Supporting information

Ideal Strength and Deformation Mechanism in High-Efficiency Thermoelectric SnSe

Guodong Li †‡, Umut Aydemir ‡, Max Wood †, William A. Goddard III †, Pengcheng Zhai †, Qingjie Zhang *,†, and G. Jeffrey Snyder *,‡

†State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
‡Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, USA.
┴Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, USA.
*Corresponding authors: jeff.snyder@northwestern.edu; zhangqj@whut.edu.cn
Figure S1. (a) The intact atomic positions for shear loads along the (100)/<001> slip system, (b) The Sn3–Se1–Se5 bond angle and the c-axis lattice parameter with the increasing shear strain along the (100)/<001> slip system. The red dashed line in Figure S1(b) represents the strain 0.081 corresponding to the minimum length of the Se1–Sn3 bond as shown in Figure 3 in the manuscript.