CaltechAUTHORS
  A Caltech Library Service

On the equal-mass limit of precessing black-hole binaries

Gerosa, Davide and Sperhake, Ulrich and Vošmera, Jakub (2017) On the equal-mass limit of precessing black-hole binaries. Classical and Quantum Gravity, 34 (6). Art. No. 064004. ISSN 0264-9381. http://resolver.caltech.edu/CaltechAUTHORS:20170302-161619997

[img] PDF - Published Version
Creative Commons Attribution.

858Kb
[img] PDF - Submitted Version
See Usage Policy.

823Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20170302-161619997

Abstract

We analyze the inspiral dynamics of equal-mass precessing black-hole binaries using multi-timescale techniques. The orbit-averaged post-Newtonian evolutionary equations admit two constants of motion in the equal-mass limit, namely the magnitude of the total spin S and the effective spin ξ. This feature makes the entire dynamics qualitatively different compared to the generic unequal-mass case, where only ξ is constant while the variable S parametrizes the precession dynamics. For fixed individual masses and spin magnitudes, an equal-mass black-hole inspiral is uniquely characterized by the two parameters (S, ξ): these two numbers completely determine the entire evolution under the effect of radiation reaction. In particular, for equal-mass binaries we find that (i) the black-hole binary spin morphology is constant throughout the inspiral, and that (ii) the precessional motion of the two black-hole spins about the total spin takes place on a longer timescale than the precession of the total spin and the orbital plane about the total angular momentum.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1088/1361-6382/aa5e58DOIArticle
http://iopscience.iop.org/article/10.1088/1361-6382/aa5e58/metaPublisherArticle
https://arxiv.org/abs/1612.05263arXivDiscussion Paper
ORCID:
AuthorORCID
Sperhake, Ulrich0000-0002-3134-7088
Additional Information:© 2017 IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Received 20 December 2016, revised 25 January 2017; Accepted for publication 6 February 2017; Published 1 March 2017. We thank Michael Kesden, Emanuele Berti and Richard O'Shaughnessy for several stimulating discussions. DG is supported by NASA through Einstein Postdoctoral Fellowship grant No. PF6-170152 awarded by the Chandra x-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. Additional support is acknowledged by NSF CAREER grants PHY-1151197 and PHY-1404569, the UK STFC, and the Isaac Newton Studentship of the University of Cambridge. JV was supported by the Bridgewater Summer Undergraduate Research Opportunities Programme and the Churchill College Small Grants fund at the University of Cambridge. This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690904, from H2020-ERC-2014-CoG Grant No. 'MaGRaTh' 646597, from STFC Consolidator Grant No. ST/L000636/1, the SDSC Comet, PSC-Bridges and TACC Stampede clusters through NSF-XSEDE Award Nos. PHY-090003, the Cambridge High Performance Computing Service Supercomputer Darwin using Strategic Research Infrastructure Funding from the HEFCE and the STFC, and DiRAC's Cosmos Shared Memory system through BIS Grant No. ST/J005673/1 and STFC Grant Nos. ST/H008586/1, ST/K00333X/1. Figures were generated using the Python package matplotlib [50].
Group:TAPIR
Funders:
Funding AgencyGrant Number
NASA Einstein FellowshipPF6-170152
NASANAS8-03060
NSFPHY-1151197
NSFPHY-1404569
Science and Technology Facilities Council (STFC)ST/L000636/1
University of CambridgeUNSPECIFIED
Marie Curie Fellowship690904
European Research Council (ERC)646597
NSFPHY-090003
Higher Education Funding Council for EnglandUNSPECIFIED
Science and Technology Facilities Council (STFC)ST/J005673/1
Science and Technology Facilities Council (STFC)ST/H008586/1
Science and Technology Facilities Council (STFC)ST/K00333X/1
Record Number:CaltechAUTHORS:20170302-161619997
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20170302-161619997
Official Citation:Davide Gerosa et al 2017 Class. Quantum Grav. 34 064004
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:74674
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:03 Mar 2017 03:13
Last Modified:03 Mar 2017 03:13

Repository Staff Only: item control page