by a factor of about 10 over a laminar flow and by
about 50 over no flow (in this case). It is apparent
therefore that a considerable improvement in heat
transfer in a structure such as a superconducting
solenoid can be obtained by the provision of cooling
channels and by the establishment of appropriate
flow conditions. The improvement can be so large
as to reduce the need for stabilizing materials on
the superconductor.

*Supported in part by Atomic Energy of Canada, Ltd.
1Permanent address: Electrotechnical Institute of the
Slovak Academy of Science, Bratislava, Czechoslovakia.
3S. Lehongre, J.C. Boulain, C. Johannès, and A. De
La Harpe, Proceedings of the Second International
Cryogenic Engineering Conference, Brighton, 1968
4H. Ogata, M. Kenmochi, S. Sato, and H. Kimura,

OBSERVATION OF PROPAGATION CUTOFF AND ITS CONTROL
IN THIN OPTICAL WAVEGUIDES*

David Hall, Amnon Yariv, and Elsa Garmire

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91109

(Received 8 June 1970; in final form 15 June 1970)

The first observation of optical cutoff in thin-film waveguides is reported. The waveguides consist of thin (\(\sim 10 \mu\)) epitaxial layers of high-resistivity GaAs deposited on lower-resistivity
GaAs substrates. The optical cutoff is controlled through the electro-optic effect by applying
an electric field across the epitaxial layer.

Guiding and electro-optic modulation of light in
thin epitaxial semiconductor films has recently
been demonstrated. In this paper we report the
first observation and control of optical cutoff in such waveguides.

The optical waveguide consists of a GaAs high-resistivity epitaxial layer (\(\sim 12 \mu\)) sandwiched be-
tween a metal film and lower-resistivity GaAs
substrate as shown in Fig. 1. The existence of
confined modes is due to a discontinuity \(\Delta n\) of the
index of refraction at the epitaxial layer–substrate
interface. The theory describing the propagation of modes
in this structure can be adapted from that of the
symmetric dielectric waveguide. The symmetric
guide can support, in general, two types of modes:
TE waves where \(\vec{E}\) is parallel to \(y\), and TM waves
in which \(\vec{E}\) is parallel to \(x\). The existence of a
conducting plane (metal film) at \(x = 0\), however,
limits the TE and TM modes in our case, to those
possessing odd symmetry about \(x = 0\). These can
be written as

\[
E_y(TE) \propto \sin(kx) \exp(-i\beta z), \quad (1)
\]

\[
H_y(TM) \propto \sin(kx) \exp(-i\beta z), \quad |x| < t
\]

\[
E_y(TE) \propto \exp[-\beta(x - t) - i\beta z], \quad (2)
\]

\[
H_y(TM) \propto \exp[-\beta(x - t) - i\beta z], \quad |x| > t.
\]

The lowest-order \(TE_1\) and \(TM_1\) (the numerical
subscript gives the number of zero crossings in
the interval \(|x| < t\) modes can exist only if the
condition

\[
(2n_0 \Delta n)(2\pi t/\lambda_0)^2 > (\pi/2)^2
\]

FIG. 1. The experimental setup.
is satisfied. When the sign of the inequality in (3) is reversed, the field intensity increases with x so that confined propagation does not exist. This condition is referred to as cutoff.

The index discontinuity Δn at the interface $x=t$ is due, in our experiment, to two mechanisms. The first is the dependence of the index on the doping level. This discontinuity, which we denote as $\Delta n_{\text{chemical}}$, is known to lead to mode confinement in $p-n$ junctions.5,4 In our guide $\Delta N \approx 2 \times 10^{16}$ cm$^{-3}$ and we estimate $\Delta n_{\text{chemical}} \approx 10^{-4}$. The second contribution is due to the linear electro-optic effect in GaAs and is proportional to the reverse bias V applied to the metal-semiconductor junction. For the crystal orientation shown in Fig. 1 the electro-optic contribution to the index of a wave polarized along y is

$$\Delta n = n_0^3 r_{41} E_x / 2,$$

and is zero for waves polarized along x. We can consequently, write condition (3) for confined propagation as

$$\Delta n_{\text{chemical}} + n_0^3 r_{41} V / 2 t > -\frac{1}{32 n_0} \left(\frac{\lambda_0}{l} \right)^2,$$

(4)
optical polarization is rotated by $90^\circ (\mathbf{E} \parallel z)$ so as to excite a TM wave, no confined mode exists with or without an applied field. This is consistent with the fact that there is no electro-optic contribution to Δn in the case of the TM wave. (2) By changing the crystal orientation we can reverse the sign (see caption under Fig. 2) of the electro-optic contribution to Δn as "seen" by the TE mode from $(+)$ to $(-)$. When this is done the application of a voltage does not lead to a confined mode in agreement with (4).

The gradual onset of confinement with increasing voltage is shown by the intensity profile plots in Fig. 3. The dependence of the guided intensity on the applied voltage can be used for modulation purposes.

In summary: The phenomena of propagation cutoff in thin optical waveguides is demonstrated. A continuous electro-optic control of the cutoff condition is used to demonstrate its effect on the intensity distribution of the dominant TE mode.

The authors wish to thank A. Shuskus and W. Oshinsky of United Aircraft Research Laboratories in East Hartford, Conn. for supplying the GaAs samples.

\begin{equation}
\Delta n_{\text{electro}} > \frac{1}{32 n_0} \left(\frac{\lambda_0}{l} \right)^2,
\end{equation}

in the case of the TM wave. n_{44} is the electro-optic coefficient of GaAs and the applied voltage is $V = E_x l$.

The doping level of the substrate ($N \sim 2 \times 10^{16}$ cm$^{-2}$) and the thickness $t = 12 \mu$ were chosen in our experiment so that at $\lambda_0 = 1.15 \mu$ condition (5) was not fulfilled and no confined modes can exist. The application of a voltage V increases Δn by adding, as indicated in (4), an electro-optic contribution making it possible for a confined TE wave to exist. A magnified image of the output face of the crystal with and without an applied bias ($V = 130$ V) is shown in Fig. 2. The existence of a confined mode with the voltage on is clearly evident. In addition, we made the following observations: (1) When the

*Research supported by the Office of Naval Research and by the Advanced Research Projects Agency through the Army Research Office, Durham, N.C.

