CaltechAUTHORS
  A Caltech Library Service

Rotational branching ratios in (1+1) resonant-enhanced multiphoton ionization of NO via the A 2Σ+ state

Dixit, S. N. and Lynch, D. L. and McKoy, V. and Huo, Winifred M. (1985) Rotational branching ratios in (1+1) resonant-enhanced multiphoton ionization of NO via the A 2Σ+ state. Physical Review A, 32 (2). pp. 1267-1270. ISSN 0556-2791. http://resolver.caltech.edu/CaltechAUTHORS:DIXpra85

[img]
Preview
PDF
See Usage Policy.

806Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:DIXpra85

Abstract

The rotational branching ratios resulting from (1+1) resonant-enhanced multiphoton ionization of NO via the A 2Σ+ Rydberg state are analyzed. Theoretical results using ab initio molecular parameters agree reasonably well with recent experimental data. More importantly, the analysis underscores the importance of the molecular nature of the problem and its resulting complexities. It is shown that, for photoionization of a Σ state that leaves the ion in a Σ state, the allowed rotational states of the ion satisfy the selection rule ΔN+l=odd, where ΔN is the difference in (electronic + rotational) quantum numbers for the neutral and for the ion, and l is the partial wave of the electron. Based on this selection rule, it follows that the predominantly gerade 3sσ Rydberg orbital of the A 2Σ+ state couples only to the ungerade channel in the continuum (l odd), thereby suppressing the ΔN=±1 peaks, in agreement with experiment. The molecular nature of the ionic potential leads to strong l mixing in electronic continuum orbitals. In fact, the influence of a nearby shape resonance causes the f wave to be dominant in the σ channel.


Item Type:Article
Additional Information:©1985 The American Physical Society. Received 20 May 1985. This material is based upon research supported by the National Science Foundation under Grant No. CHE-8218166.
Record Number:CaltechAUTHORS:DIXpra85
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:DIXpra85
Alternative URL:http://dx.doi.org/10.1103/PhysRevA.32.1267
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:7481
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:23 Feb 2007
Last Modified:26 Dec 2012 09:32

Repository Staff Only: item control page