation of state of Mw94 [Wicks et al., 2015].
Figure 3. Compressional (V_P, blue) and shear (V_S, red) wave velocities of ($\text{Mg}_{0.16}\text{Fe}_{0.84}\text{O}$) (Mw84, empty circles), ($\text{Mg}_{0.06}\text{Fe}_{0.94}\text{O}$) (Mw94, gray-filled circles), and ^{57}FeO, black-filled circles, all measured at 300 K. Errors calculated on velocity are smaller than the symbol size. For comparison, the V_P and V_S of the Preliminary Reference Earth Model, PREM, are shown for lower mantle pressures [Dziewonski and Anderson, 1981].
Figure 4. Compressional (V_P, blue) and shear (V_S, red) wave velocities of a mixture of iron-rich magnesiowüstite (Mw) with bridgmanite (Bdg) at 135 GPa and 3800 K. Density anomalies of the Mw84+Bdg model (solid curves) and Mw94+Bdg (dashed curves) are shown on the top axis. Modeled ULVZs with modest or greater velocity drops (lower left corner: $B = 2$ and 6 respectively, for a ULVZ height of 17 km) provide a link between velocity decrement and ULVZ topography.